
CompSci 161 Winter 2023 Discussion 10: Dynamic Programming (2/9)

1. In the Knapsack problem, you are given a list of n items’ weights (w1, w2, ...wn) and values
(v1, v2, ...vn). The goal is to maximize the total value of the items in your knapsack, without
exceeding the weight limit W . For each item in the list, you must choose whether to take it
or to leave it.

Design an O(nW) dynamic programming algorithm to solve the Knapsack problem.

2. (a) You are given an array of n positive integers (a1, a2, ..., an). How can you use dynamic
programming to determine whether the array can be partitioned into 2 subsets of equal
sum? (Hint: You can use an algorithm you already know....)

(b) What about partitioning into 3 subsets of equal sum? Design a dynamic programming
algorithm.

3. In the Knapsack with Duplicates problem, you are given a list of n items’ weights (w1, w2, ...wn)
and values (v1, v2, ...vn). The goal is to maximize the total value of the items in your knap-
sack, without exceeding the weight limit W . You can choose to take zero, one, or more than
one of each item.

Consider this dynamic programming approach:

Definition:

V alue[w] is the maximum value achievable without exceeding weight w.

Recursive Formula:

V alue[w] = max
i: wi≤w

vi + V alue[w − wi]

(a) Provide the needed base case(s).

(b) In what order should our algorithm fill the array V alue[w]?

(c) What is the runtime complexity of this algorithm? Is it polynomial?

(d) After filling the array, V alue[W] will be the maximum total value. How could we then
reconstruct the specific choice of items which achieves that optimal value?

© CompSci 161 Winter 2023– Phillip Nazarian– University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.

