

1. In the Knapsack problem, you are given a list of n items' weights (w_1, w_2, \dots, w_n) and values (v_1, v_2, \dots, v_n). The goal is to maximize the total value of the items in your knapsack, without exceeding the weight limit W . For each item in the list, you must choose whether to take it or to leave it.

Design an $\mathcal{O}(nW)$ dynamic programming algorithm to solve the Knapsack problem.

2. (a) You are given an array of n positive integers (a_1, a_2, \dots, a_n). How can you use dynamic programming to determine whether the array can be partitioned into 2 subsets of equal sum? (*Hint: You can use an algorithm you already know....*)
- (b) What about partitioning into 3 subsets of equal sum? Design a dynamic programming algorithm.
3. In the Knapsack with Duplicates problem, you are given a list of n items' weights (w_1, w_2, \dots, w_n) and values (v_1, v_2, \dots, v_n). The goal is to maximize the total value of the items in your knapsack, without exceeding the weight limit W . You can choose to take zero, one, or more than one of each item.

Consider this dynamic programming approach:

Definition:

$Value[w]$ is the maximum value achievable without exceeding weight w .

Recursive Formula:

$$Value[w] = \max_{i: w_i \leq w} v_i + Value[w - w_i]$$

- (a) Provide the needed base case(s).
- (b) In what order should our algorithm fill the array $Value[w]$?
- (c) What is the runtime complexity of this algorithm? Is it polynomial?
- (d) After filling the array, $Value[W]$ will be the maximum total value. How could we then reconstruct the specific choice of items which achieves that optimal value?