

CompSci 161

Winter 2023 Lecture 8:

Divide and Conquer V:

Min and Max Concurrently

Binary Exponentiation

## Min and Max

- ▶ We have an array of  $n$  distinct numbers.
- ▶ We want to find *both* – the min and max.
- ▶ Brute force method takes  $2n - 3$  comparisons.
- ▶ Find a way that uses strictly fewer.

$n-1$  : find  $\hat{\min}$

delete  $\hat{\min}$

$n-2$  : find max now

# Could anyone do better?



- ▶ Adversary argument:

- ▶ All queries are made to an adversary (opponent)
- ▶ Adversary is allowed to make up answers
- ▶ But answers must be consistent with some input

- ▶ If we compare and find  $a < b$ , we say:

*b* *disq.* *a* *disqualified*  
*from* *from max*  
*being* *info*  
*min* *each*

- ▶ *a* lost the competition
- ▶ *b* won the competition
- ▶ Every non-max loses at least one
- ▶ Every non-min wins at least one
- ▶ This is  $2n - 2$  units of information.

# What should the adversary do?

We compare  $a$  and  $b$  to gain information.

- ▶ If  $a, b$  never compared (to ANY key) before?

Any answer same to me  
I gain 2 units info

- ▶ If exactly one of them compared before?

I gain one unit  
info

|   |   |
|---|---|
| L | W |
| a | b |

- ▶ Both compared before, one won at least once?

- ▶ Both compared before, both lost before?

## How many comparisons can be forced?

- ▶ We need to gain  $2n - 2$  units of information.
- ▶  $c_1 = \#$  comparisons that gave us one unit.
- ▶  $c_2 = \#$  comparisons that gave us two units.
- ▶ Total units of info available is at least  $2n - 2$

$$C_1 + 2C_2 \geq 2n - 2$$

- ▶ At most  $n/2$  comparisons give us two units

$$-C_2 \geq -\frac{n}{2}$$

$$\underline{C_1 + C_2 \geq \frac{3}{2}n - 2}$$

## ~~Binary Exponentiation~~

(not today, sorry.  $\ddot{\wedge}$ )

$$\frac{\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n}{\begin{bmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{bmatrix}} =$$

Alg. for  $\approx \frac{3}{2}n - 2$  cmp?  $\|n$  even?

$\frac{n}{2}$  cmp:

(pair up input)

Total:  $\frac{3}{2}n - 2$

$\frac{n}{2}$  winners

$\uparrow$   
 $\frac{1}{2} - 1$

$\frac{1}{2}$  not winners

$\uparrow$   
 $\frac{n}{2} - 1$