

CompSci 161

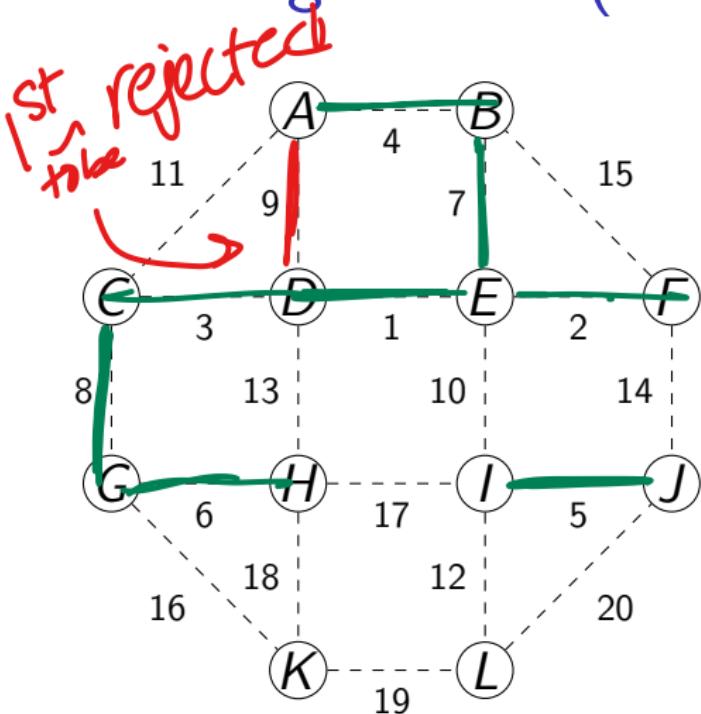
Winter 2023 Lecture 21:

Greedy Algorithms:

Kruskal's Algorithm, Union-Find

Data Structure

Finding a MST (Kruskal)



Disjoint Sets

Goal: Quickly determine a, b connected?

Answer: Disjoint-set data structure

- ▶ Maintain a collection of disjoint dynamic sets
- ▶ Identify each set by a representative
- ▶ Support the following operations:
 - ▶ Make-Set : constructor
 - ▶ Given a vertex, in which tree?
 - ▶ x, y same tree? Same answer.
 - ▶ Two vertices, merge
 - ▶ Different trees now connected

interface

"find"
 $find(x) = find(y)$
iff x, y
same tree

An Application: Counting Disjoint Sets

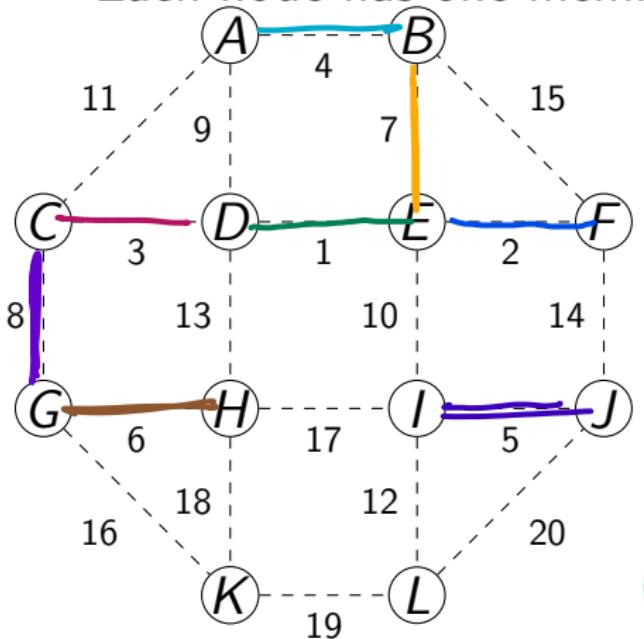
Edges	Collection
initial	$\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}, \{j\}$
(d, e)	$\{a\}, \{b\}, \{c\}, \{d, e\}, \{f\}, \{g\}, \{h\}, \{i\}, \{j\}$
(e, f)	$\{a\}, \{b\}, \{c\}, \{d, e, f\}, \{g\}, \{h\}, \{i\}, \{j\}$

Linked List Representation

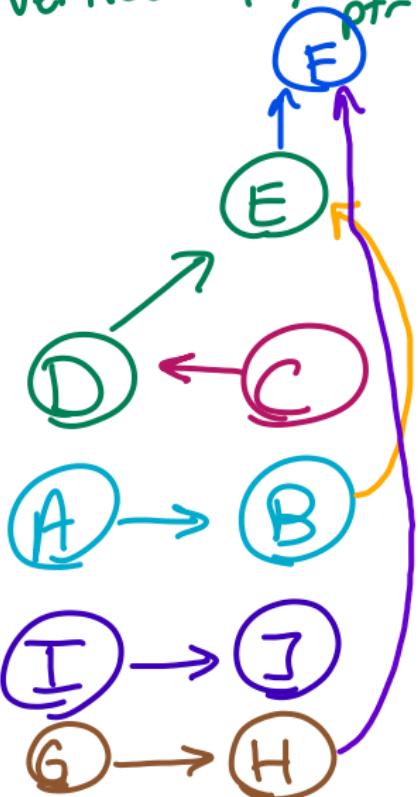
- ▶ Objects represented by linked list
 - ▶ Each set has head, tail
 - ▶ Each element has member, next, pointer back
- ▶ Implementation of $\text{Union}(x, y)$
 - ▶ Append y 's list onto end of x 's
 - ▶ Convenient use of tail pointer
- ▶ How long does a series of operations take?

Disjoint-set Forests

- ▶ Represent sets by rooted trees
- ▶ Each tree is one set
- ▶ Each node has one member

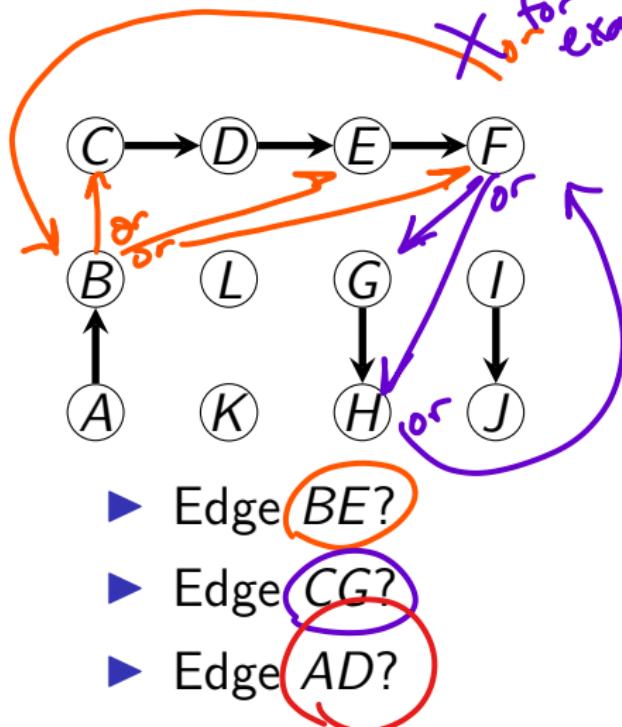
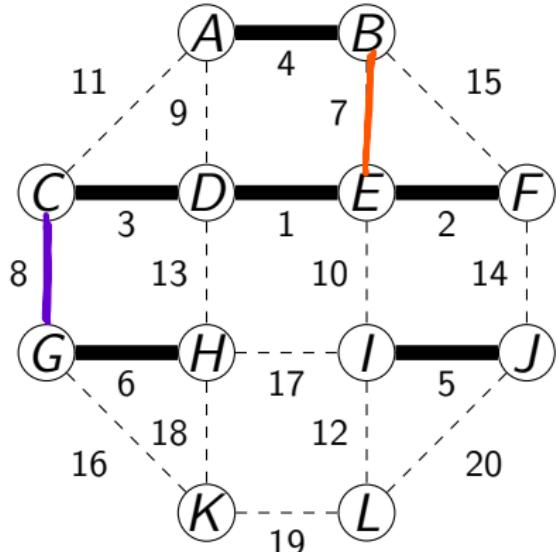


Support data structure
vertices w/ parent ptr

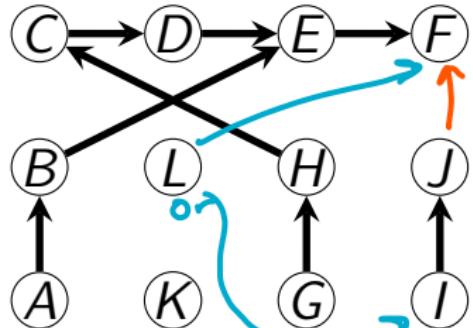


Continuing the structure

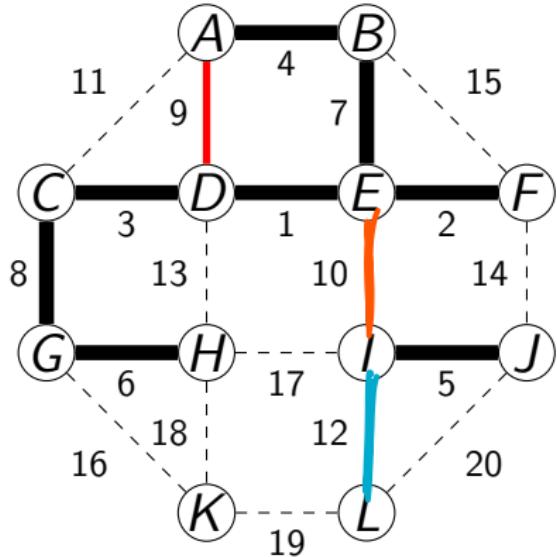
~~for example, no~~



Continuing the structure



- ▶ Edge EI?
- ▶ Edge AC? rejected
- ▶ Edge IL?
- ▶ Edge DH? rejected



Running time for Operations

Union(A,B)

$X \leftarrow \text{find}(A)$

$Y \leftarrow \text{find}(B)$

$\text{if } X \neq Y \text{ then}$

~~$* X.\text{count} += Y.\text{count}$~~

$X.\text{parent} \leftarrow Y$

if $X.\text{count} > Y.\text{count}$
 Swap X,Y before adj.
 find(A)

if $A.\text{parent} \neq \text{nullptr}$

then

return $\text{find}(A.\text{parent})$

return A

$2 \times \text{find} + O(1)$

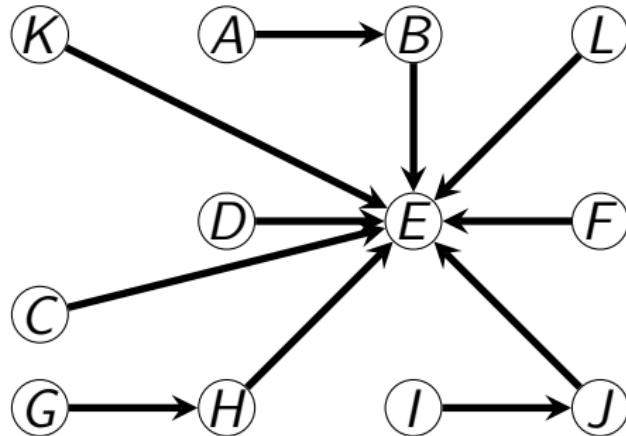
$O(n)$ for find

► If there are n elements, times?

► Can we improve the **worst-case** for one?

Union by rank.

Example of Union by Rank



- ▶ This is the result of *Union by Rank*
- ▶ Ties are broken alphabetically
Earlier letter → later letter (when tied)
- ▶ Running time for operations? $\mathcal{O}(\log n)$ find

Running time for Operations

Union(A,B)

$X \leftarrow \text{find}(A)$

$Y \leftarrow \text{find}(B)$

if $X \neq Y$ **then**

if $X.\text{count} > Y.\text{count}$ **then**

Swap X and Y

$X.\text{parent} \leftarrow Y$

$Y.\text{count} += X.\text{count}$

find(A)

if $A.\text{parent} \neq \text{nullptr}$ **then**

return $\text{find}(A.\text{parent})$

return A

► If there are n elements, find is $\mathcal{O}(\log n)$

► Union takes time $2 \times \text{find} + \mathcal{O}(1)$

Improving Find

??

- ▶ Can we improve **find** further?

↙

find(const Key &K) const

find(A)

if A.parent ≠ nullptr then

A.parent ← find(A.parent)

return A.parent

Path compression

return A

Private member
data is

Mutable

Path Compression

- ▶ Path compression change worst-case of find?
- ▶ Does path compression improve over time?
- ▶ Suppose we have m union and f find operations