

CompSci 161

Winter 2023 Lecture 18:

Greedy Algorithms:

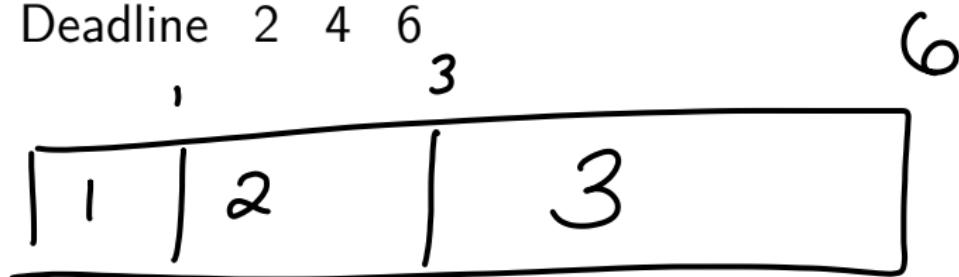
Scheduling with Deadlines

Scheduling with Deadlines

Example 1: What is the optimal schedule for the following input?

Time 1 2 3

Deadline 2 4 6

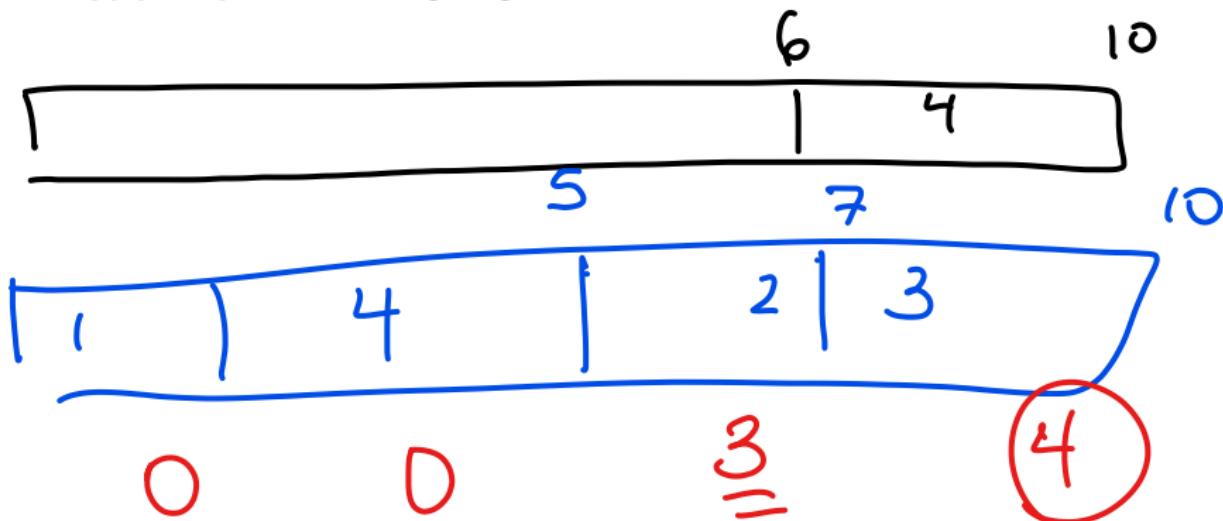


Scheduling with Deadlines

Example 2: What is the optimal schedule for the following input?

Time	1	2	3	4
------	---	---	---	---

Deadline	2	4	6	6
----------	---	---	---	---



Possible Scheduling Algorithms

- ▶ Sort the jobs by increasing time t_i ; schedule them in that order.

$t:$ 1 2 3 1000

$d:$ 1050 1050 1050 1000

- ▶ Sort the jobs by $d_i - t_i$; schedule them in that order.

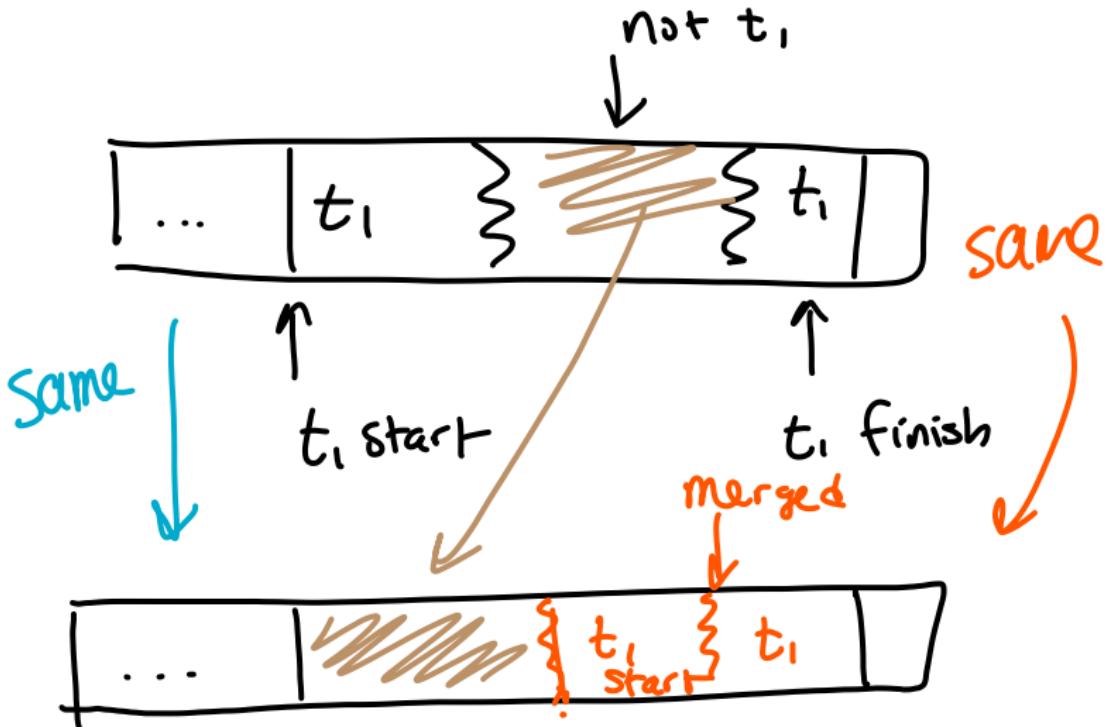
$d_i - t_i$
"slack"

2 1050

1 1000

Can we break up tasks?

Is it beneficial to break up tasks? Why or why not?



Proof: Lemma 1

When deciding start times, don't leave any gaps;
 $s_{i+1} = s_i + t_i$.

Proof: Lemma 2

Any schedule that doesn't agree with our algorithm has at least one pair of *consecutive* intervals $i, i + 1$ that are *inverted* relative to our order.

$\exists i, j \text{ s.t. } i < j \text{ but } A[i] > A[j]$

if $j = i + 1$ done

else

let $\kappa = i + 1$.

$A[i], A[\kappa]$ inverted?

No? $A[i] < A[\kappa]$ and $A[i] > A[j]$

We can now finish the proof

Algorithm: schedule by increasing d_i

Claim: Any schedule with an inversion can be modified to be more like our algorithm's output without making it worse.

$$\begin{array}{ll}
 \text{if } i, j \text{ : adj inverted: } i < j \text{ but } \xrightarrow[\text{Swap tasks } i, j]{?? d_i \geq d_j} \\
 f_i = s_i + t_i & f'_i = s_i + t_j + t_i \\
 \text{no worse iff } d_i \geq d_j & f'_j = s_i + t_j < f_j
 \end{array}$$

Proof of Correctness

- ▶ We proved this:
Claim: Any schedule with an inversion can be modified (by removing an adjacent inversion) to be more like our algorithm's output without making it worse.
- ▶ What does the full proof look like?