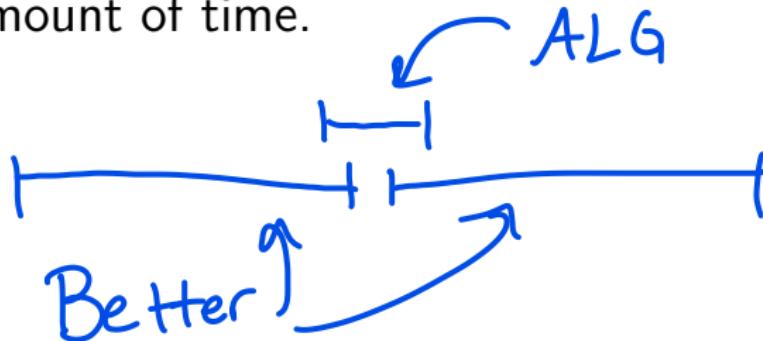


CompSci 161

Winter 2023 Lecture 17:

Greedy Algorithms:

Interval Scheduling


Unweighted Interval Scheduling Problem

Two possible algorithms (four on handout):

- ▶ Sign up for the class that begins earliest.

- ▶ Sign up for the class that meets for the least amount of time.

Unweighted Interval Scheduling Problem

Two more algorithms (four on handout):

- ▶ Sign up for the class that conflicts with the fewest other classes.

ALG
better:
top 4

- ▶ Sign up for the class that ends earliest.

Interval Scheduling Problem (proof)

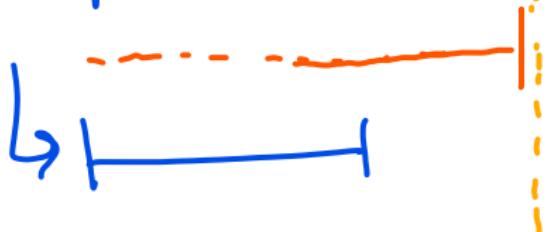
Correct Algorithm:

- ▶ Sign up for the class that ends earliest.
- ▶ Remove it and all overlapping classes from the set of available classes.
- ▶ Repeat this process until no classes remain.

Claim: There is an optimal solution that includes the first-ending class.

Proof of Claim: Suppose all optimal solutions do not. Select an arbitrary optimal solution OPT .

OPT' : OPT , remove the first ending from OPT
add first ending from input


Proof of Correctness

- ▶ We began with an arbitrary optimal set OPT
 - ▶ Its first element was not first-ending.
 - ▶ We removed that one
 - ▶ We added our first one: the first-ending.
 - ▶ This forms a set we'll call OPT'
- ▶ **Claim:** OPT' is an optimal solution.
 - ▶ Is it the same size as every optimal solution?

first
ending
of input

Yes (maybe say why)

- ▶ Is it a valid solution?

first ending from OPT

Rest of OPT
is after dotted line

6 Additional Slide (if needed)

"How To Prove It"
by Daniel Velleman (spelling?)

Proof of Correctness

- ▶ We proved that an optimal solution exists that includes the first-ending class.
- ▶ What does the full proof look like?