
CompSci 161
Winter 2023 Lecture 15:

Finishing Dynamic Programming



2 Iterative Version: Topological Order

▶ Caution: some recursive calls to higher values.
▶ We can’t iterate increasing i and j together.
▶ Tree[i , j ] will make calls to:

▶ Tree[i , r − 1] for i ≤ r ≤ j
▶ Tree[r + 1, j ] for i ≤ r ≤ j

▶ For example, Tree[2, 5] will call:
▶ Tree[2, 1] and Tree[3, 5] (r = 2)
▶ Tree[2, 2] and Tree[4, 5] (r = 3)
▶ Tree[2, 3] and Tree[5, 5] (r = 4)
▶ Tree[2, 4] and Tree[6, 5] (r = 5)



3 Table looks like

k1 k2 k3 k4 k5 k6 k7
k1 .13
k2 .21
k3 .11
k4 .01
k5 .22
k6 .08
k7 .24



4 How to get the tree itself?
k1 k2 k3 k4 k5 k6 k7

k1 0.13 0.47 0.69 0.72 1.28 1.52 2.12
k2 0.21 0.43 0.46 1 1.17 1.73
k3 0.11 0.13 0.47 0.63 1.19
k4 0.01 0.24 0.4 0.95
k5 0.22 0.38 0.92
k6 0.08 0.4
k7 0.24



5 How to get the tree itself?

for i ← 1 . . . n do
Tree[i , i − 1] ← 0
Tree[i , i ] ← pi

for δ = 1 to n − 1 do
for i = 1 to n − δ do

j = i + δ
// Tree[i,j] gets filled in here.
// some value r minimized Tree[i,j] = ...



6 Table With Roots
k1 k2 k3 k4 k5 k6 k7

k1 0.13 0.47 0.69 0.72 1.28 1.52 2.12
1 2 2 2 2 2 5

k2 0.21 0.43 0.46 1 1.17 1.73
2 2 2 3 5 5

k3 0.11 0.13 0.47 0.63 1.19
3 3 5 5 5

k4 0.01 0.24 0.4 0.95
4 5 5 7

k5 0.22 0.38 0.92
5 5 7

k6 0.08 0.4
6 7

k7 0.24
7



7 Reinforcement: Draw the Tree

▶ Be able to do it from a table.
▶ Great practice for all demonstrated algorithms

▶ Write a function:
Node * printTree(roots, i, j)



8 Independent Set on Trees

▶ Independent Set : V ′ ⊆ V , no shared edges.
▶ Today: input graph is a tree.
▶ MIS(v) : size largest I.S. subtree rooted at v .


