

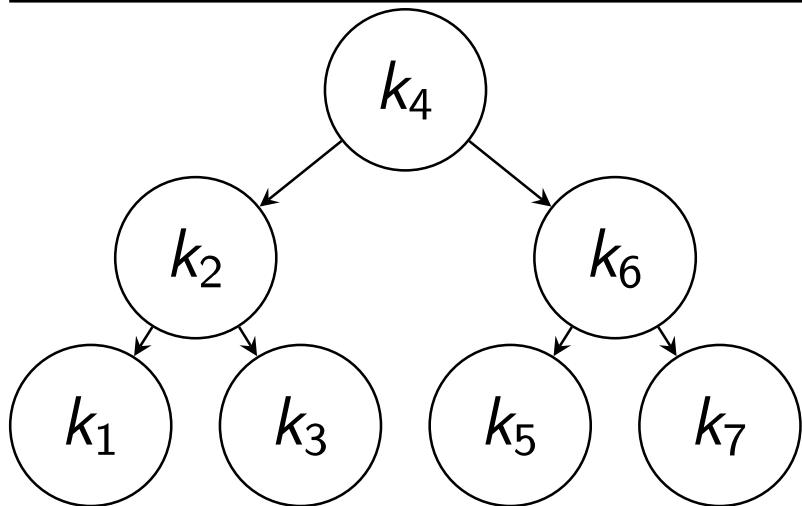
CompSci 161
Winter 2023 Lecture 14:
Dynamic Programming V:
Optimal [Offline] Binary Search
Trees

Offline Optimal Binary Search Trees

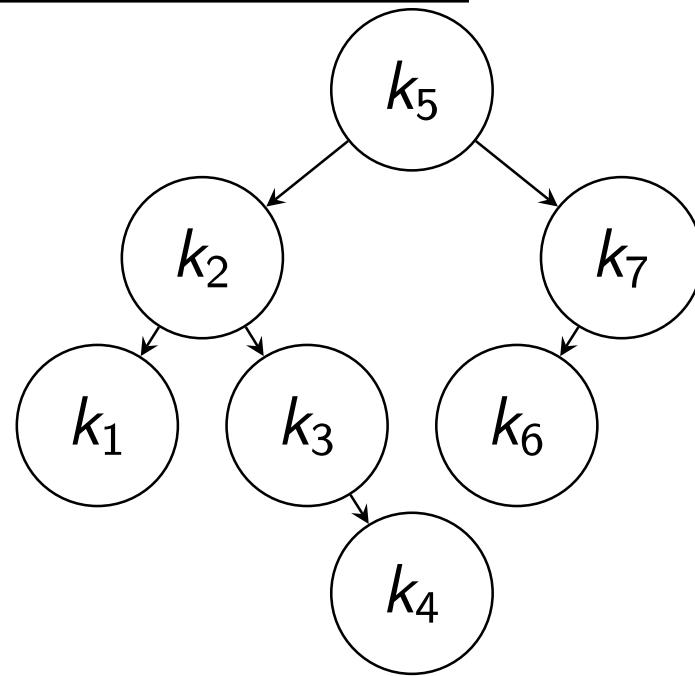
- ▶ In ICS 46, you saw “online” search trees
 - ▶ Additions happened one at a time
 - ▶ Resolve addition before next request
 - ▶ Had to maintain “balance”
 - ▶ Did not know probability distribution of requests.
- ▶ Today we will look at “offline” search trees
 - ▶ Know full set of keys at beginning
 - ▶ Know probability distribution of requests
 - ▶ Want to minimize expected lookup time
 - ▶ Even if that means bad lookup for some

Examples of Binary Search Trees

i	1	2	3	4	5	6	7
p_i	.13	.21	.11	.01	.22	.08	.24



$$E[\text{lookup}] = 2.69$$



$$E[\text{lookup}] = 2.12$$

Problem Statement

- ▶ Input: n probabilities, $p_1 \dots p_n$
- ▶ p_i is probability of looking up i th key.
- ▶ Goal: build binary search tree.
 - ▶ Minimize expected lookup cost.

Check for understanding

- ▶ Suppose we have d_i (depth of each node)
- ▶ Root has $d_i = 1$, its children have $d_i = 2$, etc.
- ▶ What is the expected lookup cost of this tree?

$$\sum p_i \cdot d_i$$

Creating the Dyn Prog Algorithm

or expected remaining node accesses

Define $\text{Tree}(i, j)$: cost of opt tree keys i through j

► Base cases:

if $i=j$, return P_i
 if $i>j$ return 0

given we're
 accessing this
 [subtree]

► Which key(s) can be the root of a binary search tree consisting of keys i through j ?

$i \leq r \leq j$ (r is root)

► Cost of BST, rooted at r , has keys i through j ?

$$\begin{aligned}
 & \text{Tree}(i, r-1) + \text{Tree}(r+1, j) \\
 & + \sum_{k=i}^j P_k + P_r + \sum_{k=r+1}^j P_k
 \end{aligned}$$

First make recursive solution

Tree(i, j) :

if $j < i$ then

return 0

else if $j = i$ then

return p_i

else

$r = i$

$\min = \text{Tree}(i, r - 1) + \text{Tree}(r + 1, j) + \sum p_k$

for $r = i \downarrow \dots \uparrow j$

Cost = $\text{Tree}(i, r - 1) + \text{Tree}(r + 1, j) + \sum p_k$

if Cost < min

min = cost

For case
 $\mathcal{O}(n)$,

$\exists \mathcal{O}(n^2)$ cases, Total: $\mathcal{O}(n^3)$

$\sum p_k$
 $\sum_{k=i}^j p_k$
case
anyway.

$\sum_{k=i}^j p_k$

$\mathcal{O}(1)$ lookup

Iterative Version: Topological Order

- ▶ Caution: some recursive calls to *higher* values.
- ▶ We can't iterate increasing i and j together.
- ▶ $\text{Tree}[i, j]$ will make calls to:
 - ▶ $\text{Tree}[i, r - 1]$ for $i \leq r \leq j$
 - ▶ $\text{Tree}[r + 1, j]$ for $i \leq r \leq j$
- ▶ For example, $\text{Tree}[2, 5]$ will call:
 - ▶ $\text{Tree}[2, 1]$ and $\text{Tree}[3, 5]$ ($r = 2$)
 - ▶ $\text{Tree}[2, 2]$ and $\text{Tree}[4, 5]$ ($r = 3$)
 - ▶ $\text{Tree}[2, 3]$ and $\text{Tree}[5, 5]$ ($r = 4$)
 - ▶ $\text{Tree}[2, 4]$ and $\text{Tree}[6, 5]$ ($r = 5$)

Table looks like

$\delta=0$ $\delta=1$ $\delta=2$

	k_1	k_2	k_3	k_4	k_5	k_6	k_7
k_1	.13						
k_2		.21					
k_3			.11				
k_4				.01			
k_5					.22		
k_6						.08	
k_7							.24

Fill in $\text{Tree}(i, j)$
where $j = i + \delta$

Iterative Version: Memoize the Data

for $i \leftarrow 1 \dots n$ **do**

Tree[$i, i - 1$] $\leftarrow 0$

Tree[i, i] $\leftarrow p_i$

for $\delta = 1 \dots n - 1$

for $i = 1 \dots n - \delta$

$j = i + \delta$

// fill in $\overline{\text{Tree}}(i, j)$

How to get the tree itself?

	k_1	k_2	k_3	k_4	k_5	k_6	k_7
k_1	0.13	0.47	0.69	0.72	1.28	1.52	2.12
k_2		0.21	0.43	0.46	1	1.17	1.73
k_3			0.11	0.13	0.47	0.63	1.19
k_4				0.01	0.24	0.4	0.95
k_5					0.22	0.38	0.92
k_6						0.08	0.4
k_7							0.24

To be continued...