

CompSci 161
Winter 2023 Lecture 12:
Dynamic Programming III:
Subset Sum

The Subset Sum Problem

Problem Statement: Given a set S of n positive integers, as well as a positive integer T , determine if there is a subset of S that sums to exactly T .

Example 1: $S = \{2, 3, 4\}$, $T = 6$, answer is “yes”

Example 2: $S = \{2, 3, 5\}$, $T = 6$, answer is “no”

Subset Sum: recursive solution

As with any dynamic programming problem

- ▶ Try a recursive approach first
- ▶ Find a tautology, then list decisions

Sub(n) : "is there a subset
of $S[1 \dots n]$ that
use $S[n]$ or don't adds to T ?"
↳ Sub($n-1$)

Recursive solution, attempt two

$\text{Sub}(n, T)$: "does a subset of $S[1 \dots n]$ add to T ?"

// Tautology: if yes, $S[n]$ is used or it is not

// if_no = $\text{Sub}(n - 1, T)$

// if_yes = $\text{Sub}(n-1, T - S[n])$ // unless $S[n] > T$

base cases? $T=0 \rightarrow \text{yes}$.

$T > 0$ and $n=0$: no.

// Now the code:

if $T=0$ return true

elif $n=0$ return false

else return $\text{Sub}(n-1, T)$ or

$(T \geq S[n])$ and $\text{Sub}(n-1, T - S[n])$

Subset Sum: iterative solution

```

SubsetSum(i, j) // recursive for reference
if 0 = j then
    return true
else if 0 = i then
    return false
else
    return SubsetSum(i - 1, j) OR
        (j - S[i] ≥ 0 and SubsetSum(i - 1, j - S[i]))

```

for $i = 0 \dots n$ $\text{Sub}[i, 0] = \text{true}$
 for $j = 1 \dots T$ $\text{Sub}[0, j] = \text{false}$
 for $i = 1 \dots n$
 for $j = 1 \dots T$ $\} O(nT)$
 fill in $\text{Sub}[i, j]$ as per above $\} O(1)$

Subset Sum: Visualization

Example 1: $S = \{2, 3, 4\}$, $T = 6$.

	0	1	2	3	4	5	6
$\{ \}$	T	F	F	F	F	F	F
$\{2\}$	T	F	T	F	F	F	F
$\{2, 3\}$	T						
$\{2, 3, 4\}$	T						

Annotations for $j=0$ and $j=1$ are shown on the left. Red arrows highlight the path from the first 'T' in the $\{2\}$ row to the 'T' in the $\{2, 3\}$ row, indicating the subset $\{2\}$ that sums to 2.

Subset Sum: Running Time

```
SubsetSum(S[1...n], T) // iterative
for  $i = 0 \dots n$  do
    SUB[ $i, 0$ ] = true
    for  $j = 1 \dots T$  do
        SUB[ $0, j$ ] = false
    for  $i = 1 \dots n$  do
        for  $j = 1 \dots T$  do
            Fill in SUB[ $i, j$ ] in  $\mathcal{O}(1)$ 
    return SUB[ $n, T$ ]
```

- ▶ What is the running time of Subset Sum?

Subset Sum: Running Time

```
SubsetSum(S[1...n], T) // iterative
  for i = 0...n do
    SUB[i, 0] = true
    for j = 1...T do
      SUB[0, j] = false
    for i = 1...n do
      for j = 1...T do
        Fill in SUB[i, j] in  $\mathcal{O}(1)$ 
  return SUB[n, T]
```

- ▶ Suppose we double the size of S , but leave T alone. Will your algorithm scale well?
- ▶ Suppose we double the **size** of T , but leave S alone. Will your algorithm scale well?

Subset Sum: Find the Subset

```

SubsetSum(S[1...n], T) // iterative
for i = 0...n do
    SUB[i, 0] = true
for j = 1...T do
    SUB[0, j] = false
for i = 1...n do
    for j = 1...T do
        Fill in SUB[i, j] in O(1)
if SUB[n, T] is true then

```

$i \leq n, j \leq T // \text{Sub}[i, j] \text{ true}$

while $i > 0$:

if $\text{!Sub}[i-1, j]$
 Output $\sum_{i=1}^n S[i]$
 $j = j - S[i]$

$i--$