SUPPLEMENTARY MATERIAL FOR THE PAPER "A HIERARCHICAL BAYESIAN MODEL FOR INFERENCE OF COPY NUMBER VARIANTS AND THEIR ASSOCIATION TO GENE EXPRESSION"

By Alberto Cassese^{*}, Michele Guindani[†] Mahlet G. Tadesse[‡] Francesco Falciani[§] and Marina Vannucci^{*}

Rice University^{*}, MD Anderson Cancer Center[†], Georgetown University[‡] and University of Liverpool[§]

MCMC steps. Here we describe our MCMC algorithm in detail. During the update of R (and of ξ) we first select a list of gene expression, as rows of R (and a list of samples, as elements of a randomly selected column of ξ) and then update and accept/reject their individual values. For this, we first sample from a geometric distribution with probability p_R (or p_{ξ}) and add the result to the index of the last selected gene expression (sample). If the resulting index is greater than G (or n), then we discard the new value and stop, otherwise we add the new position to the list of selected gene expression (samples) and draw a new value from the geometric distribution. For the first draw, we simply consider the result as the position to be updated. The updates on η_j , σ_j , for $j = 1, \ldots, 4$, and the transition matrix **A** follow Guha et al. (2008), though applied to all samples simultaneously. We recall below equations involved in the MCMC steps:

(1)
$$\pi(r_{gm}|r_{g(m-1)}, r_{g(m+1)}, \boldsymbol{\xi}) = \gamma_m \frac{\Gamma(e+f)\Gamma(e+r_{gm})\Gamma(f+1-r_{gm})}{\Gamma(e+f+1)\Gamma(e)\Gamma(f)} + \sum_{j=1}^2 \omega_m^{(j)} I_{\{r_{gm}=r_{g(m+(-1)j)}\}}.$$

(2)
$$f(\mathbf{Y}_{g}|\boldsymbol{\xi}, \mathbf{R}) = \frac{(2\pi)^{-\frac{n}{2}} (\frac{c_{\mu}}{c_{\mu}+n})^{\frac{1}{2}} (c_{\beta})^{\frac{k_{g}}{2}} \Gamma(\frac{n+\delta}{2}) (\frac{d}{2})^{\frac{\delta}{2}}}{|\mathbf{U}_{g}|^{\frac{1}{2}} \Gamma(\frac{\delta}{2}) (\frac{d+q_{g}}{2})^{(\frac{n+\delta}{2})}},$$

Updating R. We give details on how to calculate the probability $\pi(\mathbf{R}|\boldsymbol{\xi})$ when updating \mathbf{R} :

$$\pi(\mathbf{R}|\boldsymbol{\xi}) = \prod_{g=1}^{G} \pi(r_{g1}|r_{g2}, \boldsymbol{\xi}) \pi(r_{gM}|r_{g(M-1)}, \boldsymbol{\xi}) \prod_{m=2}^{M-1} \pi(r_{gm}|r_{g(m-1)}, r_{g(m+1)}, \boldsymbol{\xi})$$

When calculating the ratio $\frac{\pi(\mathbf{R}^{new}|\boldsymbol{\xi})}{\pi(\mathbf{R}^{old}|\boldsymbol{\xi})}$ we need to consider only those quantities whose values change when a single element of \mathbf{R} is updated. What follows is the description of the different scenarios that could occur when applying our MCMC update.

- Adding/deleting:
 - If the selected element is not either the first or last CGH probe, three elements change their values (say, for example, that element r_{gm} is selected): $\pi(r_{gm}|r_{g(m-1)}, r_{g(m+1)}, \boldsymbol{\xi}), \pi(r_{g(m-1)}|r_{g(m-2)}, r_{gm}, \boldsymbol{\xi})$ and $\pi(r_{g(m+1)}|r_{gm}, r_{g(m+2)}, \boldsymbol{\xi})$.
 - If the selected element is either CGH probe 1 or M, only two quantities change their values:

*
$$\pi(r_{g1}|r_{g2}, \boldsymbol{\xi})$$
 or $\pi(r_{gM}|r_{g(M-1)}, \boldsymbol{\xi})$;
* $\pi(r_{g2}|r_{g1}, r_{g3}, \boldsymbol{\xi})$ or $\pi(r_{g(M-1)}|r_{g(M-2)}, r_{gM}, \boldsymbol{\xi})$.

- Swapping:
 - Swap between adjacent elements; four quantities change their values (say, for example, that r_{gm} get swapped with $r_{g(m-1)}$):
 - $\begin{array}{l} * \ \pi(r_{g(m-2)}|r_{g(m-3)},r_{g(m-1)},\boldsymbol{\xi}); \\ * \ \pi(r_{g(m-1)}|r_{g(m-2)},r_{gm},\boldsymbol{\xi}); \\ * \ \pi(r_{gm}|r_{g(m-1)},r_{g(m+1)},\boldsymbol{\xi}); \\ * \ \pi(r_{g(m+1)}|r_{gm},r_{g(m+2)},\boldsymbol{\xi}). \end{array}$
 - Swap between "quasi-adjacent" elements, i.e., two elements that are two CGH probes positions apart. Five quantities get involved (say, for example, that r_{gm} get swapped with $r_{g(m-2)}$):
 - * $\pi(r_{g(m-3)}|r_{g(m-4)}, r_{g(m-2)}, \boldsymbol{\xi});$ * $\pi(r_{g(m-2)}|r_{g(m-3)}, r_{g(m-1)}, \boldsymbol{\xi});$ * $\pi(r_{g(m-1)}|r_{g(m-2)}, r_{gm}, \boldsymbol{\xi});$
 - * $\pi(r_{am}|r_{q(m-1)}, r_{q(m+1)}, \boldsymbol{\xi});$
 - * $\pi(r_{g(m+1)}|r_{gm}, r_{g(m+2)}, \boldsymbol{\xi}).$

- Swap between all other elements are just an Add and a Delete step.

Note that if the swap involves either CGH probe 1 or M then these quantities reduce by one. Equation (1) is used to calculate all quantities involved in the steps above.

Updating $\boldsymbol{\xi}$. With this update, when calculating the probability $\pi(\boldsymbol{R}|\boldsymbol{\xi})$ we need to look for changes in the values of $\boldsymbol{\gamma}, \boldsymbol{\omega}^{(1)}$ and $\boldsymbol{\omega}^{(2)}$. Suppose we change the value of the *m*-th element, then:

• We need to recalculate $\frac{1}{n} \sum_{i=1}^{n} I_{\{\xi_{im} = \xi_{i(m-1)}\}}$ and $\frac{1}{n} \sum_{i=1}^{n} I_{\{\xi_{im} = \xi_{i(m+1)}\}}$;

- These quantities result in changes in the values of γ_m, ω⁽¹⁾_m, ω⁽²⁾_m, γ_{m-1}, ω⁽¹⁾_{m-1}, ω⁽²⁾_{m-1}, γ_{m+1}, ω⁽²⁾_{m+1};
 We apply equation (1) to calculate the new values of π(r_{gm}|r_{g(m-1)}, r_{g(m+1)}, ξ),
- $\pi(r_{g(m-1)}|r_{g(m-2)}, r_{gm}, \boldsymbol{\xi}) \text{ and } \pi(r_{g(m+1)}|r_{gm}, r_{g(m+2)}, \boldsymbol{\xi}).$

Equation (2) is then used to calculate $f(\mathbf{Y}|\boldsymbol{\xi}^{new}, \mathbf{R})$ and $f(\mathbf{Y}|\boldsymbol{\xi}^{old}, R)$, while $f(x_{im}|\xi_{im})$ is simply the density of a $N(\mu_{\xi_{im}}, \sigma_{\xi_{im}}^2)$, calculated in the current values of $\mu_{\xi_{im}}$ and $\sigma_{\xi_{im}}^2$.

Next, we focus on the ratio:

$$\frac{\pi(\boldsymbol{\xi}^{new}|\boldsymbol{\xi}^{old},\boldsymbol{A})q(\boldsymbol{\xi}^{old}|\boldsymbol{\xi}^{new})}{\pi(\boldsymbol{\xi}^{old}|\boldsymbol{\xi}^{old},\boldsymbol{A})q(\boldsymbol{\xi}^{new}|\boldsymbol{\xi}^{old})},$$

that can be factorized as

$$\prod_{i=1}^{n} \frac{\pi(\xi_{im}^{new}|\xi_{i(m-1)}^{old},\xi_{i(m+1)}^{old},\boldsymbol{A})q(\xi_{im}^{old}|\xi_{im}^{new})}{\pi(\xi_{im}^{old}|\xi_{i(m-1)}^{old},\xi_{i(m+1)}^{old},\boldsymbol{A})q(\xi_{im}^{new}|\xi_{im}^{old})}.$$

The ratio of interest can be evaluated as $\frac{\pi(\xi_{i(m+1)}^{old}|\xi_{im}^{new}, \mathbf{A})}{\pi(\xi_{i(m+1)}^{old}|\xi_{im}^{old}, \mathbf{A})}$, when $m \neq M$, and simply as 1 when m = M, by noting that $q(\xi_{im}^{new}|\xi_{im}^{old}) = \pi(\xi_{im}^{new}|\xi_{i(m-1)}^{old}, \mathbf{A})$, $\frac{\pi(\xi_{im}^{new}|\xi_{i(m-1)}^{old},\xi_{i(m+1)}^{old},\mathbf{A})}{\pi(\xi_{im}^{old}|\xi_{i(m-1)}^{old},\xi_{i(m+1)}^{old},\mathbf{A})} = \frac{\pi(\xi_{i(m+1)}^{old}|\xi_{im}^{new},\mathbf{A})\pi(\xi_{im}^{new}|\xi_{i(m-1)}^{old},\mathbf{A})}{\pi(\xi_{i(m+1)}^{old}|\xi_{im}^{old},\mathbf{A})\pi(\xi_{im}^{old}|\xi_{i(m-1)}^{old},\mathbf{A})}, \text{ and considering that we update a single sample, sample } i \text{ in our example.}$

Updating η . Let $j = \{1, 2, 3, 4\}$ be the label for the four different states, δ_j be the center of the truncated normal distributions in the prior specification of η_i , n_i be the number of CGH in state j, \bar{X}_j the mean of X's over those CGH probes that are in state j and I_j denote the support of η_j . Specifically

$$n_j = \sum_{m=1}^M \sum_{i=1}^n \mathbf{I}_{\{\xi_{im}=j\}}, \quad \bar{X}_j = \frac{1}{n_j} \sum_{m=1}^M \sum_{i=1}^n X_{im} \mathbf{I}_{\{\xi_{im}=j\}}.$$

The posterior probability for η is:

$$\pi(\eta_j | X, rest) \sim N(\nu_j, (\theta_j^2)^{-1}) \mathbf{I}_j$$

where $\theta_j = \tau_j^{-2} + n_j \sigma_j^{-2}$ and $\nu_j = \theta_j^{-2} (\delta_j \tau_j^{-2} + \bar{X}_j n_j \sigma_j^{-2}).$

A. CASSESE ET AL.

Updating σ^2 . Let $j = \{1, 2, 3, 4\}$ be the label for the four different states, and I_j denote the support of σ_j^2 , the posterior probability for σ is:

$$\pi(\sigma_j^2|X, rest) \sim IG(b_j + \frac{n_j}{2}, l_j + \frac{V_j}{2})\mathbf{I}_j$$

where $V_j = \sum_{m=1}^{M} \sum_{i=1}^{n} (X_{im} - \mu_j)^2 \mathbf{I}_{\{\xi_{im} = j\}}.$

Updating A. Let's focus on a single row of the transition matrix **A**, then the distribution of the states arises from a multinomial distribution (except for the first element of each sample), and the prior distribution of any row of the matrix is $Dir(\phi_1, \phi_2, \phi_3, \phi_4)$. We follow Guha et al. (2008) and generate a proposal A^{new} from the distribution $a_h | rest \sim Dir(\phi_1 + o_{h1}, \phi_2 + o_{h2}, \phi_3 + o_{h3}, \phi_4 + o_{h4})$, ignoring the marginal distribution of state ξ_1 . We then accept the proposal with probability min $[1, \prod_{i=1}^n \frac{\pi_A^{new}(\xi_{i1})}{\pi_{Aold}(\xi_{i1})}]$, where π_A denotes the stationary distribution of the transition matrix A.

Additional results for the simulations. For simulated scenario 1 ($\sigma_{\epsilon} = .1$) with the independent prior, the empirical transition matrix corresponding to the simulated data and the estimated transition matrix were, respectively,

0.0088	0.3264	0.6417	0.0217	0.0102
0.0019	0.1027	0.7826	0.1038	0.0109
0.0436	0.0079	0.6202	0.3023	0.0695
0.3414	0.0008	0.6022	0.0461	0.3508
	$\begin{array}{c} 0.0088 \\ 0.0019 \\ 0.0436 \\ 0.3414 \end{array}$			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

with the empirical transition matrix obtained by counting the number of changes from state *i* to state *j* that occur between adjacent positions in the true matrix $\boldsymbol{\xi}$. We note that in our simulation the data generating mechanism for $\boldsymbol{\xi}$ is based on randomly selecting *L* columns, with some stretches of adjacent columns, therefore violating the stationarity assumption of the HMM chain. The results above, jointly with those shown in Section 4.2, suggest that our estimates are robust even in cases where the stationary assumption of the HMM is violated.

For simulated scenario 2, we generated the data by fixing the error variance σ_{ϵ} to a same value for every gene g, even though our proposed model does allow each gene to have its own variance. This is not restrictive, as, with real data, one can always perform the analysis on standardized data, i.e., with $\sigma_{\epsilon} = 1$. We did however perform an additional simulation where we generated the data using standard deviations $\sigma_{\epsilon g}$ that vary with g. These were chosen by randomly selecting 100 genes from the set used in the case study and calculating their raw s.d.'s. These values were constrained to be in the range [.1, .5], to facilitate the comparison with the

4

simulation settings reported in the paper. Using an FDR threshold of .05, our model with a dependent prior resulted in specificity = .99996 and sensitivity = .95 for $\alpha = 10$ and specificity = .99998 and sensitivity = .85 for $\alpha = 50$, in line with the results from previous simulations. Inference on the HMM parameters was also comparable to the other simulated settings.

Additional results for the case study. Below we present a table that contains functions of mutations linked to the target pathways identified in our analysis (see Section 5 of the paper).

Official gene symbol	Name	Function
MTERFD1	MTERF domain	Mitochondrial transcription termination factor
	containing 1	Binds promoter DNA and regulates initiation of
		transcription. Required for normal mitochondrial
		transcription, and for normal assembly of mi-
		tochondrial respiratory complexes. Required for
		normal mitochondrial function
PTK2B	PTK2B protein	Related adhesion focal tyrosine kinase. Non-
	tyrosine kinase 2	receptor protein-tyrosine kinase that regulates re-
	beta	organization of the actin cytoskeleton, cell polar-
		ization, cell migration, adhesion, spreading and
		bone remodeling. Plays a role in the regulation
		of the humoral immune response, and is required
		for normal levels of marginal B-cells in the spleen
		and normal migration of splenic B-cells. Required
		for normal macrophage polarization and migra-
		tion towards sites of inflammation. Regulates cy-
		toskeleton rearrangement and cell spreading in T-
		cells, and contributes to the regulation of T-cell
		responses. Promotes osteoclastic bone resorption
DEFA5	defensin, al-	Has antimicrobial activity against Gram-negative
	pha 5, Paneth	and Gram-positive bacteria. Defensins are
	cell-specific	thought to kill microbes by permeabilizing their
		plasma membrane
		Continued on next page

Table 1: Functions of mutations linked to the target pathways identified in our analysis (see Section 5 of the paper). Information extracted from the web based resource GeneCards (*http://www.genecards.org*).

A. CASSESE ET AL.

 Table 1 – continued from previous page

Official gene symbol	Name	Function
NPM2	nucleophosmin/	Core histones chaperone involved in chromatin
	nucleoplasmin, 2	reprogramming, specially during fertilization and
		early embryonic development
LRP12	low density	This gene encodes a member of the low-density
	lipoprotein-	lipoprotein receptor related protein family. The
	related protein	product of this gene is a transmembrane protein
	12	that is differentially expressed in many cancer
		cells. Alternate splicing results in multiple tran-
		script variants
PPP1R3B	protein phos-	This gene encodes the catalytic subunit of the ser-
	phatase 1, regu-	ine/theonine phosphatase, protein phosphatase-1.
	latory (inhibitor)	The encoded protein is expressed in liver and
	subunit 3B	skeletal muscle tissue and may be involved in reg-
		ulating glycogen synthesis in these tissues. This
		gene may be a involved in type 2 diabetes and
		maturity-onset diabetes of the young. Alternate
		splicing results in multiple transcript variants that
		encode the same protein
MTUS1	mitochondrial tu-	This gene encodes a protein which contains a
	mor suppressor 1	C-terminal domain able to interact with the an-
		giotension II (A12) receptor and a large coiled-
		coil region allowing dimerization. Multiple alter-
		natively spliced transcript variants encoding dif-
		ferent isoforms have been found for this gene.
		One of the transcript variants has been shown to
		encode a mitochondrial protein that acts as a tu-
		mor suppressor and partcipates in AI2 signaling
		pathways. Other variants may encode nuclear or
		transmembrane proteins but it has not been deter-
		nined whether they also participate in AI2 sig-
		nanng patnways
		Continued on next page

SUPPLEMENTARY MATERIAL

 Table 1 – continued from previous page

Official gene symbol	Name	Function
NUDCD1	NudC domain	Chronic myelogenous leukemia tumor antigen
	containing 1	66Isoform 1 is the dominant immunogenic iso-
		form and is capable of eliciting a humoral re-
		sponse in individuals with a variety of solid tu-
		mors. Expression of isoform 1 in a wide variety
		of malignancies as well as the presence of an im-
		munogenic epitope suggest that it may be a suit-
		able target for antigen-specific immunotherapy
RIMS2	regulating synap-	Rab effector involved in exocytosis. May act as
	tic membrane ex-	scaffold protein regulating synaptic membrane
	ocytosis 2	exocytosis protein 2
OTUD6B	OTU domain con-	Deubiquitinating enzymes (DUBs; see MIM
	taining 6B	603478) are proteases that specifically cleave
		ubiquitin (MIM 191339) linkages, negating the
		action of ubiquitin ligases. DUBA5 belongs to a
		DUB subfamily characterized by an ovarian tu-
DD1	· · · ·	mor (OTU) domain
RPI	retinitis pigmen-	Microtubule-associated protein regulating the sta-
	tosa I (autosomal	bility and length of the microtubule-based ax-
	dominant)	oneme of photoreceptors. Required for the differ-
		entiation of photoreceptor cells, it plays a role in the emperiation of the outer ecoment of rod and
		the organization of the outer segment of fod and
		tion and higher order stacking of outer segment
		disks along the photoreceptor avoneme
I PI	lipoprotein lipase	Lipoprotein lipase (LPL) like LIPG is a vascular
		lipase however it is not synthesized in endothelial
		cells. It is anchored to the capillary endothelium
		by proteoglycans and catalyzes the hydrolysis of
		triglycerides to release free fatty acids into the
		circulation. LPL therefore initiates the processing
		of triglyceride-rich lipoproteins such as chylomi-
		crons and VLDL.
CSMD1	CUB and Sushi	CSMD1 is a novel multiple domain complement-
	multiple domains	regulatory protein highly expressed in the central
	1	nervous system and epithelial tissues.
		Continued on next page

A. CASSESE ET AL.

 Table 1 – continued from previous page

Official gene symbol	Name	Function
INTS9	integrator com- plex subunit 9	INTS9 is a multiprotein mediator of small nu- clear RNA processing that associates with the C-terminal repeat of RNA polymerase II. It is required for Cell cycle progression but not cell growth
RAB2A	RAB2A, member RAS oncogene family	the RAB2 protein is a resident of pre-Golgi in- termediates and is required for protein transport from the endoplasmic reticulum to the Golgi com- plex. They found that RAB2 is essential for the maturation of pre-Golgi intermediates.
TG	thyroglobulin	hyroglobulin provides 3 things: a thyroid hor- mone precursor, storage of iodine, and storage of inactive thyroid hormones.
CSGALNACT1	chondroitin sulfate N-acetyl- galactosaminyl- transferase 1	TG expression was decreased in thyroid carcino- mas but was normal in the other tissues. TSHR expression was normal in most tissues studied and was decreased in only some thyroid carcinomas. In thyroid cancer tissues, a positive relationship was found between the individual levels of ex- pression of NIS, TPO, TG, and TSHR.
TPD52	tumor protein D52	D52 was expressed at significant levels in some breast carcinomas but at much lower levels in breast fibroadenomas.
ASH2L	ash2 (ab- sent, small, or homeotic)-like (Drosophila)	in yeast, the HCF1-associated human SET1/ASH2 HMT complex possesses his- tone H3-K4 methylation activity, which activates transcription.
DPYS	dihydropyrimidi- nase	Dihydropyrimidinase (DPYS), also known as 5,6- dihydropyrimidine amidohydrolase, or DHP; (EC 3.5.2.2), is the second enzyme in the 3-step degra- dation pathway of uracil and thymine after the ac- tion of dihydropyramidine dehydrogenase

SUPPLEMENTARY MATERIAL

Table 1 – continued from previous page

Official gene symbol	Name	Function
CYP7B1	cytochrome P450,	The synthesis of primary bile acids from
	family 7, subfam-	cholesterol occurs via 2 pathways: the classic
	ily B, polypeptide	neutral pathway involving cholesterol 7-alpha-
	1	hydroxylase (CYP7A1; 118455), and the acidic
		pathway involving a distinct microsomal oxys-
		terol 7-alpha-hydroxylase (CYP7B1)

References.

S. Guha, Y. Li, and D. Neuberg. Bayesian hidden Markov modelling of array cgh data. <u>JASA</u>, 103: 485–497, 2008.

DEPARTMENT OF STATISTICS	DEPARTMENT OF BIOSTATISTICS
RICE UNIVERSITY	MD ANDERSON CANCER CENTER
HOUSTON, TEXAS 77005	HOUSTON, TEXAS 77030
USA,	USA,
E-MAIL: Alberto.Cassese@rice.edu	E-MAIL: mguindani@mdanderson.org
marina@rice.edu	
DEPARTMENT OF MATHEMATICS AND STATISTICS	CENTER OF COMPUTATIONAL BIOLOGY AND MODELLING (CCMB)
GEORGETOWN UNIVERSITY	INSTITUTE OF INTEGRATIVE BIOLOGY
WASHINGTON, DC 20057	UNIVERSITY OF LIVERPOOL
USA,	LIVERPOOL
E-MAIL: mgt26@georgetown.edu	UK,