
CompSci 143A Spring, 2013 1

10. File Systems
10.1 Basic Functions of File Management
10.2 Hierarchical Model of a File System
10.3 User’s View of Files

– File Names and Types
– Logical File Organization
– Other file Attributes
– Operations on Files

10.4 File Directories
– Hierarchical Directory Organizations
– Operations on Directories
– Implementation of File Directories

10.5 Basic File System
– File Descriptors
– Opening and Closing of Files

10.6 Physical Organization Methods
– Contiguous Organization
– Linked Organization
– Indexed Organization
– Management of Free Storage Space

10.7 Distributed File Systems
– Directory Structures and Sharing
– Semantics of File Sharing

10.8 Implementing DFS

CompSci 143A Spring, 2013 2

Basic Functions of File Management
• Present logical (abstract) view of files and

directories
– Hide complexity of hardware devices

• Abstraction: files, directories
• Collections/stream of logical blocks are a lower-level

abstraction, subject of next chapter

• Facilitate efficient use of storage devices
– Optimize access, e.g., to disk

• Support sharing
– Files persist even when owner/creator is not currently

active (unlike main memory)
– Key issue: Provide protection (control access)

CompSci 143A Spring, 2013 3

Hierarchical Model of FS

Basic file system:
Open/close files

Physical device organization
methods:
Map file data to disk blocks

Figure 10-1

Abstract user interface:
Present convenient view

Directory management:
Map logical name to
unique Id, file descriptor

CompSci 143A Spring, 2013 4

User View of Files
• File name and type
• File organization
• Other attributes
• Operations on files

CompSci 143A Spring, 2013 5

User View of Files
• File name and type

– Valid name
• Number of characters
• Lower vs upper case

– Extension
• Tied to type of file
• Used by applications

– File type recorded in header
• Cannot be changed (even when extension changes)
• Basic types: text, object, load file; directory
• Application-specific types, e.g., .doc, .ps, .html

CompSci 143A Spring, 2013 6

User View of Files
• Logical file organization

– Fixed-size or variable-size records
– Addressed

• Implicitly (sequential access to next record)
• Explicitly by position (record#) or key

Figure 10-2

a) Fixed Length Record

b) Variable Length Record

c) Fixed Length with Key

d) Variable Length with Key

– Memory mapped files
• Read virtual memory instead of read(i,buf,n)
• Map file contents 0:(n−1) to va:(va+n−1)

CompSci 143A Spring, 2013 7

Other File Attributes
• Ownership
• File Size
• File Use

– Time of creation, last access, last modification
• File Disposition

– Permanent or Temporary
• Protection

– Who can access and what type of access
• Location

– Blocks on device where file is stored
• Important for performance
• Not of interest to most users

CompSci 143A Spring, 2013 8

Operations on Files
• Create/Delete

– Create/delete file descriptor
– Modify directory

• Open/Close
– Modify open file table (“OFT”)

• Read/Write (sequential or direct)
– Modify file descriptor
– Transfer data between disk and memory

• Seek/Rewind
– Modify open file table

CompSci 143A Spring, 2013 9

File Directories
• Heirarchical directory organization
• Operations on directories
• Implementation of directories

CompSci 143A Spring, 2013 10

File Directories
• Tree-structured

– Simple search, insert,
delete operations

– Sharing is asymmetric
(only one parent)

Figure 10-3

CompSci 143A Spring, 2013 11

File Directories
• DAG-structured

– Sharing is symmetric, but …

– What are semantics of delete?
• Any parent can remove

file.
• Only last parent can

remove it.
Need reference count

Figure 10-5

CompSci 143A Spring, 2013 12

File Directories
• DAG-structured

– Must prevent cycles

– If cycles are allowed:
• Search is difficult (infinite loops)
• Deletion needs garbage collection

(reference count not enough)

Figure 10-6

CompSci 143A Spring, 2013 13

File Directories
• Symbolic links

– Compromise to allow sharing
but avoid cycles

– For read/write access:
 Symbolic link is the same as actual link

– For deletion: Only symbolic link is deleted

Figure 10-7

CompSci 143A Spring, 2013 14

File Directories
• File naming: Path names

– Concatenated local names with delimiter:
 (. or / or \)

– Absolute path name: start with root
 (/)

– Relative path name: Start with current directory
 (.)

– Notation to move “upward”
 (..)

CompSci 143A Spring, 2013 15

Operations on File Directories
• Create/delete
• List

– sorting, wild cards, recursion, information displayed
• Change (current, working, default) directory

– path name, home directory (default)
• Move
• Rename
• Change protection
• Create/delete link (symbolic)
• Find/search routines

CompSci 143A Spring, 2013 16

Implementation of Directories
• What information to keep in each entry

– Only symbolic name and pointer to descriptor
• Needs an extra disk access to descriptor

– All descriptive information
• Directory can become very large

• How to organize entries within directory
– Fixed-size array of slots or a linked list

• Easy insertion/deletion
• Search is sequential

– Hash table (how big should it be?)
– B-tree (balanced, but sequential access can be slow)
– B+-tree (balanced and with good sequential access)

CompSci 143A Spring, 2013 17

Basic File System
• Open/Close files

– Retrieve and set up descriptive information for efficient
access

• File descriptor (i-node in Unix)
– Owner id
– File type
– Protection information
– Mapping to physical disk blocks
– Time of creation, last use, last modification
– Reference counter

CompSci 143A Spring, 2013 18

Basic File System
• Open File Table (OFT) keeps track of currently

open files
• Open command:

– Verify access rights
– Allocate OFT entry
– Allocate read/write buffers
– Fill in OFT entry

• Initialization (e.g., current position)
• Information from descriptor

(e.g. file length, disk location)
• Pointers to allocated buffers

– Return OFT index

CompSci 143A Spring, 2013 19

Basic File System
• Close command:

– Flush modified buffers to disk
– Release buffers
– Update file descriptor

• file length, disk location, usage information
– Free OFT entry

CompSci 143A Spring, 2013 20

Basic File System
• Example: Unix
• Unbuffered access

fd=open(name,rw,…)
stat=read(fd,mem,n)
stat=write(fd,mem,n)

• Buffered access
 fp=fopen(name,rwa)
 c=readc(fp) // read one character

Figure 10-11

CompSci 143A Spring, 2013 21

Physical Organization Methods
• Contiguous organization

– Simple implementation
– Fast sequential access (minimal arm movement)
– Insert/delete is difficult
– How much space to allocate initially
– External fragmentation

Figure 10-12a

CompSci 143A Spring, 2013 22

Physical Organization Methods
• Linked Organization

– Simple insert/delete, no external fragmentation
– Sequential access less efficient (seek latency)
– Direct access not possible
– Poor reliability (when chain breaks)

Figure 10-12b

CompSci 143A Spring, 2013 23

Physical Organization Methods
• Linked Variation 1: Keep pointers segregated

– May be cached

Figure 10-12d

Figure 10-12c

• Linked Variation 2: Link sequences of
adjacent blocks, rather than individual blocks

CompSci 143A Spring, 2013 24

Physical Organization Methods
• Indexed Organization

– Index table: sequential list of records
– Simplest implementation: keep index list in descriptor

– Insert/delete is easy
– Sequential and direct access is efficient
– Drawback: file size limited by number of index entries

Figure 10-12e

CompSci 143A Spring, 2013 25

Physical Organization Methods
• Variations of indexing

– Multi-level index hierarchy
• Primary index points to secondary indices
• Problem: number of disk accesses increases with

depth of hierarchy
– Incremental indexing

• Fixed number of entries at top-level index
• When insufficient, allocate additional index levels

• Example: Unix -- 3-level expansion (see next slide)

CompSci 143A Spring, 2013 26

Physical Organization Methods
• Incremental indexing

– Example: Unix

 3-level expansion

Figure 10-13

CompSci 143A Spring, 2013 27

Free Storage Space Management
• Similar to main memory management
• Linked list organization

– Linking individual blocks -- inefficient:
• No block clustering to

 minimize seek operations
• Groups of blocks are

 allocated/released one at a time
– Linking groups of consecutive blocks

• Bit map organization
– Analogous to main memory

CompSci 143A Spring, 2013 28

Distributed File Systems
• Present a single view of all files across multiple

computers
– Shared directory structure
– Shared files

• Implementation
– Basic architecture
– Caching
– Servers: Stateless vs. Stateful
– File replication

CompSci 143A Spring, 2013 29

Distributed File Systems
• Directory structures differentiated by:

– Global vs Local naming:
• Single global structure or

different for each user?
– Location transparency:

• Does the path name reveal anything
about machine or server?

– Location independence
• When a file moves between machines,

does its path name change?

CompSci 143A Spring, 2013 30

Global Directory Structure
• Combine local directory structures under a new

common root

Figure 10-14b Figure 10-14a

CompSci 143A Spring, 2013 31

Global Directory Structure
• Problem with “Combine under new common root:”

– Using / for new root invalidates existing local names
• Solution (Unix United):

– Use / for local root
– Use .. to move to new root
– Example: reach u1 from u2: can use either

../../../S1/usr/u1

 or
/../S1/usr/u1

– Names are not location transparent

CompSci 143A Spring, 2013 32

Local Directory Structures
• Mounting

– Subtree on one machine is mounted over/in-the-place-of a directory
on another machine (called the mount point)

– Original contents of mount point are invisible during mount (so
usually an empty directory is chosen)

– Structure changes dynamically
– Each user has own view of FS

Figure 10-14c

On S1: /mp
On S2: /usr

On S1: /mp/u2/x
On S2: /usr/u2/x

CompSci 143A Spring, 2013 33

Shared Directory Substructure
• Each machine has local file system
• One subtree is shared by all machines

Figure 10-14d

CompSci 143A Spring, 2013 34

Semantics of File Sharing
• Unix semantics

– All updates are immediately visible
– Generates a lot of network traffic

• Session semantics
– Updates visible when file closes
– Simultaneous updates are unpredictable (lost)

• Transaction semantics
– Updates visible at end of transaction

• Immutable-files semantics
– Updates create a new version of file
– Now the problem is one of version management

CompSci 143A Spring, 2013 35

Implementing DFS
• Basic Architecture

– Client/Server Virtual file system (cf., Sun’s NFS):
• If file is local, access local file system
• If file is remote, communicate with remote server

Figure 10-15

CompSci 143A Spring, 2013 36

Implementing DFS
• Caching reduces

– Network delay
– Disk access delay

• Server caching - simple
– No disk access on subsequent access
– No cache coherence problems
– But network delay still exists

• Client caching - more complicated
– When to update file on server?
– When/how to inform other processes when files is

updated on server?

CompSci 143A Spring, 2013 37

Implementing DFS
• When to update file on server?

– Write-through
• Allows Unix semantics but overhead is significant

– Delayed writing
• Requires weaker semantics

– Session semantics: only propagate update when file is closed
– Transaction semantics: only propagate updates at end of transactions

• How to propagate changes to other caches?
– Server initiates/informs other processes

• Violates client/server relationship
– Clients check periodically

• Checking before each access defeats purpose of caching
• Checking less frequently requires weaker semantics

– Session semantics: only check when opening the file

CompSci 143A Spring, 2013 38

Implementing DFS
• Stateless vs. Stateful Server
• Stateful = Maintain state of open files
• Client passes

commands & data
between user
process & server

• Problem when server crashes:
– State of open files is lost
– Client must restore state when server recovers Figure 10-16a

CompSci 143A Spring, 2013 39

Implementing DFS
• Stateless Server (e.g., NFS) =

Client maintains state of open files
• (Most) commands

are idempotent
(can be repeated).
(File deletion and
renaming aren’t)

• When server crashes:
– Client waits until server recovers
– Client reissues read/write commands

Figure 10-16b

CompSci 143A Spring, 2013 40

Implementing DFS
• File replication improves

– Availability
• Multiple copies available

– Reliability
• Multiple copies help in recovery

– Performance
• Multiple copies remove bottlenecks and

reduce network latency
– Scalability

• Multiple copies reduce bottlenecks

CompSci 143A Spring, 2013 41

Implementing DFS
• Problem: File copies must be consistent
• Replication protocols

– Read-Any/Write-All
• Problem: What if a server

is temporarily unavailable?

– Quorum-Based Read/Write
• N copies; r = read quorum;

w = write quorum
• r+w > N and w > N/2
• Any read sees at

least one current copy
• No disjoint writes

Figure 10-17

	10. File Systems
	Basic Functions of File Management
	Hierarchical Model of FS
	User View of Files
	User View of Files
	User View of Files
	Other File Attributes
	Operations on Files
	File Directories
	File Directories
	File Directories
	File Directories
	File Directories
	File Directories
	Operations on File Directories
	Implementation of Directories
	Basic File System
	Basic File System
	Basic File System
	Basic File System
	Physical Organization Methods
	Physical Organization Methods
	Physical Organization Methods
	Physical Organization Methods
	Physical Organization Methods
	Physical Organization Methods
	Free Storage Space Management
	Distributed File Systems
	Distributed File Systems
	Global Directory Structure
	Global Directory Structure
	Local Directory Structures
	Shared Directory Substructure
	Semantics of File Sharing
	Implementing DFS
	Implementing DFS
	Implementing DFS
	Implementing DFS
	Implementing DFS
	Implementing DFS
	Implementing DFS

