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Basic Functions of File Management 
• Present logical (abstract) view of files and 

directories 
– Hide complexity of hardware devices 

• Abstraction: files, directories 
• Collections/stream of logical blocks are a lower-level 

abstraction, subject of next chapter 

• Facilitate efficient use of storage devices 
– Optimize access, e.g., to disk 

• Support sharing 
– Files persist even when owner/creator is not currently 

active (unlike main memory) 
– Key issue: Provide protection (control access) 
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Hierarchical Model of FS 

Basic file system: 
Open/close files 

Physical device organization 
methods: 
Map file data to disk blocks 

Figure 10-1 

Abstract user interface: 
Present convenient view 

Directory management: 
Map logical name to 
unique Id, file descriptor 
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User View of Files 
• File name and type 
• File organization 
• Other attributes 
• Operations on files 
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User View of Files 
• File name and type 

– Valid name  
• Number of characters 
• Lower vs upper case 

– Extension 
• Tied to type of file 
• Used by applications 

– File type recorded in header 
• Cannot be changed (even when extension changes) 
• Basic types: text, object, load file; directory 
• Application-specific types, e.g., .doc, .ps, .html 
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User View of Files 
• Logical file organization 

– Fixed-size or variable-size records 
– Addressed 

• Implicitly (sequential access to next record) 
• Explicitly by position (record#) or key 

Figure 10-2 

a) Fixed Length Record 

b) Variable Length Record 

c) Fixed Length with Key 

d) Variable Length with Key 

 

– Memory mapped files 
• Read virtual memory instead of read(i,buf,n) 
• Map file contents 0:(n−1) to va:(va+n−1) 
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Other File Attributes 
• Ownership 
• File Size 
• File Use 

– Time of creation, last access, last modification 
• File Disposition 

– Permanent or Temporary 
• Protection 

– Who can access and what type of access 
• Location 

– Blocks on device where file is stored 
• Important for performance 
• Not of interest to most users 
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Operations on Files 
• Create/Delete 

– Create/delete file descriptor 
– Modify directory 

• Open/Close 
– Modify open file table (“OFT”) 

• Read/Write (sequential or direct) 
– Modify file descriptor 
– Transfer data between disk and memory 

• Seek/Rewind 
– Modify open file table 
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File Directories 
• Heirarchical directory organization 
• Operations on directories 
• Implementation of directories 
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File Directories 
• Tree-structured 

– Simple search, insert, 
delete operations 

– Sharing is asymmetric 
(only one parent) 

 

Figure 10-3 
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File Directories 
• DAG-structured 

– Sharing is symmetric, but … 
 
 
 
 
 
 

– What are semantics of delete? 
• Any parent can remove 

file. 
• Only last parent can 

remove it. 
Need reference count 

Figure 10-5 
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File Directories 
• DAG-structured 

– Must prevent cycles  
 
 
 
 
 
 
 

– If cycles are allowed: 
• Search is difficult (infinite loops) 
• Deletion needs garbage collection 

(reference count not enough) 

Figure 10-6 
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File Directories 
• Symbolic links 

– Compromise to allow sharing 
but avoid cycles 
 
 
 
 
 
 

– For read/write access: 
     Symbolic link is the same as actual link 

– For deletion: Only symbolic link is deleted 

Figure 10-7 
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File Directories 
• File naming: Path names 

– Concatenated local names with delimiter:  
   ( .  or  /  or  \ ) 

– Absolute path name: start with root 
     (/) 

– Relative path name: Start with current directory 
     (.) 

– Notation to move “upward” 
     (..) 
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Operations on File Directories 
• Create/delete 
• List 

– sorting, wild cards, recursion, information displayed 
• Change (current, working, default) directory 

– path name, home directory (default) 
• Move 
• Rename 
• Change protection 
• Create/delete link (symbolic) 
• Find/search routines 
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Implementation of Directories 
• What information to keep in each entry 

– Only symbolic name and pointer to descriptor 
• Needs an extra disk access to descriptor 

– All descriptive information 
• Directory can become very large 

• How to organize entries within directory 
– Fixed-size array of slots or a linked list 

• Easy insertion/deletion 
• Search is sequential 

– Hash table (how big should it be?) 
– B-tree (balanced, but sequential access can be slow) 
– B+-tree (balanced and with good sequential access) 
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Basic File System 
• Open/Close files 

– Retrieve and set up descriptive information for efficient 
access 

• File descriptor (i-node in Unix) 
– Owner id 
– File type 
– Protection information 
– Mapping to physical disk blocks 
– Time of creation, last use, last modification 
– Reference counter 



CompSci 143A Spring, 2013 18 

Basic File System 
• Open File Table (OFT) keeps track of currently 

open files 
• Open command: 

– Verify access rights 
– Allocate OFT entry 
– Allocate read/write buffers 
– Fill in OFT entry 

• Initialization (e.g., current position) 
• Information from descriptor  

(e.g. file length, disk location) 
• Pointers to allocated buffers 

– Return OFT index 
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Basic File System 
• Close command: 

– Flush modified buffers to disk 
– Release buffers 
– Update file descriptor 

• file length, disk location, usage information 
– Free OFT entry 
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Basic File System 
• Example: Unix 
• Unbuffered access 

fd=open(name,rw,…) 
stat=read(fd,mem,n) 
stat=write(fd,mem,n) 

• Buffered access 
 fp=fopen(name,rwa) 
 c=readc(fp) // read one character 

Figure 10-11 
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Physical Organization Methods 
• Contiguous organization 

– Simple implementation 
– Fast sequential access (minimal arm movement) 
– Insert/delete is difficult 
– How much space to allocate initially 
– External fragmentation 

 

Figure 10-12a 
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Physical Organization Methods 
• Linked Organization 

– Simple insert/delete, no external fragmentation 
– Sequential access less efficient (seek latency) 
– Direct access not possible 
– Poor reliability (when chain breaks) 

Figure 10-12b 
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Physical Organization Methods 
• Linked Variation 1: Keep pointers segregated 

– May be cached 

Figure 10-12d 

Figure 10-12c 

• Linked Variation 2: Link sequences of 
adjacent blocks, rather than individual blocks  
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Physical Organization Methods 
• Indexed Organization 

– Index table: sequential list of records 
– Simplest implementation: keep index list in descriptor  

 
 
 
 
 

– Insert/delete is easy 
– Sequential and direct access is efficient 
– Drawback: file size limited by number of index entries 

Figure 10-12e 
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Physical Organization Methods 
• Variations of indexing 

– Multi-level index hierarchy 
• Primary index points to secondary indices 
• Problem: number of disk accesses increases with 

depth of hierarchy 
– Incremental indexing 

• Fixed number of entries at top-level index 
• When insufficient, allocate additional index levels  

• Example: Unix -- 3-level expansion (see next slide) 
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Physical Organization Methods 
• Incremental indexing 

 
 
 
 
 
– Example: Unix 

   3-level expansion 

Figure 10-13 
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Free Storage Space Management 
• Similar to main memory management 
• Linked list organization 

– Linking individual blocks -- inefficient: 
• No block clustering to 

    minimize seek operations 
• Groups of blocks are 

    allocated/released one at a time 
– Linking groups of consecutive blocks 

• Bit map organization 
– Analogous to main memory 
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Distributed File Systems 
• Present a single view of all files across multiple 

computers 
– Shared directory structure 
– Shared files 

• Implementation 
– Basic architecture 
– Caching 
– Servers: Stateless vs. Stateful 
– File replication 
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Distributed File Systems 
• Directory structures differentiated by: 

– Global vs Local naming: 
• Single global structure or 

different for each user? 
– Location transparency: 

• Does the path name reveal anything 
about machine or server? 

– Location independence 
• When a file moves between machines, 

does its path name change? 
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Global Directory Structure 
• Combine local directory structures under a new 

common root 

Figure 10-14b Figure 10-14a 
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Global Directory Structure 
• Problem with “Combine under new common root:” 

– Using  / for new root invalidates existing local names 
• Solution (Unix United): 

– Use / for local root 
– Use .. to move to new root 
– Example: reach u1 from u2: can use either 

../../../S1/usr/u1    

 or 
/../S1/usr/u1 

– Names are not location transparent 
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Local Directory Structures 
• Mounting 

– Subtree on one machine is mounted over/in-the-place-of a directory 
on another machine (called the mount point) 

– Original contents of mount point are invisible during mount (so 
usually an empty directory is chosen) 

– Structure changes dynamically 
– Each user has own view of FS 

Figure 10-14c 

On S1:  /mp 
On S2:  /usr 
 
On S1:  /mp/u2/x 
On S2:  /usr/u2/x 
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Shared Directory Substructure 
• Each machine has local file system 
• One subtree is shared by all machines 

Figure 10-14d 
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Semantics of File Sharing 
• Unix semantics 

– All updates are immediately visible 
– Generates a lot of network traffic 

• Session semantics 
– Updates visible when file closes 
– Simultaneous updates are unpredictable (lost) 

• Transaction semantics 
– Updates visible at end of transaction 

• Immutable-files semantics 
– Updates create a new version of file 
– Now the problem is one of version management 
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Implementing DFS 
• Basic Architecture 

– Client/Server Virtual file system (cf., Sun’s NFS): 
• If file is local, access local file system 
• If file is remote, communicate with remote server 

Figure 10-15 
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Implementing DFS 
• Caching reduces 

– Network delay 
– Disk access delay 

• Server caching - simple 
– No disk access on subsequent access 
– No cache coherence problems 
– But network delay still exists 

• Client caching - more complicated 
– When to update file on server? 
– When/how to inform other processes when files is 

updated on server? 
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Implementing DFS 
• When to update file on server? 

– Write-through 
• Allows Unix semantics but overhead is significant 

– Delayed writing 
• Requires weaker semantics 

– Session semantics: only propagate update when file is closed 
– Transaction semantics: only propagate updates at end of transactions 

• How to propagate changes to other caches? 
– Server initiates/informs other processes 

• Violates client/server relationship 
– Clients check periodically 

• Checking before each access defeats purpose of caching 
• Checking less frequently requires weaker semantics 

– Session semantics: only check when opening the file 
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Implementing DFS 
• Stateless vs. Stateful Server 
• Stateful = Maintain state of open files 
• Client passes 

commands & data 
between user 
process & server 
 
 
 

• Problem when server crashes: 
– State of open files is lost 
– Client must restore state when server recovers Figure 10-16a 
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Implementing DFS 
• Stateless Server (e.g., NFS)  =  

Client maintains state of open files 
• (Most) commands 

are idempotent 
(can be repeated). 
(File deletion and 
renaming aren’t) 
 
 
 

• When server crashes: 
– Client waits until server recovers 
– Client reissues read/write commands 

Figure 10-16b 
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Implementing DFS 
• File replication improves 

– Availability  
• Multiple copies available 

– Reliability  
• Multiple copies help in recovery 

– Performance 
• Multiple copies remove bottlenecks and 

reduce network latency 
– Scalability 

• Multiple copies reduce bottlenecks 
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Implementing DFS 
• Problem: File copies must be consistent 
• Replication protocols 

– Read-Any/Write-All 
• Problem: What if a server 

is temporarily unavailable? 

– Quorum-Based Read/Write 
• N copies; r = read quorum; 

w = write quorum 
• r+w > N  and  w > N/2 
• Any read sees at  

least one current copy 
• No disjoint writes 

Figure 10-17 
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