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9. Linking and Sharing 
9.1 Single-Copy Sharing  

– Why Share  
– Requirements for Sharing 
– Linking and Sharing  

9.2  Sharing in Systems without Virtual Memory 
9.3  Sharing in Paging Systems 

– Sharing of Data 
– Sharing of Code 

9.3 Sharing in Segmented Systems 
9.4 Principles of Distributed Shared Memory (DSM)  

– The User's View of DSM  
9.5 Implementations of DSM  

– Implementing Unstructured DSM  
– Implementing Structured DSM 
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Single-Copy Sharing 
• Focus: sharing a single copy of code or data in 

memory 
• Why share? 

– Processes need to access common data 
• Producer/consumer, task pools, file directories 

– Better utilization of memory 
• code, system tables, data bases 
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Requirements for Sharing 
• Requirement for sharing 

– How to express what is shared 
• A priori agreement (e.g., system components) 
• Language construct (e.g., UNIX’s shmget/shmat) 

– Shared code must be reentrant (also known as 
read-only  or pure) 

• Does not modify itself (read-only segments) 
• Data (stack, heap)  in separate private areas for each 

process 
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Linking and Sharing 
• Linking resolves external 

references 
• Sharing links the same copy of 

a module into two or more 
address spaces 

• Static linking/sharing: 
– Resolve references 

before execution starts 
• Dynamic linking/sharing: 

– While executing Figure 9-1 
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Sharing without Virtual Memory 
• With one or no Relocation Register (RR) 

– All memory of a process is contiguous 
– Sharing user programs: 

• Possible only with 2 user programs by partial overlap 
• Too restrictive and difficult; generally not used 

– Sharing system components: 
• Components are assigned specific, agreed-upon 

starting positions 
• Linker resolves references to those locations 
• Can also use a block of transfer addresses, 

but this involves additional memory references. 
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Sharing without Virtual Memory 
• With multiple RRs 

– CBR = Code Base Register 
    Point to shared 
        copy of code 

– SBR = Stack Base Register 
    Point to private 
        copy of stack 

– DBR = Data Base Register 
    Point to private 
        copy of data 

Figure 9-2 
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Sharing in Paging Systems 
• Data pages 
• Code pages 
• Generally, want to avoid requiring shared page to 

have the same page number in all processes that 
share it 
– Code, data could be shared by many processes 
– Could easily lead to conflicts 
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Sharing in Paging Systems 
• Sharing of data pages: 

– Page table entries of different 
processes point to the same page 

– If shared pages contain only data 
and no addresses, linker can 

• Assign arbitrary page numbers to the 
shared pages 

• Adjust page tables to point to 
appropriate page frames 

– So the shared page can have a 
different page number in different 
processes 

Figure 9-3 
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Sharing in Paging Systems 
• Sharing of code pages 
• Key issues:  

– Self-references: references to the shared code from 
within the shared code 

– Linking the shared code into multiple address spaces 
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Sharing of Code Pages in Paging Systems 
• Self references:  

– avoid page numbers in shared code 
by compiling branch addresses 
relative to CBR 

– This works provided the shared 
code is self-contained (does not 
contain any  external references ) 

• Linking shared pages into 
multiple address spaces: 
– Issues:  

• Want to defer loading of code until 
we actually use it 

• When process first accesses the 
code, it may have already been 
loaded by another process 

– Done through dynamic linking 
using a transfer vector Figure 9-3 
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Dynamic Linking via Transfer Vector 
• Each Transfer Vector entry 

corresponds to a reference to 
shared code 

• Each entry initially contains a 
piece of code called a stub 

• Stub code does the following: 
– Checks whether referenced 

shared code is loaded. 
– If the shared code is not already 

loaded, the stub loads the code 
– Stub code replaces itself by a 

direct reference to the shared 
code 

 Figure 9-4 
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Sharing in Segmented Systems 
• Much the same as with Paged Systems 
• Simpler and more elegant because segments represent logical 

program entities 
• ST entries of different processes point to the 

same segment in physical memory (PM) 
• Data pages, containing only data and no addresses: same as with 

paged systems 
• Code pages:  

– Assign same segment numbers in all STs, or 
– Use base registers: 

• Function call loads CBR  
• Self-references have the form w(CBR) 
• This works if shared segments are self-contained (i.e., it 

they do not contain any references to other segments).   
• Full generality can be achieved using private linkage 

sections, introduced in Multics (1968). 
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Unrestricted Dynamic Linking/Sharing 
• Basic Principles (see Figure 9-5 on next page): 

– Self-references resolved using CBR 
– External references are indirect 

via a private linkage section 
– External reference is  (S,W), where S and W are 

symbolic names 
– At runtime, on first use: 

• Symbolic address (S,W) is resolved to (s,w), using trap 
mechanism) 

• (s,w) is entered in linkage section of process  
• Code is unchanged 

– Subsequent references use (s,w) without involving OS 
– Forces additional memory access for every external 

reference 
Spring, 2013 
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Dynamic Linking/Sharing 

Figure 9-5a: Before Figure 9-5b: After 

Before and After External Reference is Executed 
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Distributed Shared Memory 
• Goal: Create illusion of single shared memory in a 

distributed system 
• The (ugly) reality is that physical memory is 

distributed. 
• References to remote memory trigger hidden 

transfers from remote memory to local memory 
– Impractical/Impossible to do this one reference at a time. 

• How to implement transfers efficiently? 
– Optimize the implementation. 

Most important with Unstructured DSM. 
– Restrict the user.  (Exploit what the user knows.) 

Basic to Structured DSM. 
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Unstructured DSM 
Simulate single, fully shared, unstructured memory. 
 (Unlike paging, a CPU has no private space.) 

 

Figure 9-6 

– Advantage: Fully transparent to user 
– Disadvantage: Efficiency.  Every instruction fetch or 

operand  read/write could be to remote memory 
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Structured DSM 
• Each CPU has both private and 

shared space. 
• Add restrictions on use of shared 

variables: 
– Access only within (explicitly 

declared) Critical Sections 
– Modifications only need to be 

propagated at beginning/end of 
critical sections. 

• Variant: Use objects instead of 
shared variables: object-based DSM 

Figure 9-7 
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Implementing Unstructured DSM 
• Key Issues: 

– Granularity of Transfers 
– Replication of Data 
– Memory Consistency: Strict vs Sequential 
– Tracking Data: Where is it stored now? 
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Implementing Unstructured DSM 
• Granularity of Transfers 

– Transfer too little: 
• Time wasted in latency 

– Transfer too much: 
• Time wasted in transfer 
• False sharing:  

– Two unrelated variables, each accessed by a different 
process, are on the same page/set of pages being 
transferred between physical memories 

– Can result in pages being transferred back and forth, 
similar to thrashing 
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Implementing Unstructured DSM 
• Replication of Data:  Move or Copy? 

– Copying saves time on later references. 
– Copying causes (cache or real) consistency confusion. 

• Reads work fine. 
• Writes require others to update or invalidate. 

Figure 9-9 
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Implementing Unstructured DSM 
• Strict Consistency: Reading a variable x returns the value 

written to x by the most recently executed write operation. 
• Sequential Consistency: Sequence of values of x read by 

different processes corresponds to some sequential 
interleaved execution of those processes.  

Figure 9-11 

–  Reads of x in p1 will always produce (1,2) 
–  Reads of x in p2 can produce (0,0), (0,1), (0,2), (1,1), 

(1,2), or (2,2) 
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Implementing Unstructured DSM 
• Tracking Data: Where is it stored now? 
• Approaches: 

– Have owner track it by maintaining  copy set (list). 
Only owner is allowed to write.   

– Ownership can change when a write request is received. 
Now we need to find the owner.    

• Use broadcast. 
• Central Manager  (→ Bottleneck). Replicated managers share 

responsibilities. 
• Probable owner  gets tracked down.  Retrace data’s migration. 

Update links traversed to show current owner. 

• Bottom line on Unstructured DSM: 
– Isn’t there a better way? 
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Implementing Structured DSM 
• Memory Consistency 

– Unstructured DSM assume that all shared 
variables are consistent at all times.  This is a 
major reason why the performance is so poor. 

– Structured DSM introduces new, weaker 
models of memory consistency 

• Weak consistency 
• Release consistency 
• Entry consistency 
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Implementing Structured DSM 
• Weak Memory Consistency 

– Introduce synchronization variable  S 
– Processes access S when they are 

ready to adjust/reconcile their shared variables. 
– The DSM is only guaranteed to be in a consistent state 

immediately following access to a synchronization variable 
 

Figure 9-12 
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Implementing Structured DSM 
• Release Memory Consistency 

– Export modified variables upon leaving CS 

Figure 9-13 

– This is a waste if p2 never looks at x. 
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Implementing Structured DSM 
• Entry Memory Consistency 

– Associate each shared variable with a lock variable 
– Before entering CS, import only those variables associated with the current 

lock 
 

 
 

Figure 9-14 

– There is also a (confusingly named?) lazy release  consistency model 
which imports all shared variables before entering CS 
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Object-Based DSM 
• An object’s functions/methods are part of it. 
• Can use remote method invocation 

(like remote procedure calls, covered earlier) 
instead of copying or moving an object into 
local memory. 

• Can also move or copy an object to improve performance.  
• When objects are replicated, consistency issues again arise 

(as in unstructured DSM) 
• On write, we could 

– Invalidate all other copies (as in unstructured DSM) 
– Remotely invoke, on all copies, a method that does the same 

write 
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Memory Models on Multiprocessors 
• Processors share memory 
• Each processor may have its own cache 
• Memory models provide rules for deciding 

– When processor X sees writes to memory by other 
processors 

– When writes by processor X are visible to other processors 

• These questions are similar to some of the 
issues that arise in distributed shared memory 

. 
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Java Memory Model 
Similar issues arise in multithreaded code in Java 
• Each thread may have its own copy of shared variables 
• Threads may read from and write to their own copy of 

shared variables.   
• The Java Memory Model specifies 

– When thread X must see writes to memory by other processors 
– When writes by thread X must become visible to other processors 

• The issues in Java are different from those in other 
languages such as C/C++: 
– Threads are an integral part of the Java language.   
– Java compilers can rearrange thread code as part of optimization 
– To achieve correctness, certain conditions must be guaranteed. 
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Java Memory Model (continued) 
• Full details in JSR 133 (2004).   
• A happened-before relation is defined on memory 

references, locks, unlocks, and other thread operation.   
• If one action happened-before the other according to 

this definition, then the Java Virtual Machine guarantees 
that the results of the first action are visible to the 
second action  

• Example:  
– If  x=1 happened-before y=x and no other assignment to x 

intervenes, then y must be set to 1. 
– But if it is not true that x=1 happened-before y=x, then y 

will not necessarily be set to 1. 
• Note that this is a separate issue from mutual exclusion, 

although the two are related. 
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Java Memory Model (continued) 
• Some rules defining the happened before relation (not a complete 

list): 
– An action in a thread happened-before an action in that thread that 

comes later in the thread’s sequential order. 
– An unlock on an object happened-before every subsequent lock on that 

same object. 
– A write to a volatile field happened-before every subsequent read of 

that same volatile field. 
– A call to start() on a thread happened-before any actions within the 

thread. 
– All actions within a thread happened-before any other thread returns 

from a join() on that thread. 
– A write by a thread to a blocking queue happened-before any 

subsequent read from that blocking queue. 
• There are other rules.  The compiler is free to reorder operations as 

long as the happened-before operation is respected. 
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History 
• Originally developed by Steve Franklin 
• Modified by Michael Dillencourt, Summer, 2007 
• Modified by Michael Dillencourt, Spring, 2009 
• Modified by Michael Dillencourt, Winter 2011 (added material on Java memory model) 
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