
CompSci 143A 1

9. Linking and Sharing
9.1 Single-Copy Sharing

– Why Share
– Requirements for Sharing
– Linking and Sharing

9.2 Sharing in Systems without Virtual Memory
9.3 Sharing in Paging Systems

– Sharing of Data
– Sharing of Code

9.3 Sharing in Segmented Systems
9.4 Principles of Distributed Shared Memory (DSM)

– The User's View of DSM
9.5 Implementations of DSM

– Implementing Unstructured DSM
– Implementing Structured DSM

Spring, 2013

CompSci 143A 2

Single-Copy Sharing
• Focus: sharing a single copy of code or data in

memory
• Why share?

– Processes need to access common data
• Producer/consumer, task pools, file directories

– Better utilization of memory
• code, system tables, data bases

Spring, 2013

CompSci 143A 3

Requirements for Sharing
• Requirement for sharing

– How to express what is shared
• A priori agreement (e.g., system components)
• Language construct (e.g., UNIX’s shmget/shmat)

– Shared code must be reentrant (also known as
read-only or pure)

• Does not modify itself (read-only segments)
• Data (stack, heap) in separate private areas for each

process

Spring, 2013

CompSci 143A 4

Linking and Sharing
• Linking resolves external

references
• Sharing links the same copy of

a module into two or more
address spaces

• Static linking/sharing:
– Resolve references

before execution starts
• Dynamic linking/sharing:

– While executing Figure 9-1

Spring, 2013

CompSci 143A 5

Sharing without Virtual Memory
• With one or no Relocation Register (RR)

– All memory of a process is contiguous
– Sharing user programs:

• Possible only with 2 user programs by partial overlap
• Too restrictive and difficult; generally not used

– Sharing system components:
• Components are assigned specific, agreed-upon

starting positions
• Linker resolves references to those locations
• Can also use a block of transfer addresses,

but this involves additional memory references.

Spring, 2013

CompSci 143A 6

Sharing without Virtual Memory
• With multiple RRs

– CBR = Code Base Register
 Point to shared
 copy of code

– SBR = Stack Base Register
 Point to private
 copy of stack

– DBR = Data Base Register
 Point to private
 copy of data

Figure 9-2

Spring, 2013

Sharing in Paging Systems
• Data pages
• Code pages
• Generally, want to avoid requiring shared page to

have the same page number in all processes that
share it
– Code, data could be shared by many processes
– Could easily lead to conflicts

CompSci 143A 7 Spring, 2013

CompSci 143A 8

Sharing in Paging Systems
• Sharing of data pages:

– Page table entries of different
processes point to the same page

– If shared pages contain only data
and no addresses, linker can

• Assign arbitrary page numbers to the
shared pages

• Adjust page tables to point to
appropriate page frames

– So the shared page can have a
different page number in different
processes

Figure 9-3

Spring, 2013

Sharing in Paging Systems
• Sharing of code pages
• Key issues:

– Self-references: references to the shared code from
within the shared code

– Linking the shared code into multiple address spaces

CompSci 143A 9 Spring, 2013

CompSci 143A 10

Sharing of Code Pages in Paging Systems
• Self references:

– avoid page numbers in shared code
by compiling branch addresses
relative to CBR

– This works provided the shared
code is self-contained (does not
contain any external references)

• Linking shared pages into
multiple address spaces:
– Issues:

• Want to defer loading of code until
we actually use it

• When process first accesses the
code, it may have already been
loaded by another process

– Done through dynamic linking
using a transfer vector Figure 9-3

Spring, 2013

CompSci 143A 11

Dynamic Linking via Transfer Vector
• Each Transfer Vector entry

corresponds to a reference to
shared code

• Each entry initially contains a
piece of code called a stub

• Stub code does the following:
– Checks whether referenced

shared code is loaded.
– If the shared code is not already

loaded, the stub loads the code
– Stub code replaces itself by a

direct reference to the shared
code

 Figure 9-4

Spring, 2013

CompSci 143A 12

Sharing in Segmented Systems
• Much the same as with Paged Systems
• Simpler and more elegant because segments represent logical

program entities
• ST entries of different processes point to the

same segment in physical memory (PM)
• Data pages, containing only data and no addresses: same as with

paged systems
• Code pages:

– Assign same segment numbers in all STs, or
– Use base registers:

• Function call loads CBR
• Self-references have the form w(CBR)
• This works if shared segments are self-contained (i.e., it

they do not contain any references to other segments).
• Full generality can be achieved using private linkage

sections, introduced in Multics (1968).

Spring, 2013

CompSci 143A 13

Unrestricted Dynamic Linking/Sharing
• Basic Principles (see Figure 9-5 on next page):

– Self-references resolved using CBR
– External references are indirect

via a private linkage section
– External reference is (S,W), where S and W are

symbolic names
– At runtime, on first use:

• Symbolic address (S,W) is resolved to (s,w), using trap
mechanism)

• (s,w) is entered in linkage section of process
• Code is unchanged

– Subsequent references use (s,w) without involving OS
– Forces additional memory access for every external

reference
Spring, 2013

CompSci 143A 14

Dynamic Linking/Sharing

Figure 9-5a: Before Figure 9-5b: After

Before and After External Reference is Executed

Spring, 2013

CompSci 143A 15

Distributed Shared Memory
• Goal: Create illusion of single shared memory in a

distributed system
• The (ugly) reality is that physical memory is

distributed.
• References to remote memory trigger hidden

transfers from remote memory to local memory
– Impractical/Impossible to do this one reference at a time.

• How to implement transfers efficiently?
– Optimize the implementation.

Most important with Unstructured DSM.
– Restrict the user. (Exploit what the user knows.)

Basic to Structured DSM.

Spring, 2013

CompSci 143A 16

Unstructured DSM
Simulate single, fully shared, unstructured memory.
 (Unlike paging, a CPU has no private space.)

Figure 9-6

– Advantage: Fully transparent to user
– Disadvantage: Efficiency. Every instruction fetch or

operand read/write could be to remote memory

Spring, 2013

CompSci 143A 17

Structured DSM
• Each CPU has both private and

shared space.
• Add restrictions on use of shared

variables:
– Access only within (explicitly

declared) Critical Sections
– Modifications only need to be

propagated at beginning/end of
critical sections.

• Variant: Use objects instead of
shared variables: object-based DSM

Figure 9-7
Spring, 2013

CompSci 143A 18

Implementing Unstructured DSM
• Key Issues:

– Granularity of Transfers
– Replication of Data
– Memory Consistency: Strict vs Sequential
– Tracking Data: Where is it stored now?

Spring, 2013

CompSci 143A 19

Implementing Unstructured DSM
• Granularity of Transfers

– Transfer too little:
• Time wasted in latency

– Transfer too much:
• Time wasted in transfer
• False sharing:

– Two unrelated variables, each accessed by a different
process, are on the same page/set of pages being
transferred between physical memories

– Can result in pages being transferred back and forth,
similar to thrashing

Spring, 2013

CompSci 143A 20

Implementing Unstructured DSM
• Replication of Data: Move or Copy?

– Copying saves time on later references.
– Copying causes (cache or real) consistency confusion.

• Reads work fine.
• Writes require others to update or invalidate.

Figure 9-9

Spring, 2013

CompSci 143A 21

Implementing Unstructured DSM
• Strict Consistency: Reading a variable x returns the value

written to x by the most recently executed write operation.
• Sequential Consistency: Sequence of values of x read by

different processes corresponds to some sequential
interleaved execution of those processes.

Figure 9-11

– Reads of x in p1 will always produce (1,2)
– Reads of x in p2 can produce (0,0), (0,1), (0,2), (1,1),

(1,2), or (2,2)

Spring, 2013

CompSci 143A 22

Implementing Unstructured DSM
• Tracking Data: Where is it stored now?
• Approaches:

– Have owner track it by maintaining copy set (list).
Only owner is allowed to write.

– Ownership can change when a write request is received.
Now we need to find the owner. 

• Use broadcast.
• Central Manager (→ Bottleneck). Replicated managers share

responsibilities.
• Probable owner gets tracked down. Retrace data’s migration.

Update links traversed to show current owner.

• Bottom line on Unstructured DSM:
– Isn’t there a better way?

Spring, 2013

CompSci 143A 23

Implementing Structured DSM
• Memory Consistency

– Unstructured DSM assume that all shared
variables are consistent at all times. This is a
major reason why the performance is so poor.

– Structured DSM introduces new, weaker
models of memory consistency

• Weak consistency
• Release consistency
• Entry consistency

Spring, 2013

CompSci 143A 24

Implementing Structured DSM
• Weak Memory Consistency

– Introduce synchronization variable S
– Processes access S when they are

ready to adjust/reconcile their shared variables.
– The DSM is only guaranteed to be in a consistent state

immediately following access to a synchronization variable

Figure 9-12

Spring, 2013

CompSci 143A 25

Implementing Structured DSM
• Release Memory Consistency

– Export modified variables upon leaving CS

Figure 9-13

– This is a waste if p2 never looks at x.

Spring, 2013

CompSci 143A 26

Implementing Structured DSM
• Entry Memory Consistency

– Associate each shared variable with a lock variable
– Before entering CS, import only those variables associated with the current

lock

Figure 9-14

– There is also a (confusingly named?) lazy release consistency model
which imports all shared variables before entering CS

Spring, 2013

CompSci 143A 27

Object-Based DSM
• An object’s functions/methods are part of it.
• Can use remote method invocation

(like remote procedure calls, covered earlier)
instead of copying or moving an object into
local memory.

• Can also move or copy an object to improve performance.
• When objects are replicated, consistency issues again arise

(as in unstructured DSM)
• On write, we could

– Invalidate all other copies (as in unstructured DSM)
– Remotely invoke, on all copies, a method that does the same

write

Spring, 2013

CompSci 143A 28

Memory Models on Multiprocessors
• Processors share memory
• Each processor may have its own cache
• Memory models provide rules for deciding

– When processor X sees writes to memory by other
processors

– When writes by processor X are visible to other processors

• These questions are similar to some of the
issues that arise in distributed shared memory

.

Spring, 2013

CompSci 143A 29

Java Memory Model
Similar issues arise in multithreaded code in Java
• Each thread may have its own copy of shared variables
• Threads may read from and write to their own copy of

shared variables.
• The Java Memory Model specifies

– When thread X must see writes to memory by other processors
– When writes by thread X must become visible to other processors

• The issues in Java are different from those in other
languages such as C/C++:
– Threads are an integral part of the Java language.
– Java compilers can rearrange thread code as part of optimization
– To achieve correctness, certain conditions must be guaranteed.

Spring, 2013

CompSci 143A 30

Java Memory Model (continued)
• Full details in JSR 133 (2004).
• A happened-before relation is defined on memory

references, locks, unlocks, and other thread operation.
• If one action happened-before the other according to

this definition, then the Java Virtual Machine guarantees
that the results of the first action are visible to the
second action

• Example:
– If x=1 happened-before y=x and no other assignment to x

intervenes, then y must be set to 1.
– But if it is not true that x=1 happened-before y=x, then y

will not necessarily be set to 1.
• Note that this is a separate issue from mutual exclusion,

although the two are related.

Spring, 2013

CompSci 143A 31

Java Memory Model (continued)
• Some rules defining the happened before relation (not a complete

list):
– An action in a thread happened-before an action in that thread that

comes later in the thread’s sequential order.
– An unlock on an object happened-before every subsequent lock on that

same object.
– A write to a volatile field happened-before every subsequent read of

that same volatile field.
– A call to start() on a thread happened-before any actions within the

thread.
– All actions within a thread happened-before any other thread returns

from a join() on that thread.
– A write by a thread to a blocking queue happened-before any

subsequent read from that blocking queue.
• There are other rules. The compiler is free to reorder operations as

long as the happened-before operation is respected.

Spring, 2013

CompSci 143A 32

History
• Originally developed by Steve Franklin
• Modified by Michael Dillencourt, Summer, 2007
• Modified by Michael Dillencourt, Spring, 2009
• Modified by Michael Dillencourt, Winter 2011 (added material on Java memory model)

Spring, 2013

	9. Linking and Sharing
	Single-Copy Sharing
	Requirements for Sharing
	Linking and Sharing
	Sharing without Virtual Memory
	Sharing without Virtual Memory
	Sharing in Paging Systems
	Sharing in Paging Systems
	Sharing in Paging Systems
	Sharing of Code Pages in Paging Systems
	Dynamic Linking via Transfer Vector
	Sharing in Segmented Systems
	Unrestricted Dynamic Linking/Sharing
	Dynamic Linking/Sharing
	Distributed Shared Memory
	Unstructured DSM
	Structured DSM
	Implementing Unstructured DSM
	Implementing Unstructured DSM
	Implementing Unstructured DSM
	Implementing Unstructured DSM
	Implementing Unstructured DSM
	Implementing Structured DSM
	Implementing Structured DSM
	Implementing Structured DSM
	Implementing Structured DSM
	Object-Based DSM
	Memory Models on Multiprocessors
	Java Memory Model
	Java Memory Model (continued)
	Java Memory Model (continued)
	Slide Number 32

