
CompSci 143A 1

8. Virtual Memory
8.1 Principles of Virtual Memory
8.2 Implementations of Virtual Memory

– Paging
– Segmentation
– Paging With Segmentation
– Paging of System Tables
– Translation Look-aside Buffers

8.3 Memory Allocation in Paged Systems
– Global Page Replacement Algorithms
– Local Page Replacement Algorithms
– Load Control and Thrashing
– Evaluation of Paging

Spring, 2013

CompSci 143A 2

Principles of Virtual Memory
• For each process, the

system creates the
illusion of large
contiguous
memory space(s)

• Relevant portions of
Virtual Memory (VM)
are loaded automatically
and transparently

• Address Map translates
Virtual Addresses to
Physical Addresses

 Figure 8-11

Spring, 2013

CompSci 143A 3

Principles of Virtual Memory
• Single-segment Virtual Memory:

– One area of 0..n-1 words
– Divided into fix-sized pages

• Multiple-Segment Virtual Memory:
– Multiple areas of up to 0..n-1 (words)
– Each holds a logical segment

(e.g., function, data structure)
– Each logical segment

• may be contiguous is contiguous, or
• may be divided into pages

 Spring, 2013

CompSci 143A 4

Main Issues in VM Design
1. Address mapping

– How to translate virtual addresses to physical addresses
2. Placement

– Where to place a portion of VM needed by process
3. Replacement

– Which portion of VM to remove when space is needed
4. Load control

– How much of VM to load at any one time
5. Sharing

– How can processes share portions of their VMs

Spring, 2013

CompSci 143A 5

VM Implementation via Paging
• VM is divided into fix-sized pages : page_size=2|w|
• PM (physical memory) is divided into 2|f| page frames :

frame_size=page_size=2|w|
• System loads pages into frames and translates addresses
• Virtual address: va = (p,w)

• Physical address: pa = (f,w)

• |p|, |f|, and |w|

– |p| determines number of pages in VM, 2|p|
– |f| determines number of frames in PM, 2|f|
– |w| determines page/frame size, 2|w|

Figure 8-2

Spring, 2013

CompSci 143A 6

Paged Virtual Memory
• Virtual address: va = (p,w) Physical address: pa = (f,w)
• 2|p| pages in VM; 2|w| = page/frame size; 2|f| frames in PM

Figure 8-3

Spring, 2013

CompSci 143A 7

Paged VM Address Translation
• Given (p,w), how to determine f from p ?
• One solution: Frame Table :

– One entry, FT[i], for each frame
FT[i].pid records process ID
FT[i].page records page number p

– Given (id,p,w), search for a match on (id,p)
f is the i for which (FT[i].pid, FT[i].page)=(id,p)

– Pseudocode for Frame Table lookup:

address_map(id,p,w)
{
 pa = UNDEFINED;
 for (f=0; f<F; f++)
 if (FT[f].pid==id && FT[f].page==p) pa=f+w;
 return pa;
}

Spring, 2013

CompSci 143A 8

Address Translation via Frame Table
address_map(id,p,w) {
 pa = UNDEFINED;
 for (f=0; f<F; f++)
 if (FT[f].pid==id &&

 FT[f].page==p)
 pa=f+w;

 return pa;
 }

• Drawbacks
– Costly: Search must

be done in parallel
in hardware

– Sharing of pages: difficult
or not possible

Figure 8-4
Spring, 2013

CompSci 143A 9

Page Table for Paged VM
• Page Table (PT) is associated

with each VM (not PM)
• Page table register PTR

points at PT at run time
• Entry p of PT holds

frame number of page p :
– *(PTR+p) points to frame f

• Address translation:
address_map(p, w) {
 pa = *(PTR+p)+w;
 return pa }

• Drawback:
 Extra memory access

Figure 8-5

Spring, 2013

CompSci 143A 10

Demand Paging
• All pages of VM can be loaded initially

– Simple, but maximum size of VM = size of PM
• Pages a loaded as needed: on demand

– Additional bit in PT indicates
a page’s presence/absence in memory

– Page fault occurs when page is absent
address_map(p, w)

{
 if (resident(*(PTR+p))) {
 pa = *(PTR+p)+w; return pa; }
 else page_fault;
}

Spring, 2013

CompSci 143A 11

VM using Segmentation
• Multiple contiguous spaces: segments

– More natural match to program/data structure
– Easier sharing (Chapter 9)

• Virtual address (s,w) mapped to physical address
(but no frames)

• Where/how are segments placed in physical
memory?
– Contiguous
– Paged

Spring, 2013

CompSci 143A 12

Contiguous Allocation
• Each segment is contiguous in physical memory
• Segment Table (ST) tracks starting locations
• Segment Table Register STR points to segment

table
• Address translation:

address_map(s, w)
{
 if (resident(*(STR+s))) {
 pa = *(STR+s)+w;
 return pa; }
 else segment_fault;
}

• Drawback: External fragmentation

Spring, 2013

CompSci 143A 13

Paging with segmentation
• Each segment is divided into fix-size pages
• va = (s,p,w)

|s| determines # of segments
(size of ST)

|p| determines # of pages
 per segment (size of PT)

|w| determines page size

• pa = *(*(STR+s)+p)+w
• Drawback:

2 extra memory references

Figure 8-7
Spring, 2013

CompSci 143A 14

Paging of System Tables
• ST or PT may be too large to keep in PM

– Divide ST or PT into pages
– Keep track by

additional page table

• Paging of ST
– ST divided into pages
– Segment directory

keeps track of ST pages
– va = (s1,s2,p,w)
– pa = *(*(*(STR+s1)+s2)+p)+w

• Drawback:
3 extra memory references

Figure 8-8
Spring, 2013

CompSci 143A 15

Translation Look-aside Buffers
• Translation Lookaside Buffer (TLB)

avoids some additional memory
accesses
– Keep most recently translated

page numbers in
associative memory:
 For any (s,p,*) ; keep
 (s,p) and frame number f

– Bypass translation if
match found on (s,p)

• TLB ≠ cache
– TLB keeps

only frame numbers
– Cache keeps data values

Figure 8-10

Spring, 2013

CompSci 143A 16

Memory Allocation with Paging
• Placement policy: Any free frame is OK
• Replacement: Goal is to minimize data movement

between physical memory and secondary storage
• Two types of replacement strategies:

– Global replacement: Consider all resident pages, regardless of owner

– Local replacement: Consider only pages of faulting process

• How to compare different algorithms:
– Use Reference String (RS) : r0 r1 ... rt …

rt is the (number of the) page referenced at time t
– Count number of page faults

Spring, 2013

CompSci 143A 17

Global page replacement
• Optimal (MIN): Replace page that will not be

referenced for the longest time in the future
Time t | 0| 1 2 3 4 5 6 7 8 9 10
RS | | c a d b e b a b c d
Frame 0| a| a a a a a a a a a d
Frame 1| b| b b b b b b b b b b
Frame 2| c| c c c c c c c c c c
Frame 3| d| d d d d e e e e e e
IN | | e d
OUT | | d a

• Problem: Need entire reference string (i.e.,need to
know the future)

Spring, 2013

CompSci 143A 18

Global Page Replacement
• Random Replacement: Replace a randomly

chosen page
– Simple but
– Does not exploit locality of reference

• Most instructions are sequential
• Most loops are short
• Many data structures are accessed sequentially

Spring, 2013

CompSci 143A 19

Global page replacement
• First-In First-Out (FIFO): Replace oldest page
Time t | 0| 1 2 3 4 5 6 7 8 9 10

RS | | c a d b e b a b c d
Frame 0|>a|>a >a >a >a e e e e >e d
Frame 1| b| b b b b >b >b a a a >a
Frame 2| c| c c c c c c >c b b b
Frame 3| d| d d d d d d d >d c c
IN | | e a b c d
OUT | | a b c d e

• Problem:
– Favors recently loaded pages, but
– Ignores when program returns to old pages

Spring, 2013

CompSci 143A 20

Global Page Replacement
• LRU: Replace Least Recently Used page
Time t | 0| 1 2 3 4 5 6 7 8 9 10
RS | | c a d b e b a b c d
Frame 0| a| a a a a a a a a a a
Frame 1| b| b b b b b b b b b b
Frame 2| c| c c c c e e e e e d
Frame 3| d| d d d d d d d d c c
IN | | e c d
OUT | | c d e
Q.end | d| c a d b e b a b c d
 | c| d c a d b e b a b c
 | b| b d c a d d e e a b
Q.head | a| a b b c a a d d e a

Spring, 2013

CompSci 143A 21

Global page replacement
• LRU implementation

– Software queue: too expensive
– Time-stamping

• Stamp each referenced page with current time
• Replace page with oldest stamp

– Hardware capacitor with each frame
• Charge at reference
• Charge decays exponentially
• Replace page with smallest charge

– n-bit aging register with each frame
• Shift all registers to right periodically (or at every reference to

any page)
• Set left-most bit of referenced page to 1
• Replace page with smallest value

– Simpler algorithms that approximate LRU algorithm

Spring, 2013

CompSci 143A 22

Global Page Replacement
• Second-chance algorithm

– Approximates LRU
– Implement use-bit u with each frame
– Set u=1 when page referenced
– To select a page:

• If u==0, select page
• Else, set u=0 and consider next frame

– Used page gets a second chance to stay in PM
• Algorithm is called clock algorithm:

– Search cycles through page frames

Spring, 2013

CompSci 143A 23

Global page replacement
• Second-chance algorithm

… 4 5 6 7 8 9 10

… b e b a b c d
… >a/1 e/1 e/1 e/1 e/1 >e/1 d/1
… b/1 >b/0 >b/1 b/0 b/1 b/1 >b/0
… c/1 c/0 c/0 a/1 a/1 a/1 a/0
… d/1 d/0 d/0 >d/0 >d/0 c/1 c/0
… e a c d

Spring, 2013

CompSci 143A 24

Global Page Replacement
• Third-chance algorithm

– Second chance algorithm does
not distinguish between read and write access

• Write access more expensive
– Give modified pages a third chance:

• use-bit u set at every reference (read and write)
• write-bit w set at write reference
• dirty-bit needed to keep track of whether page has been modified
• to select a page, cycle through frames,

resetting bits, until uw==00:
u w → u w
1 1 0 1
1 0 0 0
0 1 0 0 * (set dirty bit to remember modification)
0 0 (select page for replacement)

Spring, 2013

CompSci 143A 25

Global Page Replacement
• Third-chance algorithm

Read->10->00->Select
Write->11->01->00*->Select

… 0 | 1 2 3 4 5 6 7 8 9 10 .

… | c aw d bw e b aw b c d .
 >a/10 |>a/10 >a/11 >a/11 >a/11 a/00* a/00* a/11 a/11 >a/11 a/00*
… b/10 | b/10 b/10 b/10 b/11 b/00* b/10* b/10* b/10* b/10* d/10
… c/10 | c/10 c/10 c/10 c/10 e/10 e/10 e/10 e/10 e/10 >e/00
… d/10 | d/10 d/10 d/10 d/10 >d/00 >d/00 >d/00 >d/00 c/10 c/00 .
… IN | e c d
… OUT | c d b

Spring, 2013

CompSci 143A 26

Local Page Replacement
• Measurements indicate that every program needs a

minimum set of pages to be resident in memory
– If too few, thrashing occurs
– If too many, page frames are wasted

• The size of the minimum set varies over time
• Goal: attempt to maintain an optimal resident set

of pages for each active process
– Number of resident pages for each process changes

over time

Spring, 2013

CompSci 143A 27

Local Page Replacement
• Optimal (VMIN)

– Define a sliding window (t,t+τ)
– τ is a parameter (constant)
– At any time t, maintain as resident

all pages visible in window
• Guaranteed to generate smallest number of page

faults
• Requires knowledge of future

Spring, 2013

CompSci 143A 28

Local page replacement
• Optimal (VMIN) with τ=3
Time t | 0| 1 2 3 4 5 6 7 8 9 10
RS | d| c c d b c e c e a d
Page a | -| - - - - - - - - x -
Page b | -| - - - x - - - - - -
Page c | -| x x x x x x x - - -
Page d | x| x x x - - - - - - x
Page e | -| - - - - - x x x - -
IN | | c b e a d
OUT | | d b c e a

• Unrealizable without entire reference string

(knowledge of future)
Spring, 2013

CompSci 143A 29

Local Page Replacement
• Working Set Model:

– Uses principle of locality: Memory requirement for a
process in the near future is closefly approximated by
the process’s memory requirement in the recent past

– Use trailing window (instead of future window)
– Working set W(t,τ) is all pages referenced during the

interval (t–τ,t)
– At time t:

• Remove all pages not in W(t,τ)
• Process may run only if entire W(t,τ) is resident

 Spring, 2013

CompSci 143A 30

Local Page Replacement
• Working Set Model with τ=3
Time t | 0| 1 2 3 4 5 6 7 8 9 10
RS | a| c c d b c e c e a d
Page a | x| x x x - - - - - x x
Page b | -| - - - x x x x - - -
Page c | -| x x x x x x x x x x
Page d | x| x x x x x x - - - x
Page e | x| x - - - - x x x x x
IN | | c b e a d
OUT | | e a d b .

• Drawback: costly to implement
• Approximate (aging registers, time stamps)

Spring, 2013

CompSci 143A 31

Local Page Replacement
• Page fault frequency (PFF)
• Goals

– Keep frequency of page faults acceptably low
– Keep resident page set from growing unnecessarily large

• Uses a parameter τ
• Only adjust resident set when a page fault occurs
• Rule: When a page fault occurs

– If time between page faults ≤ τ
• Add new page to resident set

– If time between page faults > τ
• Add new page to resident set
• Remove all pages not referenced since last page fault

Spring, 2013

CompSci 143A 32

Local Page Replacement
• Page Fault Frequency with τ=2
Time t | 0| 1 2 3 4 5 6 7 8 9 10
RS | | c c d b c e c e a d
Page a | x| x x x - - - - - x x
Page b | -| - - - x x x x x - -
Page c | -| x x x x x x x x x x
Page d | x| x x x x x x x x - x
Page e | x| x x x - - x x x x x
IN | | c b e a d
OUT | | ae bd

Spring, 2013

CompSci 143A 33

Load Control and Thrashing
• Main issues:

– How to choose the amount/degree of multiprogramming?
– When level decreased, which process should be deactivated?
– When new process reactivated,which of its pages should be

loaded?
– Load Control: Policy setting

 number and type of concurrent processes
– Thrashing: Effort moving pages

 between main and secondary memory

Spring, 2013

CompSci 143A 34

Load Control and Thrashing
• Choosing degree of multiprogramming
• Local replacement:

– Working set of any process
must be resident

– This automatically
imposes a limit

• Global replacement
– No working set concept
– Use CPU utilization

as a criterion
– With too many processes,

 thrashing occurs Figure 8-11
L=mean time between faults
S=mean page fault service time

Spring, 2013

CompSci 143A 35

Load Control and Thrashing
• How to find Nmax?

– L=S criterion:
• Page fault service time S needs to keep up with

mean time between page faults L
– 50% criterion:

• CPU utilization is highest when paging disk is 50%
busy (found experimentally)

Spring, 2013

CompSci 143A 36

Load Control and Thrashing
• Which process to deactivate

– Lowest priority process
– Faulting process
– Last process activated
– Smallest process
– Largest process

• Which pages to load
when process activated
– Prepage last resident set

Figure 8-12

Spring, 2013

CompSci 143A 37

Evaluation of Paging
Prepaging is important

– Initial set can be loaded
more efficiently than by
individual page faults

Figure 8-13(a)
Spring, 2013

CompSci 143A 38

Evaluation of Paging
Page size should be small. However, small pages need

– Larger page tables
– More hardware
– Greater I/O overhead

Figure 8-13(b) Figure 8-13(c)

Spring, 2013

CompSci 143A 39

Evaluation of Paging
Load control is important
 W = Minimum amount of memory to avoid thrashing.

Figure 8-13(d)

Spring, 2013

CompSci 143A 40

History
• Originally developed by Steve Franklin
• Modified by Michael Dillencourt, Summer, 2007
• Modified by Michael Dillencourt, Spring, 2009
• Modified by Michael Dillencourt, Winter, 2010

Spring, 2013

	8. Virtual Memory
	Principles of Virtual Memory
	Principles of Virtual Memory
	Main Issues in VM Design
	VM Implementation via Paging
	Paged Virtual Memory
	Paged VM Address Translation
	Address Translation via Frame Table
	Page Table for Paged VM
	Demand Paging
	VM using Segmentation
	Contiguous Allocation
	Paging with segmentation
	Paging of System Tables
	Translation Look-aside Buffers
	Memory Allocation with Paging
	Global page replacement
	Global Page Replacement
	Global page replacement
	Global Page Replacement
	Global page replacement
	Global Page Replacement
	Global page replacement
	Global Page Replacement
	Global Page Replacement
	Local Page Replacement
	Local Page Replacement
	Local page replacement
	Local Page Replacement
	Local Page Replacement
	Local Page Replacement
	Local Page Replacement
	Load Control and Thrashing
	Load Control and Thrashing
	Load Control and Thrashing
	Load Control and Thrashing
	Evaluation of Paging
	Evaluation of Paging
	Evaluation of Paging
	Slide Number 40

