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8. Virtual Memory 
8.1 Principles of Virtual Memory  
8.2 Implementations of Virtual Memory  

– Paging 
– Segmentation 
– Paging With Segmentation 
– Paging of System Tables 
– Translation Look-aside Buffers   

8.3 Memory Allocation in Paged Systems 
– Global Page Replacement Algorithms 
– Local Page Replacement Algorithms 
– Load Control and Thrashing 
– Evaluation of Paging 
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Principles of Virtual Memory 
• For each process, the 

system creates the 
illusion of large 
contiguous 
memory space(s) 

• Relevant portions of 
Virtual Memory (VM) 
are loaded automatically 
and transparently 

• Address Map translates 
Virtual Addresses to 
Physical Addresses 

 Figure 8-11 
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Principles of Virtual Memory 
• Single-segment Virtual Memory:  

– One area of 0..n-1 words 
– Divided into fix-sized pages 

• Multiple-Segment Virtual Memory:  
– Multiple areas of up to 0..n-1 (words) 
– Each holds a logical segment 

(e.g., function, data structure) 
– Each logical segment  

• may be contiguous is contiguous, or  
•  may be divided into pages 
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Main Issues in VM Design 
1. Address mapping 

– How to translate virtual  addresses to physical addresses 
2. Placement 

– Where to place a portion of VM needed by process 
3. Replacement 

– Which portion of VM to remove when space is needed 
4. Load control 

– How much of VM to load at any one time 
5. Sharing 

– How can processes share portions of their VMs  
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VM Implementation via Paging 
• VM is divided into fix-sized pages : page_size=2|w| 
• PM (physical memory) is divided into 2|f| page frames : 

frame_size=page_size=2|w| 
• System loads pages into frames and translates addresses 
• Virtual address: va = (p,w)  

   
• Physical address: pa = (f,w) 

 
• |p|, |f|, and |w| 

– |p| determines number of pages in VM, 2|p| 
– |f| determines number of frames in PM, 2|f| 
– |w| determines page/frame size, 2|w| 

Figure 8-2 
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Paged Virtual Memory 
• Virtual address: va = (p,w)        Physical address: pa = (f,w)  
• 2|p|  pages in VM;  2|w| = page/frame size;  2|f|  frames in PM 

Figure 8-3 
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Paged VM Address Translation 
• Given (p,w), how to determine f  from p ? 
• One solution: Frame Table : 

– One entry, FT[i], for each frame 
FT[i].pid  records process ID 
FT[i].page  records page number p 

– Given (id,p,w), search for a match on (id,p) 
f is the i for which   (FT[i].pid, FT[i].page)=(id,p) 

– Pseudocode for Frame Table lookup: 
 

address_map(id,p,w)  
{ 
  pa = UNDEFINED;  
  for (f=0; f<F; f++)  
     if (FT[f].pid==id && FT[f].page==p) pa=f+w;  
  return pa;  
} 
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Address Translation via Frame Table 
address_map(id,p,w) {   
  pa = UNDEFINED;  
  for (f=0; f<F; f++)  
    if (FT[f].pid==id &&     

 FT[f].page==p) 
  pa=f+w;  

    return pa; 
  } 

• Drawbacks 
– Costly: Search must 

be done in parallel 
in hardware  

– Sharing of pages: difficult 
or not possible 

Figure 8-4 
Spring, 2013 



CompSci 143A 9 

Page Table for Paged VM 
• Page Table (PT) is associated 

with each VM (not PM) 
• Page table register PTR 

points at PT at run time 
• Entry p of PT holds  

frame number of page p : 
– *(PTR+p) points to frame f 

• Address translation: 
address_map(p, w) {   
  pa = *(PTR+p)+w;  
  return pa }  

• Drawback:  
  Extra memory access 

Figure 8-5 
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Demand Paging 
• All pages of VM can be loaded initially 

– Simple, but maximum size of VM = size of PM 
• Pages a loaded as needed:  on demand 

– Additional bit in PT indicates 
a page’s presence/absence in memory 

– Page fault occurs when page is absent 
address_map(p, w)  

{   
    if (resident(*(PTR+p))) {  
       pa = *(PTR+p)+w; return pa; }  
    else page_fault; 
}  
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VM using Segmentation 
• Multiple contiguous spaces: segments 

– More natural match to program/data structure 
– Easier sharing (Chapter 9) 

• Virtual address (s,w)  mapped to physical address 
(but no frames) 

• Where/how are segments placed in physical 
memory? 
– Contiguous  
– Paged 
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Contiguous Allocation 
• Each segment is contiguous in physical memory 
• Segment Table (ST) tracks starting locations 
• Segment Table Register STR points to segment 

table 
• Address translation: 

address_map(s, w)  
{   
    if (resident(*(STR+s))) {  
       pa = *(STR+s)+w;  
       return pa; }  
    else segment_fault; 
} 

• Drawback: External fragmentation  
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Paging with segmentation 
• Each segment is divided into fix-size pages 
• va = (s,p,w) 

|s| determines # of segments 
(size of ST) 

|p| determines # of pages 
 per segment (size of PT) 

|w| determines page size 

• pa = *(*(STR+s)+p)+w 
• Drawback: 

2 extra memory references 

Figure 8-7 
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Paging of System Tables 
• ST or PT may be too large to keep in PM 

– Divide ST or PT into pages 
– Keep track by  

additional page table 
 

• Paging of ST 
– ST divided into pages 
– Segment directory  

keeps track of ST pages 
– va = (s1,s2,p,w) 
– pa = *(*(*(STR+s1)+s2)+p)+w 

• Drawback: 
3 extra memory references 

Figure 8-8 
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Translation Look-aside Buffers 
• Translation Lookaside Buffer (TLB) 

avoids some additional memory 
accesses 
– Keep most recently translated  

page numbers in  
associative memory: 
   For any (s,p,*) ; keep  
   (s,p) and frame number f 

– Bypass translation if  
match found on (s,p) 

• TLB ≠ cache 
– TLB keeps  

only frame numbers 
– Cache keeps data values 

 

Figure 8-10 
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Memory Allocation with Paging 
• Placement policy: Any free frame is OK 
• Replacement: Goal is to minimize data movement 

between physical memory and secondary storage 
• Two types of replacement strategies: 

– Global replacement: Consider all resident pages, regardless of owner 

– Local replacement: Consider only pages of  faulting process 

• How to compare different algorithms: 
– Use Reference String (RS) :  r0 r1 ... rt …  

rt  is the (number of the) page referenced at time t 
– Count number of page faults 
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Global page replacement 
• Optimal (MIN): Replace page that will not be 

referenced for the longest time in the future 
Time t | 0| 1  2  3  4  5  6  7  8  9 10 
RS     |  | c  a  d  b  e  b  a  b  c  d    
Frame 0| a| a  a  a  a  a  a  a  a  a  d   
Frame 1| b| b  b  b  b  b  b  b  b  b  b  
Frame 2| c| c  c  c  c  c  c  c  c  c  c  
Frame 3| d| d  d  d  d  e  e  e  e  e  e  
IN     |  |             e              d  
OUT    |  |             d              a  

• Problem: Need entire reference string (i.e.,need to 
know the future) 
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Global Page Replacement 
• Random Replacement: Replace a randomly 

chosen page 
– Simple but 
– Does not exploit locality of reference 

• Most instructions are sequential 
• Most loops are short 
• Many data structures are accessed sequentially 
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Global page replacement 
• First-In First-Out (FIFO): Replace oldest page 
Time t | 0| 1  2  3  4  5  6  7  8  9 10 

RS     |  | c  a  d  b  e  b  a  b  c  d    
Frame 0|>a|>a >a >a >a  e  e  e  e >e  d   
Frame 1| b| b  b  b  b >b >b  a  a  a >a  
Frame 2| c| c  c  c  c  c  c >c  b  b  b  
Frame 3| d| d  d  d  d  d  d  d >d  c  c  
IN     |  |             e     a  b  c  d  
OUT    |  |             a     b  c  d  e 

• Problem:  
– Favors recently loaded pages, but  
– Ignores when program returns to old pages 
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Global Page Replacement 
• LRU: Replace Least Recently Used page 
Time t | 0| 1  2  3  4  5  6  7  8  9 10 
RS     |  | c  a  d  b  e  b  a  b  c  d  
Frame 0| a| a  a  a  a  a  a  a  a  a  a   
Frame 1| b| b  b  b  b  b  b  b  b  b  b  
Frame 2| c| c  c  c  c  e  e  e  e  e  d  
Frame 3| d| d  d  d  d  d  d  d  d  c  c 
IN     |  |             e           c  d  
OUT    |  |             c           d  e 
Q.end  | d| c  a  d  b  e  b  a  b  c  d 
       | c| d  c  a  d  b  e  b  a  b  c 
       | b| b  d  c  a  d  d  e  e  a  b 
Q.head | a| a  b  b  c  a  a  d  d  e  a 
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Global page replacement 
• LRU implementation 

– Software queue: too expensive 
– Time-stamping 

• Stamp each referenced page with current time 
• Replace page with oldest stamp 

– Hardware capacitor with each frame 
• Charge at reference  
• Charge decays exponentially 
• Replace page with smallest charge 

– n-bit aging register with each frame 
• Shift all registers to right periodically (or at every reference to 

any page) 
• Set left-most bit of referenced page to 1 
• Replace page with smallest value 

– Simpler algorithms that approximate LRU algorithm 
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Global Page Replacement 
• Second-chance algorithm 

– Approximates LRU 
– Implement use-bit u with each frame 
– Set u=1 when page referenced 
– To select a page: 

• If u==0, select page 
• Else, set u=0 and consider next frame 

– Used page gets a second chance to stay in PM 
• Algorithm is called clock algorithm: 

– Search cycles through page frames  
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Global page replacement 
• Second-chance algorithm 

…  4    5    6    7    8    9    10 

…  b    e    b    a    b    c    d    
… >a/1  e/1  e/1  e/1  e/1 >e/1  d/1   
…  b/1 >b/0 >b/1  b/0  b/1  b/1 >b/0 
…  c/1  c/0  c/0  a/1  a/1  a/1  a/0  
…  d/1  d/0  d/0 >d/0 >d/0  c/1  c/0  
…       e         a         c    d  
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Global Page Replacement 
• Third-chance algorithm 

– Second chance algorithm does 
not distinguish between read and write access 

• Write access more expensive 
– Give modified pages a third chance: 

• use-bit u set at every reference (read and write) 
• write-bit w set at write reference 
• dirty-bit needed to keep track of whether page has been modified 
• to select a page, cycle through frames, 

resetting bits, until  uw==00: 
u w →  u w 
1 1       0 1 
1 0       0 0 
0 1       0 0 *              (set dirty bit to remember modification) 
0 0    (select page for replacement) 
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Global Page Replacement 
• Third-chance algorithm 

Read->10->00->Select 
Write->11->01->00*->Select 

… 0   | 1     2     3      4     5     6     7     8     9    10  . 

…      |  c     aw    d     bw     e     b     aw      b     c     d   .    
 >a/10 |>a/10 >a/11 >a/11 >a/11  a/00* a/00* a/11  a/11 >a/11  a/00* 
… b/10 | b/10  b/10  b/10  b/11  b/00* b/10* b/10* b/10* b/10* d/10 
… c/10 | c/10  c/10  c/10  c/10  e/10  e/10  e/10  e/10  e/10 >e/00 
… d/10 | d/10  d/10  d/10  d/10 >d/00 >d/00 >d/00 >d/00  c/10  c/00 .  
…  IN  |                         e                        c     d 
… OUT  |                         c                        d     b 
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Local Page Replacement 
• Measurements indicate that every program needs a 

minimum set of pages to be resident in memory 
– If too few, thrashing occurs 
– If too many, page frames are wasted 

• The size of the minimum set varies over time 
• Goal: attempt to maintain an optimal resident set 

of pages for each active process 
– Number of resident pages for each process changes 

over time 
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Local Page Replacement 
• Optimal (VMIN) 

– Define a sliding window (t,t+τ) 
– τ is a parameter (constant) 
– At any time t, maintain as resident  

all pages visible in window 
• Guaranteed to generate smallest number of page 

faults 
• Requires knowledge of future 
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Local page replacement 
• Optimal (VMIN) with τ=3 
Time t | 0| 1  2  3  4  5  6  7  8  9  10 
RS     | d| c  c  d  b  c  e  c  e  a  d  
Page a | -| -  -  -  -  -  -  -  -  x  -    
Page b | -| -  -  -  x  -  -  -  -  -  -  
Page c | -| x  x  x  x  x  x  x  -  -  - 
Page d | x| x  x  x  -  -  -  -  -  -  x  
Page e | -| -  -  -  -  -  x  x  x  -  -  
IN     |  | c        b     e        a  d  
OUT    |  |          d  b        c  e  a 

 
• Unrealizable without entire reference string 

(knowledge of future) 
Spring, 2013 



CompSci 143A 29 

Local Page Replacement 
• Working Set Model:  

– Uses principle of locality: Memory requirement for  a 
process in the near future is closefly approximated by 
the process’s memory requirement in the recent past 

– Use trailing window (instead of future window) 
– Working set W(t,τ) is all pages referenced during the 

interval (t–τ,t)  
– At time t: 

• Remove all pages not in W(t,τ) 
• Process may run only if entire W(t,τ) is resident 
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Local Page Replacement 
• Working Set Model with τ=3 
Time t | 0| 1  2  3  4  5  6  7  8  9 10 
RS     | a| c  c  d  b  c  e  c  e  a  d 
Page a | x| x  x  x  -  -  -  -  -  x  x 
Page b | -| -  -  -  x  x  x  x  -  -  - 
Page c | -| x  x  x  x  x  x  x  x  x  x 
Page d | x| x  x  x  x  x  x  -  -  -  x 
Page e | x| x  -  -  -  -  x  x  x  x  x 
IN     |  | c        b     e        a  d 
OUT    |  |    e     a        d  b      . 

• Drawback: costly to implement 
• Approximate (aging registers, time stamps) 
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Local Page Replacement 
• Page fault frequency (PFF) 
• Goals 

– Keep frequency of page faults acceptably low 
– Keep resident page set from growing unnecessarily large 

• Uses a parameter τ  
• Only adjust resident set when a page fault occurs 
• Rule: When a page fault occurs 

– If time between page faults ≤ τ 
• Add new page to resident set 

– If time between page faults > τ 
• Add new page to resident set  
• Remove all pages not referenced since last page fault 
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Local Page Replacement 
• Page Fault Frequency with τ=2 
Time t | 0| 1  2  3  4  5  6  7  8  9 10 
RS     |  | c  c  d  b  c  e  c  e  a  d  
Page a | x| x  x  x  -  -  -  -  -  x  x  
Page b | -| -  -  -  x  x  x  x  x  -  -  
Page c | -| x  x  x  x  x  x  x  x  x  x 
Page d | x| x  x  x  x  x  x  x  x  -  x  
Page e | x| x  x  x  -  -  x  x  x  x  x  
IN     |  | c        b     e        a  d  
OUT    |  |          ae             bd 
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Load Control and Thrashing 
• Main issues: 

– How to choose the amount/degree of multiprogramming? 
– When level decreased, which process should be deactivated? 
– When new process reactivated,which of its pages should be 

loaded? 
– Load Control: Policy setting 

    number and type of concurrent processes 
– Thrashing: Effort moving pages 

   between main and secondary memory 
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Load Control and Thrashing 
• Choosing degree of multiprogramming 
• Local replacement: 

– Working set of any process  
must be resident 

– This automatically  
imposes a limit 

• Global replacement 
– No working set concept 
– Use CPU utilization  

as a criterion 
– With too many processes, 

 thrashing occurs             Figure 8-11 
L=mean time between faults 
S=mean page fault service time 
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Load Control and Thrashing 
• How to find Nmax? 

– L=S criterion: 
• Page fault service time S needs to keep up with 

mean time between page faults L 
– 50% criterion:  

• CPU utilization is highest when paging disk is 50% 
busy (found experimentally) 
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Load Control and Thrashing 
• Which process to deactivate 

– Lowest priority process 
– Faulting process 
– Last process activated 
– Smallest process 
– Largest process 

• Which pages to load  
when process activated 
– Prepage last resident set 

Figure 8-12 
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Evaluation of Paging 
Prepaging is important 

– Initial set can be loaded 
more efficiently than by 
individual page faults 

Figure 8-13(a) 
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Evaluation of Paging 
Page size should be small.  However, small pages need  

– Larger page tables 
– More hardware 
– Greater I/O overhead 

Figure 8-13(b) Figure 8-13(c) 
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Evaluation of Paging 
Load control is important 
 W = Minimum amount of memory to avoid thrashing. 

Figure 8-13(d) 
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History 
• Originally developed by Steve Franklin 
• Modified by Michael Dillencourt, Summer, 2007 
• Modified by Michael Dillencourt, Spring, 2009 
• Modified by Michael Dillencourt, Winter, 2010 
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