
CompSci 143A 1

Part II: Memory Management

Chapter 7: Physical Memory
Chapter 8: Virtual Memory
Chapter 9: Sharing Data and Code in Main

Memory

Spring, 2013

CompSci 143A 2

7. Physical Memory
7.1 Preparing a Program for Execution

– Program Transformations
– Logical-to-Physical Address Binding

7.2 Memory Partitioning Schemes
– Fixed Partitions
– Variable Partitions
– Buddy System

7.3 Allocation Strategies for Variable Partitions
7.4 Dealing with Insufficient Memory

Spring, 2013

CompSci 143A 3

Preparing Program for Execution
• Program Transformations

– Translation (Compilation)
– Linking
– Loading

Figure 7-1

Spring, 2013

CompSci 143A 4

Address Binding
• Assign Physical Addresses: Relocation
• Static binding

– Programming time
– Compilation time
– Linking time
– Loading time

• Dynamic binding
– Execution time

Spring, 2013

CompSci 143A 5

Static Address Binding
Static Binding = At Programming,

Compilation, Linking, and/or Loading Time

Figure 7-2

Spring, 2013

CompSci 143A 6

Dynamic Address Binding
Dynamic Binding = At Execution Time

Figure 7-4

Spring, 2013

CompSci 143A 7

Address Binding
• How to implement dynamic binding

– Perform for each address at run time:
 pa = address_map(la)

– Simplest form of address_map:

Relocation Register: pa = la + RR

– More general form:
 Page/Segment Table (Chapter 8)

Spring, 2013

CompSci 143A 8

Memory Partitioning Schemes
• Fixed Partitions

– Single-program systems: 2 partitions (OS/user)
– Multi-programmed: partitions of different sizes

• How to assign processes to partitions (cf. Fig 7-5)
– Separate queue for each partition: Some partitions may

be unused
– Single queue: More complex, but more flexible

• Limitations of fixed partitions
– Program size limited to largest partition
– Internal fragmentation (unused space within partitions)

Spring, 2013

CompSci 143A 9

Memory Partitioning Schemes
Fixed partitions:

1 queue per partition vs 1 queue for all partitions

Figure 7-5

Spring, 2013

CompSci 143A 10

Variable Partitions
• Memory not partitioned a priori
• Each request is allocated portion of free space
• Memory = Sequence of variable-size blocks

– Some are occupied, some are free (holes)
– External fragmentation occurs: memory may be

divided into many small pieces
• Adjacent holes (right, left, or both) must be

coalesced to prevent increasing fragmentation

Figure 7-6

Spring, 2013

CompSci 143A 11

Linked List Implementation 1
• Type, Size tags at the start of each Block
• Holes contain links to predecessor hole and to next hole

– Must be sorted by physical address

• Checking neighbors of released block b (= block C below):
– Right neighbor (easy): Use size of b
– Left neighbor (clever): Use sizes to find first hole to b’s right,

follow its predecessor link to first hole on b’s left, and check if it is
adjacent to b.

Figure 7-7a
Spring, 2013

CompSci 143A 12

Linked List Implementation 2
• Better solution:

Replicate tags at end of blocks (need not be sorted)
• Checking neighbors of released block b :

– Right neighbor: Use size of b as before
– Left neighbor: Check its (adjacent) type, size tags

Figure 7-7b

Spring, 2013

CompSci 143A 13

Bitmap Implementation
• Memory divided into fix-size blocks
• States of the blocks represented by a binary

string, the bitmap
– State of each block represented by a bit in the bitmap
– 0 = free, 1 = allocated

• Can be implemented as char or int array (or in
Java as a byte array)

• Operations use bit masks
– Release: & (Boolean bitwise and)
– Allocate: | (Boolean bitwise or) '
– Search for free block: Find left-most 0 bit

• Repeatedly, check left-most bit and shift mask right

Spring, 2013

CompSci 143A 14

Example
A 3 KB Free

B 2 KB Occupied

C 5 KB Occupied

D 1 KB Occupied

E 5 KB Free

00011111 11100000
Map[0] Map[1]

Assume
• Memory broken into

blocks of size 1KB
• Use array of bytes (Map)

for memory map
• Release block D:

Map[1] = Map[1] & '11011111'

• Allocate first 2 blocks of
block A:
Map[0] = Map[0] | '11000000'

Spring, 2013

CompSci 143A 15

The Buddy System
• Compromise between fixed and variable partitions
• Fixed number of possible hole sizes; typically, 2i

– Each hole can be divided (equally) into 2 buddies.
– Track holes by size on separate lists, 1 list for each partition size

• When n bytes requested, find smallest i so that n≤2i:
If hole of this size is available, allocate it
Otherwise, consider a larger hole: Recursively…

split hole into two buddies
continue with one, and place the other on appropriate free list for its size

…until smallest adequate hole is created.
Allocate this hole

On release, recursively coalesce buddies
– Buddy searching for coalescing can be inefficient

Spring, 2013

CompSci 143A 16

The Buddy System
Figure 7-9 Sizes: 1, 2, 4, 8, 16

a) 3 blocks allocated
& 3 holes left

b) Block of size 1
allocated

c) Block 12-13 released

Spring, 2013

CompSci 143A 17

Allocation Strategies with Variable Partitions
• Problem: Given a request for n bytes, find hole ≥ n
• Goals:

– Maximize memory utilization (minimize external
fragmentation)

– Minimize search time
• Search Strategies:

– First-fit: Always start at same place. Simplest.
– Next-fit: Resume search. Improves distribution of holes.
– Best-fit: Closest fit. Avoid breaking up large holes.
– Worst-fit: Largest fit. Avoid leaving tiny hole fragments

• First Fit is generally the best choice

Spring, 2013

CompSci 143A 18

Measures of Memory Utilization
• How many blocks are used, how many are holes?
• How much memory is wasted?

– Average hole size is not the same as average block size

Spring, 2013

CompSci 143A 19

Used Blocks vs. Holes
• How many blocks are used, how many are holes?

– 50% rule (Knuth, 1968):
#holes = p #full_blocks/2

• p = probability of inexact match (i.e., remaining hole)
– In practice p=1, because exact matches are highly unlikely, so

• Of the total number of (occupied) blocks and holes,
1/3 are holes

Spring, 2013

CompSci 143A 20

How much memory is unused (wasted)
• Utilization depends on the ratio
 k=hole_size/block_size
• When p=1 (p is probability of inexact match)
 unused_memory = k/(k+2)
• Intuition:

– When k→∞, unused_memory→1 (100% empty)
– When k=1, unused_memory→1/3 (50% rule)
– When k→0, unused_memory→0 (100% full)

• What determines k?
 The block size b relative to total memory size M
– Determined experimentally via simulations:

• When b≤ M/10, k=0.22 and unused_memory≈0.1
• When b=M/3, k=2 and unused_memory≈0.5

• Conclusion: M must be large relative to b

Spring, 2013

CompSci 143A 21

Dealing with Insufficient Memory
• Memory compaction

– How much and what to move?
• Swapping

– Temporarily move process to disk
– Requires dynamic relocation

• Overlays
– Allow programs large than physical memory
– Programs loaded as needed

according to calling structure.

Spring, 2013

CompSci 143A 22

Dealing with Insufficient Memory
Memory compaction

Figure 7-10

Initial Complete Partial Minimal Movement

Spring, 2013

CompSci 143A 23

Dealing with Insufficient Memory
Overlays

– Allow programs large than physical memory
– Programs loaded as needed

according to calling structure

Figure 7-11

Spring, 2013

CompSci 143A 24

History
• Originally developed by Steve Franklin
• Modified by Michael Dillencourt, Summer, 2007
• Modified by Michael Dillencourt, Spring, 2009
• Modified by Michael Dillencourt, Spring, 2013

Spring, 2013

	 �
	7. Physical Memory
	Preparing Program for Execution
	Address Binding
	Static Address Binding
	Dynamic Address Binding
	Address Binding
	Memory Partitioning Schemes
	Memory Partitioning Schemes
	Variable Partitions
	Linked List Implementation 1
	Linked List Implementation 2
	Bitmap Implementation
	Example
	The Buddy System
	The Buddy System
	Allocation Strategies with Variable Partitions
	Measures of Memory Utilization
	Used Blocks vs. Holes
	How much memory is unused (wasted)
	Dealing with Insufficient Memory
	Dealing with Insufficient Memory
	Dealing with Insufficient Memory
	Slide Number 24

