
CompSci 143a Spring, 2013 1

6. Deadlocks
6.1 Deadlocks with Reusable and Consumable Resources
6.2 Approaches to the Deadlock Problem
6.3 A System Model

– Resource Graphs
– State Transitions
– Deadlock States and Safe States

6.4 Deadlock Detection
– Reduction of Resource Graphs
– Special Cases of Deadlock Detection
– Deadlock Detection in Distributed Systems

6.5 Recovery from Deadlock
6.6 Dynamic Deadlock Avoidance

– Claim Graphs
– The Banker’s Algorithm

6.7 Deadlock Prevention

CompSci 143a Spring, 2013 2

Deadlocks
• Informal definition: Process is blocked on

resource that will never be released.
• Deadlocks waste resources
• Deadlocks are rare:

– Many systems ignore them
• Resolved by explicit user intervention

– Critical in many real-time applications
• May cause damage, endanger life

CompSci 143a Spring, 2013 3

Reusable/Consumable Resources
• Reusable Resources

– Number of units is “constant”
– Unit is either free or allocated; no sharing
– Process requests, acquires, releases units
Examples: memory, devices, files, tables

• Consumable Resources
– Number of units varies at runtime
– Process may create new units
– Process may consume units
Examples: messages, signals

CompSci 143a Spring, 2013 4

Examples of Deadlocks
p1: ... p2: ...
 open(f1,w); open(f2,w);
 open(f2,w); open(f1,w);

• Deadlock when executed concurrently

p1: if (C) send(p2,m); p2: ...
 while(1){... while(1){...
 recv(p2,m); recv(p1,m);
 send(p2,m); send(p1,m);
 ... } ... }
• Deadlock when C not true

CompSci 143a Spring, 2013 5

Deadlock, Livelock, Starvation
• Deadlock: Processes are blocked
• Livelock: Processes run but make no progress
• Both deadlock and livelock lead to starvation
• Starvation may have other causes

– ML scheduling where one queue is never empty
– Memory requests: unbounded stream of 100MB

requests may starve a 200MB request

CompSci 143a Spring, 2013 6

Approaches to Deadlock Problem
1. Detection and Recovery

– Allow deadlock to happen and eliminate it
2. Avoidance (dynamic)

– Runtime checks disallow allocations
that might lead to deadlocks

3. Prevention (static)
Restrict type of request and acquisition

to make deadlock impossible

CompSci 143a Spring, 2013 7

System Model for Deadlock
Detection, Avoidance, etc.

• Assumptions:
– When a process requests a resource, either the request is

fully granted or the process blocks
– No partial allocation
– A process can only release resources that it holds

• Resource graph:
– Vertices are processes, resources, resource units
– Edges (directed) represent requests and allocations of

resources

CompSci 143a Spring, 2013 8

System Model: Resource Graph
Resource graph:

Process = Circle
Resource = Rectangle with small circles for each unit
Request = Edge from process to resource class
Allocation = Edge from resource unit to process

Figure 6-1

CompSci 143a Spring, 2013 9

System Model: State Transitions
Request: Create new request edge pi→Rj

– pi has no outstanding requests
– number of edges between pi and Rj cannot exceed

total units of Rj

Acquisition: Reverse request edge to pi←Rj
– All requests of pi are satisfiable
– pi has no outstanding requests

Release: Remove edge pi←Rj

Figure 6-2

CompSci 143a Spring, 2013 10

System Model
• A process is blocked in state S if it cannot

request, acquire, or release any resource.
• A process is deadlocked in state S if it is

currently blocked now and remains blocked
in all states reachable from state S

• A state is a deadlock state if it contains a
deadlocked process.

• State S is a safe state if no deadlock state
can be reached from S by any sequence of
request, acquire, release.

CompSci 143a Spring, 2013 11

Example
2 processes p1 , p2; 2 resources R1, R2,
• p1 and p2 both need R1 and R2
• p1 requests R1 before R2 and releases R2 before R1
• p2 requests R2 before R1 and releases R1 before R2

Figure 6-3: Transitions by p1 only

CompSci 143a Spring, 2013 12

Example
• p1 and p2 both need

R1 and R2
• p1

requests R1 before R2
and
releases R2 before R1

• p2
requests R2 before R1
and
releases R1 before R2

Figure 6-4: Transitions by p1 and p2

CompSci 143a Spring, 2013 13

Deadlock Detection
• Graph Reduction: Repeat the following

1. Select unblocked process p
2. Remove p and all request and allocation edges

• Deadlock ⇔ Graph not completely reducible.
• All reduction sequences lead to the same result.

Figure 6-5

CompSci 143a Spring, 2013 14

Special Cases of Detection
• Testing for whether a specific process p is

deadlocked:
– Reduce until p is removed or graph irreducible

• Continuous detection:
1. Current state not deadlocked
2. Next state T deadlocked only if:

a. Operation was a request by p and
b. p is deadlocked in T

3. Try to reduce T by p

CompSci 143a Spring, 2013 15

Special Cases of Detection
• Immediate allocations

– All satisfiable requests granted immediately
– Expedient state: state with no satisfiable request

edges
– If all requests are granted immediately, all

states are expedient.

Not expedient (p1->R1)

CompSci 143a Spring, 2013 16

Special Cases of Detection
• Immediate allocations, continued.

– Knot : A set K of nodes such that
• Every node in K reachable from any other node in K
• No outgoing edges from any node in K

– Knot in expedient state ⇒ Deadlock :
– Reason:

• All processes in K must have outstanding requests
• Expedient state means requests not satisfiable

(Remove R2->p1: knot R2,p3,R3,p5)
(Reverse edge p1->R1): expedient state

CompSci 143a Spring, 2013 17

Special Cases of Detection
• For single-unit resources, cycle ⇒ deadlock

– Every p must have a request edge to R
– Every R must have an allocation edge to p
– R is not available and thus p is blocked

• Wait-For Graph (wfg): Show only processes
– Replace p1→R→ p2 by p1 → p2 : p1 waits for p2

Figure 6-6

CompSci 143a Spring, 2013 18

Deadlock detection in Distributed Systems
• Central Coordinator (CC)

– Each machine maintains a
local wfg

– Changes reported to CC
– CC constructs and

analyzes global wfg
• Problems

– Coordinator is a
performance bottleneck

– Communication delays
may cause phantom
deadlocks

Figure 6-7

CompSci 143a Spring, 2013 19

Detection in Distributed Systems
• Distributed Approach

– Detect cycles using probes.
– If process pi blocked on pj , it launches probe pi → pj
– pj sends probe pi → pj → pk along all request edges, etc.
– When probe returns to pi, cycle is detected

Figure 6-8

CompSci 143a Spring, 2013 20

Recovery from Deadlock
• Process termination

– Kill all processes involved in deadlock; or
– Kill one at a time. In what order?

• By priority: consistent with scheduling
• By cost of restart: length of recomputation
• By impact on other processes: CS, producer/consumer

• Resource preemption
– Direct: Temporarily remove resource (e.g., Memory)
– Indirect: Rollback to earlier “checkpoint”

CompSci 143a Spring, 2013 21

Dynamic Deadlock Avoidance
• Maximum Claim Graph

– Process indicates
maximum resources needed

– Potential request edge
pi→Rj (dashed)

– May turn into
real request edge

Figure 6-9

CompSci 143a Spring, 2013 22

Dynamic Deadlock Avoidance
• Theorem: Prevent acquisitions that do not produce a

completely reducible graph
⇒ All state are safe.

• Banker’s algorithm (Dijkstra):
– Given a satisfiable request, p→R, temporarily grant request,

changing p→R to R→p
– Try to reduce new claim graph, treating claim edges as actual

requests.
– If new claim graph is completely reducible proceed. If not, reverse

temporary acquisition R→p back to p→R

• Analogy with banking: resources correspond to currencies,
allocations correspond to loans, maximum claims
correspond to credit limits

CompSci 143a Spring, 2013 23

Example of banker’s algorithm

• Claim graph (a). Which
requests for R1 can safely
be granted?

• If p1’s request is granted,
resulting claim graph (b)
is reducible (p1,p3,p2).

• If p2’s request is granted,
resulting claim graph (c)
is not reducible.

• Exercise: what about p3’s
request?

Figure 6-10

CompSci 143a Spring, 2013 24

Dynamic Deadlock Avoidance
• Special Case: Single-unit resources

– Check for cycles after tentative acquisition
Disallow if cycle is found (cf. Fig 6-11(a))

– If claim graph contains no undirected cycles,
all states are safe (cf. Fig 6-11(b))
(Because no directed cycle can ever be formed.)

Figure 6-11

CompSci 143a Spring, 2013 25

Deadlock Avoidance – Another Approach
• Restrict waits to avoid “wait for” cycles.
• Each process has timestamp. Ensure that either

– Younger process never waits for older process; or
– Older process never waits for younger process

• When process R requests resource that process H
holds (two variants)

1. Wait/die algorithm: (Younger process never waits)
• If R is older than H, R waits
• If R is younger than H it dies, restarts

2. Wound/wait algorithm: (Older process never waits)
• If R is older than H, resources is preempted (which may

mean process is killed, restarted)
• If R is younger than H, R waits

• Restarted process keeps old timestamp

Comparison of deadlock avoidance
schemes

• Wound/wait and wait/die kill processes
even when there is no deadlock (more
aggressive).

• Wait/die generally kills more processes than
wound/wait, but generally at an earlier stage

• Note: Wait/die and Wound/wait are
sometimes classified as prevention schemes
rather than avoidance schemes

CompSci 143a Spring, 2013 26

CompSci 143a Spring, 2013 27

Deadlock Prevention
• Deadlock requires the following conditions:

– Mutual exclusion:
• Resources not sharable

– Hold and wait:
• Process must be holding one resource

while requesting another
– Circular wait:

• At least 2 processes must be
blocked on each other

CompSci 143a Spring, 2013 28

Deadlock Prevention
• Eliminate mutual exclusion:

– Not possible in most cases
– Spooling makes I/O devices sharable

• Eliminate hold-and-wait
– Request all resources at once
– Release all resources before a new request
– Release all resources if current request blocks

• Eliminate circular wait
– Order all resources: SEQ(Ri) ≠ SEQ(Rj)
– Process must request in ascending order

CompSci 143a Spring, 2013 29

History
• Originally developed by Steve Franklin
• Modified by Michael Dillencourt, Summer, 2007
• Modified by Michael Dillencourt, Spring, 2009
• Modified by Michael Dillencourt, Winter, 2010

	6. Deadlocks
	Deadlocks
	Reusable/Consumable Resources
	Examples of Deadlocks
	Deadlock, Livelock, Starvation
	Approaches to Deadlock Problem
	System Model for Deadlock Detection, Avoidance, etc.
	System Model: Resource Graph
	System Model: State Transitions
	System Model
	Example
	Example
	Deadlock Detection
	Special Cases of Detection
	Special Cases of Detection
	Special Cases of Detection
	Special Cases of Detection
	Deadlock detection in Distributed Systems
	Detection in Distributed Systems
	Recovery from Deadlock
	Dynamic Deadlock Avoidance
	Dynamic Deadlock Avoidance
	Example of banker’s algorithm
	Dynamic Deadlock Avoidance
	Deadlock Avoidance – Another Approach
	Comparison of deadlock avoidance schemes
	Deadlock Prevention
	Deadlock Prevention
	Slide Number 29

