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Deadlocks 
• Informal definition: Process is blocked on 

resource that will never be released. 
• Deadlocks waste resources 
• Deadlocks are rare: 

– Many systems ignore them  
• Resolved by explicit user intervention 

– Critical in many real-time applications 
• May cause damage, endanger life 
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Reusable/Consumable Resources 
• Reusable Resources 

– Number of units is “constant” 
– Unit is either free or allocated; no sharing 
– Process requests, acquires, releases units 
Examples: memory, devices, files, tables 

• Consumable Resources 
– Number of units varies at runtime 
– Process may create new units 
– Process may consume units 
Examples: messages, signals 
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Examples of Deadlocks 
p1: ...                            p2: ... 
    open(f1,w);                     open(f2,w); 
    open(f2,w);                     open(f1,w); 
  ...                                     ... 
• Deadlock when executed concurrently 
 
p1: if (C) send(p2,m);      p2: ... 
      while(1){...                      while(1){... 
         recv(p2,m);                     recv(p1,m); 
         send(p2,m);                    send(p1,m); 
         ... }                                   ... } 
• Deadlock when C not true 
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Deadlock, Livelock, Starvation 
• Deadlock: Processes are blocked 
• Livelock: Processes run but make no progress 
• Both deadlock and livelock lead to starvation 
• Starvation may have other causes 

– ML scheduling where one queue is never empty 
– Memory requests: unbounded stream of 100MB 

requests may starve a 200MB request 
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Approaches to Deadlock Problem 
1. Detection and Recovery 

– Allow deadlock to happen and eliminate it 
2. Avoidance (dynamic) 

– Runtime checks disallow allocations 
that might lead to deadlocks 

3. Prevention (static) 
Restrict type of request and acquisition 

to make deadlock impossible 
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System Model for Deadlock 
Detection, Avoidance, etc. 

• Assumptions: 
– When a process requests a resource, either the request is 

fully granted or the process blocks 
– No partial allocation 
– A process can only release resources that it holds 

• Resource graph: 
– Vertices are processes, resources, resource units 
– Edges (directed) represent requests and allocations of 

resources 
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System Model: Resource Graph 
Resource graph: 

Process = Circle 
Resource = Rectangle with small circles for each unit 
Request = Edge from process to resource class 
Allocation = Edge from resource unit to process 

Figure 6-1 
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System Model: State Transitions 
Request: Create new request edge pi→Rj 

– pi has no outstanding requests 
– number of edges between pi and Rj  cannot exceed  

total units of Rj 

Acquisition: Reverse request edge to pi←Rj 
– All requests of pi are satisfiable 
– pi has no outstanding requests  

Release: Remove edge pi←Rj 

 

Figure 6-2 
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System Model 
• A process is blocked in state S if it  cannot 

request, acquire, or release any resource. 
• A process is deadlocked in state S if it is 

currently blocked now and remains blocked 
in all states reachable from state S 

• A state is a deadlock state  if it contains a 
deadlocked process. 

• State S is a safe state  if no deadlock state 
can be reached from S by any sequence of 
request, acquire, release. 
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Example 
2 processes p1 , p2; 2 resources R1, R2, 
• p1 and p2 both need R1 and R2  
• p1 requests R1 before R2 and releases R2 before R1  
• p2 requests R2 before R1 and releases R1 before R2 
 

Figure 6-3: Transitions by p1 only 
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Example 
• p1 and p2 both need  

R1 and R2 
• p1  

requests R1 before R2  
and  
releases R2 before R1  
 

• p2  
requests R2 before R1  
and  
releases R1 before R2 

 
Figure 6-4: Transitions by p1 and p2 
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Deadlock Detection 
• Graph Reduction: Repeat the following 

1. Select unblocked process p 
2. Remove p and all request and allocation edges 

• Deadlock ⇔ Graph not completely reducible. 
• All reduction sequences lead to the same result. 

Figure 6-5 
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Special Cases of Detection 
• Testing for whether a specific process p is 

deadlocked: 
– Reduce until p is removed or graph irreducible 

• Continuous detection: 
1. Current state not deadlocked 
2. Next state T deadlocked only if: 

a.  Operation was a request by p  and 
b.  p is deadlocked in T 

3. Try to reduce T by p 
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Special Cases of Detection 
• Immediate allocations 

– All satisfiable requests granted immediately 
– Expedient state: state with no satisfiable request 

edges 
– If all requests are granted immediately, all 

states are expedient. 
 
 
 
Not expedient (p1->R1) 
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Special Cases of Detection 
• Immediate allocations, continued. 

– Knot : A set K of nodes such that 
• Every node in K reachable from any other node in K 
• No outgoing edges from any node in K 

– Knot in expedient state ⇒ Deadlock : 
– Reason: 

• All processes in K must have outstanding requests  
• Expedient state means requests not satisfiable 

 
(Remove R2->p1: knot R2,p3,R3,p5) 
(Reverse edge p1->R1): expedient state 
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Special Cases of Detection 
• For single-unit resources, cycle ⇒ deadlock 

– Every p must have a request edge to R 
– Every R must have an allocation edge to p 
– R is not available and thus p is blocked  

• Wait-For Graph (wfg): Show only processes 
– Replace p1→R→ p2 by p1 → p2 :   p1 waits for p2 

Figure 6-6 
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Deadlock detection in Distributed Systems 
• Central Coordinator (CC) 

– Each machine maintains a 
local wfg 

– Changes reported to CC 
– CC constructs and 

analyzes global wfg 
• Problems 

– Coordinator is a 
performance bottleneck 

– Communication delays 
may cause phantom 
deadlocks 

Figure 6-7 
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Detection in Distributed Systems 
• Distributed Approach 

– Detect cycles using probes. 
– If process pi blocked on pj , it launches probe pi → pj 
– pj sends probe pi → pj → pk along all request edges, etc. 
– When probe returns to pi, cycle is detected 

Figure 6-8 
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Recovery from Deadlock 
• Process termination 

– Kill all processes involved in deadlock; or 
– Kill one at a time.  In what order? 

• By priority: consistent with scheduling    
• By cost of restart: length of recomputation  
• By impact on other processes: CS, producer/consumer 

• Resource preemption 
– Direct: Temporarily remove resource (e.g., Memory) 
– Indirect: Rollback to earlier “checkpoint” 
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Dynamic Deadlock Avoidance 
• Maximum Claim Graph 

– Process indicates 
maximum resources needed 

– Potential request edge 
pi→Rj (dashed) 

– May turn into 
real request edge 

Figure 6-9 
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Dynamic Deadlock Avoidance 
• Theorem: Prevent acquisitions that do not produce a 

completely reducible graph 
⇒ All state are safe. 

• Banker’s algorithm (Dijkstra): 
– Given a satisfiable request, p→R, temporarily grant request, 

changing p→R to R→p 
– Try to reduce new claim graph, treating claim edges as actual 

requests. 
– If new claim graph is completely reducible proceed.  If not, reverse 

temporary acquisition R→p back to p→R 

• Analogy with banking: resources correspond to currencies, 
allocations correspond to loans, maximum claims 
correspond to credit limits 



CompSci 143a Spring, 2013 23 

Example of banker’s algorithm 

• Claim graph (a).  Which 
requests for R1 can safely 
be granted? 

• If p1’s request is granted, 
resulting claim graph (b) 
is reducible (p1,p3,p2).   

• If p2’s request is granted, 
resulting claim graph (c) 
is not reducible. 

• Exercise: what about p3’s 
request? 

Figure 6-10 
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Dynamic Deadlock Avoidance 
• Special Case: Single-unit resources 

– Check for cycles after tentative acquisition 
Disallow if cycle is found  (cf. Fig 6-11(a)) 

– If claim graph contains no undirected cycles, 
all states are safe (cf. Fig 6-11(b)) 
(Because no directed cycle can ever be formed.) 
 

Figure 6-11 
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Deadlock Avoidance – Another Approach 
• Restrict waits to avoid “wait for” cycles. 
• Each process has timestamp.  Ensure that either 

– Younger process never waits for older process; or 
– Older process never waits for younger process 

• When process R requests resource that process H 
holds (two variants) 

1. Wait/die algorithm: (Younger process never waits) 
• If R is older than H, R waits 
• If R is younger than H it dies, restarts 

2. Wound/wait algorithm: (Older process never waits) 
• If R is older than H, resources is preempted (which may 

mean process is killed, restarted) 
• If R is younger than H, R waits 

• Restarted process keeps old timestamp 
 



Comparison of deadlock avoidance 
schemes 

• Wound/wait and wait/die kill processes 
even when there is no deadlock (more 
aggressive).   

• Wait/die generally kills more processes than 
wound/wait, but generally at an earlier stage 

• Note: Wait/die and Wound/wait are 
sometimes classified as prevention schemes 
rather than avoidance schemes 
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Deadlock Prevention 
• Deadlock requires the following conditions: 

– Mutual exclusion:  
• Resources not sharable 

– Hold and wait:  
• Process must be holding one resource 

while requesting another 
– Circular wait: 

• At least 2 processes must be 
blocked on each other 
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Deadlock Prevention 
• Eliminate mutual exclusion:  

– Not possible in most cases 
– Spooling makes I/O devices sharable 

• Eliminate hold-and-wait  
– Request all resources at once 
– Release all resources before a new request 
– Release all resources if current request blocks 

• Eliminate circular wait 
– Order all resources: SEQ(Ri) ≠ SEQ(Rj) 
– Process must request in ascending order 
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History 
• Originally developed by Steve Franklin 
• Modified by Michael Dillencourt, Summer, 2007 
• Modified by Michael Dillencourt, Spring, 2009 
• Modified by Michael Dillencourt, Winter, 2010 
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