
CompSci 143A 1

5. Process and thread scheduling
5.1 Organization of Schedulers

– Embedded and Autonomous Schedulers
– Priority Scheduling

5.2 Scheduling Methods
– A Framework for Scheduling
– Common Scheduling Algorithms
– Comparison of Methods

5.3 Priority Inversion
5.4 Multiprocessor and Distributed Scheduling

Spring, 2013

CompSci 143A 2

Process and Thread Scheduling
• Process scheduling

– Long term scheduling
– Move process to Ready List (RL) after creation

(When and in which order?)
• Dispatching

– Short term scheduling
– Select process from Ready List to run

• We use the term scheduling to refer to both

Spring, 2013

CompSci 143A 3

Organization of Schedulers
• Embedded

– Called as function at end
of kernel call

– Runs as part of calling
process

• Autonomous
– Separate process
– May have dedicated CPU

on a multiprocessor
– On single-processor,

run at every quantum:
scheduler and other
processes alternate Figure 5-1

Spring, 2013

CompSci 143A 4

Priority Scheduling
• Priority function returns numerical value P

for process p: P = Priority(p)
– Static priority: unchanged for lifetime of p
– Dynamic priority: changes at runtime

• Priority divides processes into levels
– implemented as multi-level Run List
– p at RL[i] run before q at RL[j] if i>j
– p, q at same level are ordered by other criteria

Spring, 2013

CompSci 143A 5

An Embedded Scheduler
Scheduler()
{
 do {
 Find highest priority process p with p.status == ready_a;
 Find a free cpu;
 if (cpu != NIL) Allocate_CPU(p,cpu);
 } while (cpu != NIL);
 do {
 Find highest priority process p with p.status == ready_a;
 Find lowest priority process q with p.status == running;
 if (Priority(p) > Priority(q)) Preempt(p,q);
 } while (Priority(p) > Priority(q));
 if (self->Status.Type!=’running’) Preempt(p,self);
}

Spring, 2013

CompSci 143A 6

Scheduling Methods
• When is scheduler invoked?

– Decision mode
• Preemptive: scheduler called periodically

(quantum-oriented) or when system state changes
• Nonpreemptive: scheduler called when process terminates

or blocks

• How does it select highest priority process?
– Priority function: P = Priority(p)

• Some common choices on next few slides
– Arbitration rule for breaking ties

• Random
• Chronological (First In First Out = FIFO)
• Cyclic (Round Robin = RR)

Spring, 2013

CompSci 143A 7

Priority function Parameters
• Possible parameters:

– Attained service time (a)
– Real time in system (r)
– Total service time (t)
– Period (d)
– Deadline (explicit or implied by period)
– External priority (e)
– Memory requirements (mostly for batch)
– System load (not process-specific)

Spring, 2013

CompSci 143A 8

Some Priority functions
• First in/First out (FIFO)
• Shortest Job First (SJF)
• Shortest Remaining Time (SRT)
• Round Robin (RR)
• Multi-Level (ML)

Spring, 2013

CompSci 143A 9

Scheduling algorithms
Name, Decision mode, Priority, Arbitration
FIFO: nonpreemptive P = r random
SJF: nonpreemptive P = –t chronological/random
SRT: preemptive P = –(t–a) chronological/random
RR: preemptive P = 0 cyclic
ML: preemptive P = e cyclic
 nonpreemptive P = e chronological

• n fixed priority levels
• level P is serviced when n through P+1 empty

Spring, 2013

CompSci 143A 10

MLF (Multilevel Feedback)
• Like ML, but priority

changes dynamically
• Every process enters at

highest level n
• Each level P prescribes

maximum time tP

• tP increases as P decreases
• Typically:

tn = T (a constant)
tP = 2 × tP+1

Figure 5-3

Spring, 2013

CompSci 143A 11

Scheduling algorithms
MLF priority function:

Find P = n–i for given a:
 priority attained time
 n a<T
 n–1 a<T+2T
 n–2 a<T+2T+4T

 n–i a<(2i+1–1)T
• Find smallest i such that a<(2i+1–1)T:
• Solve for i: i = log2(a/T+1) 
• P = n–i = n– log2(a/T+1)

Spring, 2013

CompSci 143A 12

Scheduling Algorithms
Rate Monotonic (RM):

– Intended for periodic (real-time) processes
– Preemptive
– Highest priority: shortest period: P = –d

Earliest Deadline First (EDF):
– Intended for periodic (real-time) processes
– Preemptive
– Highest priority: shortest time to next deadline

• r ÷ d number of completed periods
• r % d time in current period
• d – r % d time remaining in current period
• P = –(d – r % d) priority function

Spring, 2013

CompSci 143A 13

Comparison of Methods
• FIFO, SJF, SRT: Primarily for batch systems

– FIFO simplest
– SJF & SRT have better average turnaround times:

(r1+r2+…+rn)/n

Average turnaround times:

FIFO: ((0+5) + (3+2))/2 = 5.0

SRT: ((2+5) + (0+2))/2 = 4.5

Figure 5-2

Spring, 2013

CompSci 143A 14

Comparison of Methods
• Time-sharing systems

– Response time is critical
– RR or MLF with RR within each queue are

suitable
– Choice of quantum determines overhead

• When q → ∞, RR approaches FIFO
• When q → 0, context switch overhead → 100%
• When q is much greater than context switch

overhead, n processes run concurrently at 1/n
CPU speed

Spring, 2013

CompSci 143A 15

Comparison of Methods
• Real-time systems

– Feasible: All deadlines are met
– CPU utilization is defined as: U=∑ ti/di

– If schedule is feasible, U ≤ 1
– EDF always yields feasible schedule provided

U ≤ 1.
– RM yields feasible schedule if U is not too big
 (no more than approximately 0.7). Otherwise,

it may fail.

Spring, 2013

CompSci 143A 16

Example where RM fails
• Process p1 has service time 1.5, period 4
• Process p2 has service time 3, period 5
• U=(1.5/4) +3/5=.975 < 1
• RM fails

Figure 5-9

Spring, 2013

CompSci 143A 17

Priority Inversion Problem

• Assume priority order p1>p2>p3
• p3 enters CS; p2 preempts p3; p1 preempts p2; p1 blocks on CS
• Effect: process p2, unrelated to p1 and of lower priority, may

delay p1 indefinitely.
• Note: problem is not simply that p1 blocks. This is unavoidable.

The problem is that p1 is waiting on p2.
• Problem would not occur if p3 in CS had priority greater than p2

Figure 5-10

Spring, 2013

CompSci 143A 18

Priority Inversion Problem
• Naïve “solution”: Always run CS at priority of

highest process that shares the CS.
• Problem: p1 cannot interrupt a lower-priority

process inside its CS even if p1 is not trying to
enter its CS. This is a different form of priority
inversion.

• Better solution: “Dynamic Priority Inheritance”…

Spring, 2013

CompSci 143A 19

Priority Inversion Problem
Dynamic Priority Inheritance:
• When p3 is in its CS and p1 attempts to enter its

CS…
– p3 inherits p1’s (higher) priority for the duration

of CS

Figure 5-11

Spring, 2013

CompSci 143A 20

Multiprocessor and Distributed Scheduling

• Two Principle approaches
– Single Scheduler

• All processors are in the same resource pool
• Any process can be allocated to any processor

– Multiple Schedulers
• Processors are divided into sets of separately schedule

machines, each with its own scheduler
• Each process is permanently preallocated to a particular

group
• Useful when different processors have different

characteristics and functions

• Key problem: load balancing
– Evenly distributing load over multiple machines

Spring, 2013

History
• Originally developed by Steve Franklin
• Modified by Michael Dillencourt, Summer, 2007
• Modified by Michael Dillencourt, Spring, 2009

CompSci 143A 21 Spring, 2013

	5. Process and thread scheduling
	Process and Thread Scheduling
	Organization of Schedulers
	Priority Scheduling
	An Embedded Scheduler
	Scheduling Methods
	Priority function Parameters
	Some Priority functions
	Scheduling algorithms
	MLF (Multilevel Feedback)
	Scheduling algorithms
	Scheduling Algorithms
	Comparison of Methods
	Comparison of Methods
	Comparison of Methods
	Example where RM fails
	Priority Inversion Problem
	Priority Inversion Problem
	Priority Inversion Problem
	Multiprocessor and Distributed Scheduling
	

