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5. Process and thread scheduling 
5.1 Organization of Schedulers  

–   Embedded and Autonomous Schedulers  
–   Priority Scheduling  

5.2 Scheduling Methods  
–   A Framework for Scheduling  
–   Common Scheduling Algorithms  
–   Comparison of Methods  

5.3 Priority Inversion  
5.4 Multiprocessor and Distributed Scheduling  
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Process and Thread Scheduling 
• Process scheduling 

– Long term scheduling 
– Move process to Ready List (RL) after creation 

(When and in which order?) 
• Dispatching 

– Short term scheduling 
– Select process from Ready List to run 

• We use the term scheduling to refer to both 
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Organization of Schedulers 
• Embedded 

– Called as function at end 
of kernel call 

– Runs as part of calling 
process 

• Autonomous 
– Separate process 
– May have dedicated CPU 

on a multiprocessor 
– On single-processor, 

run at every quantum: 
scheduler and other 
processes alternate Figure 5-1 

Spring, 2013 



CompSci 143A 4 

Priority Scheduling 
• Priority function returns numerical value P 

for process p:   P = Priority(p) 
– Static priority: unchanged for lifetime of p 
– Dynamic priority: changes at runtime 

• Priority divides processes into levels 
– implemented as multi-level Run List 
– p at RL[i] run before q at RL[j] if i>j 
– p, q at same level are ordered by other criteria 
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An Embedded Scheduler 
Scheduler()  
{  
   do {   
      Find highest priority process p with p.status == ready_a;   
      Find a free cpu;   
      if (cpu != NIL) Allocate_CPU(p,cpu);   
   } while (cpu != NIL);   
   do {   
      Find highest priority process p with p.status == ready_a;  
      Find lowest priority process q with p.status == running;  
      if (Priority(p) > Priority(q)) Preempt(p,q);  
   } while (Priority(p) > Priority(q)); 
   if (self->Status.Type!=’running’) Preempt(p,self);  
} 
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Scheduling Methods 
• When is scheduler invoked? 

– Decision mode 
• Preemptive: scheduler called periodically 

(quantum-oriented) or when system state changes 
• Nonpreemptive: scheduler called when process terminates 

or blocks 

• How does it select highest priority process? 
– Priority function: P = Priority(p) 

• Some common choices on next few slides 
– Arbitration rule for breaking ties  

• Random 
• Chronological (First In First Out = FIFO) 
• Cyclic (Round Robin = RR) 
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Priority function Parameters 
• Possible parameters: 

– Attained service time (a) 
– Real time in system (r) 
– Total service time (t) 
– Period (d) 
– Deadline (explicit or implied by period) 
– External priority (e) 
– Memory requirements (mostly for batch) 
– System load (not process-specific) 
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Some Priority functions 
• First in/First out (FIFO) 
• Shortest Job First (SJF) 
• Shortest Remaining Time (SRT) 
• Round Robin (RR) 
• Multi-Level (ML) 
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Scheduling algorithms 
Name, Decision mode, Priority,   Arbitration 
FIFO:  nonpreemptive  P = r      random 
SJF:  nonpreemptive  P = –t     chronological/random 
SRT:  preemptive        P = –(t–a) chronological/random 
RR:  preemptive        P = 0      cyclic 
ML:    preemptive        P = e      cyclic 
  nonpreemptive   P = e      chronological 

• n fixed priority levels 
• level P is serviced when n through P+1 empty  
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MLF (Multilevel Feedback) 
• Like ML, but priority 

changes dynamically 
• Every process enters at 

highest level n 
• Each level P prescribes 

maximum time tP 

• tP increases as P decreases 
• Typically:  

tn = T       (a constant) 
tP   = 2 × tP+1  

 

Figure 5-3 
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Scheduling algorithms 
MLF priority function:  

Find P = n–i for given a:  
  priority     attained time 
  n  a<T 
  n–1   a<T+2T 
  n–2   a<T+2T+4T 
  . . .   . . . 
  n–i   a<(2i+1–1)T 
• Find smallest i such that a<(2i+1–1)T: 
• Solve for i:   i = log2(a/T+1)  
• P = n–i = n– log2(a/T+1) 
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Scheduling Algorithms 
Rate Monotonic (RM):  

– Intended for periodic (real-time) processes 
– Preemptive  
– Highest priority: shortest period:  P = –d 

Earliest Deadline First (EDF): 
– Intended for periodic (real-time) processes 
– Preemptive  
– Highest priority: shortest time to next deadline 

• r ÷ d                  number of completed periods 
• r % d             time in current period 
• d – r % d             time remaining in current period 
• P = –(d – r % d)   priority function 
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Comparison of Methods 
• FIFO, SJF, SRT: Primarily for batch systems 

– FIFO simplest 
– SJF & SRT have better average turnaround times: 

(r1+r2+…+rn)/n 
  

Average turnaround times: 

FIFO: ((0+5) + (3+2))/2 = 5.0 

SRT:  ((2+5) + (0+2))/2 = 4.5 

Figure 5-2 
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Comparison of Methods 
• Time-sharing systems 

– Response time is critical 
– RR or MLF with RR within each queue are 

suitable 
– Choice of quantum determines overhead 

• When q → ∞, RR approaches FIFO 
• When q → 0, context switch overhead → 100% 
• When q  is much greater than context switch 

overhead, n processes run concurrently at 1/n 
CPU speed 
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Comparison of Methods 
• Real-time systems 

– Feasible:  All deadlines are met 
– CPU utilization is defined as: U=∑ ti/di 

– If schedule is feasible, U ≤ 1 
– EDF always yields feasible schedule provided 

U ≤ 1. 
– RM yields feasible schedule if U is not too big 
 (no more than approximately 0.7).  Otherwise, 

it may fail. 
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Example where RM fails 
• Process p1 has service time 1.5, period 4 
• Process p2 has service time 3, period 5 
• U=(1.5/4) +3/5=.975 < 1 
• RM fails 

Figure 5-9 
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Priority Inversion Problem 

• Assume priority order  p1>p2>p3 
• p3 enters CS; p2 preempts p3; p1 preempts p2; p1 blocks on CS  
• Effect: process p2, unrelated to p1 and of lower priority, may 

delay p1 indefinitely. 
• Note: problem is not simply that p1 blocks.  This is unavoidable.  

The problem is that p1 is waiting on p2. 
• Problem would not occur if p3 in CS had priority greater than p2 

Figure 5-10 
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Priority Inversion Problem 
• Naïve “solution”: Always run CS at priority of 

highest process that shares the CS. 
• Problem: p1 cannot interrupt a lower-priority 

process inside its CS even if p1 is not trying to 
enter its CS.  This is  a different form of priority 
inversion. 

• Better solution: “Dynamic Priority Inheritance”… 
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Priority Inversion Problem 
Dynamic Priority Inheritance: 
• When p3 is in its CS and p1 attempts to enter its 

CS… 
– p3 inherits p1’s (higher) priority for the duration 

of CS 

Figure 5-11 
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Multiprocessor and Distributed Scheduling 

• Two Principle approaches 
– Single Scheduler 

• All processors are in the same resource pool 
• Any process can be allocated to any processor 

– Multiple Schedulers 
• Processors are divided into sets of separately schedule 

machines, each with its own scheduler 
• Each process is permanently preallocated to a particular 

group 
• Useful when different processors have different 

characteristics and functions 

• Key problem: load balancing  
– Evenly distributing load over multiple machines 

Spring, 2013 



  
History 
• Originally developed by Steve Franklin 
• Modified by Michael Dillencourt, Summer, 2007 
• Modified by Michael Dillencourt, Spring, 2009 
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