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4. The OS Kernel 
4.1 Kernel Definitions and Objects 
4.2 Queue Structures 
4.3 Threads 
4.4 Implementing Processes and Threads 

– Process and Thread Descriptors 
– Implementing the Operations 

4.5 Implementing Synchronization and Communication 
Mechanisms 
– Requesting and Releasing Resources 
– Semaphores and Locks 
– Building Monitor Primitives 
– Clock and Time Management 
– Communications Kernel 

4.6 Interrupt Handling 
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Kernel Definitions and Objects 
• Basic set of objects, primitives,  

data structures, processes 
• Rest of OS is built on top of kernel 
• Kernel defines/provides mechanisms 

to implement various policies 
– Process and thread management 
– Interrupt and trap handling 
– Resource management 
– Input/output 
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Queue Structures 
• OS needs many different queues 
• Single-level queues 

– Implemented as array 
• Fixed size 
• Efficient for simple FIFO operations 

– Implemented as linked list 
• Unbounded size 
• More overhead, but more flexible operations 
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Queues 
• Multi-level queues (priority queues) 

– Support multiple priority levels 
– Implemented as multiple single-level queues 
– Implemented as heap 
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Priority Queues: Multiple queues 

Figure 4-3(a) 
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Priority Queues: Binary Heap 

Figure 4-3(b) 
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Processes and threads 
• Process has one or more threads 
• All threads in a process share: 

– Memory space 
– Other resources 

• Each thread has its own: 
– CPU state 

(registers, program counter) 
– Stack 

• Implemented in user space or 
kernel space 

• Threads are efficient, but lack 
protection from each other 

Figure 4-4 
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Process status types 
Running / Ready / Blocked 
• Running: the process is currently running on a 

processor 
• Ready: the process is ready to run, waiting for a 

processor 
• Blocked: the process cannot proceed until it is 

granted a particular resource (e.g., a lock, a file, a 
semaphore, a message, …) 

Active / Suspended 
• Internal process may suspend other processes to 

examine or modify their state (e.g., prevent 
deadlock, detect runaway process, swap the 
process out of memory…) 
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Implementing Processes and Threads 
• Process Control Block 

(PCB) 
– State Vector = Information 

necessary to run process p 
– Status 

• Basic types: Running, 
     Ready, Blocked 

• Additional types: 
– Ready_active, 

 Ready_suspended 
– Blocked_active, 

 Blocked_suspended 
 

Figure 4-5 
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Implementing Processes and Threads 
• State Transition Diagram 

Figure 4-6 
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Process Operations: Create 
Create(s0, m0, pi, pid)  
{   
    p = Get_New_PCB();  pid = Get_New_PID();    
    p->ID = pid;        p->CPU_State = s0;   
    p->Memory = m0;     p->Priority = pi;    
    p->Status.Type = ’ready_s’;  
    p->Status.List = RL;   
    p->Creation_Tree.Parent = self;   
    p->Creation_Tree.Child = NULL;   
    insert(self-> Creation_Tree.Child, p);   
    insert(RL, p); 
    Scheduler();  
 }  
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Process Operations: Suspend 
Suspend(pid)  
{   
   p = Get_PCB(pid);   
   s = p->Status.Type;   
   if ((s==’blocked_a’)||(s==’blocked_s’)) 
      p->Status.Type = ’blocked_s’; 
   else p->Status.Type = ’ready_s’; 
   if (s==’running’) 
   {  
      cpu = p->Processor_ID;    
      p->CPU_State = Interrupt(cpu); 
      Scheduler(); 
   }     
}  
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Process Operations: Activate 
Activate(pid)  
{  
   p = Get_PCB(pid);  
   if (p->Status.Type == ’ready_s’)  
   { 
      p->Status.Type = ’ready_a’;  
      Scheduler();   
   }   
   else p->Status.Type = ’blocked_a’; 
}  
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Process Operations: Destroy 
Destroy(pid)  
{  p = Get_PCB(pid); Kill_Tree(p); Scheduler();} 
  
Kill_Tree(p)  
{  
   for (each q in p->Creation_Tree.Child) 
      Kill_Tree(q);  
   if (p->Status.Type == ’running’)  
   { 
      cpu = p->Processor_ID; Interrupt(cpu); 
   } 
   Remove(p->Status.List, p);   
   Release_all(p->Memory);  
   Release_all(p->Other_Resources); 
   Close_all(p->Open_Files);  
   Delete_PCB(p);  
}  
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Implementing Synchronization and 
Communication Mechanisms           

• Semaphores, locks, 
monitors, messages, time, 
etc. are resources 

• Generic code to request a 
resource: 

Request(res)  
{ 
   if (Free(res)) Allocate(res, self) 
   else  
   { 
     Block(self, res); 
     Scheduler();  
   } 
} 

• Generic code to request a 
resource 
 

Release(res)  
{ 
   Deallocate(res, self); 
   if (Process_Blocked_in(res,pr))  
   { 
       Allocate(res, pr); 
       Unblock(pr, res); 
       Scheduler();  
   } 
} 
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Specific Instantiations of  
Resource Request, Release          

• P and V operations on semaphores 
• Operations embedded in monitor procedures 
• Calls to manage clocks, timers, delays, timeouts 
• Send/receive operations 

 
 
 



CompSci 143A Springr, 2013 17 

Implementing semaphores/locks 
• Special hardware instruction: test_and_set 
• Implementing binary semaphores 
• Implementing general semaphores with 

busy waiting 
• Avoiding the busy wait: Implementing 

general semaphores with blocking 
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Test_and_Set Instruction 

• Special  test_and_set  instruction:  TS(R,X) 
• Operates on variable X, register R 
• Behavior:  R = X; X = 0; 

– Always set variable X = 0 
– Register R indicates whether variable X 

changed: 
• R=1 if X changed (1→0) 
• R=0 if X did not change (0→0) 

• TS is indivisible (atomic) operation 
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Binary Semaphores 
• Binary semaphore sb: only 0 or 1 
• Also known as a spin lock or a spinning lock (“Spinning” = 

“Busy Waiting”) 
• Two atomic operations: Pb and Vb. Behavior is: 

Pb(sb):  if (sb==1) sb=0;  
              else wait until sb becomes 1 
Vb(sb):  sb=1; 

• Indivisible implementation of Pb and Vb using TS  instruction: 
Pb(sb):  do (TS(R,sb)) while (!R);/*wait loop*/ 
Vb(sb):  sb=1; 

• Note: sb is shared, but each process has its own R 
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General Semaphores with busy wait 
P(s) {  
   Inhibit_Interrupts;  
   Pb(mutex_s);  
   s = s-1;  
   if (s < 0)  
   {    
      Vb(mutex_s);  
      Enable_Interrupts;  
      Pb(delay_s);   
   }  
   Vb(mutex_s);  
   Enable_Interrupts;    
} 
 
V(s) {  
   Inhibit_Interrupts; Pb(mutex_s);  
   s = s+1;  
   if (s <= 0) Vb(delay_s);  
   else Vb(mutex_s);  
   Enable_Interrupts;     
} 

• Inhibit_interrupt prevents 
deadlock due to context 
switching 

• Two binary semaphores used: 
– delay_s implements the 

actual wait, and may be 
held for a long time 

– mutex_s needed to 
implement critical section 
with multiple CPUs, only 
held for a few instructions 

• Note than when V executes the 
call Pb(mutex_s), the 
corresponding Vb(mutex_s), 
may be executed by P 
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General Semaphores: avoiding busy wait 
P(s) {  
   Inhibit_Interrupts;  
   Pb(mutex_s);  s = s-1;  
   if (s < 0)  
   {   
      Block(self, Ls) 
      Vb(mutex_s);  
      Enable_Interrupts;  
      Scheduler(); 
   }  
   else 
   { 
      Vb(mutex_s);  
      Enable_Interrupts;  
   }   
} 
 
• Ls is a blocked list associated 

with the semaphore s. 

V(s) {  
   Inhibit_Interrupts; 
   Pb(mutex_s);  
   s = s+1;  
   if (s <= 0)  
   { 
      Unblock(q,Ls) 
      Vb(mutes_x); 
      Enable_Interrupts;  
      Scheduler(); 
   } 
   else  
   { 
     Vb(mutex_s);  
     Enable_Interrupts;  
   }    
} 
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Implementing Monitors 
• Need to insert code to: 

– Guarantee mutual exclusion of procedures 
(entering/leaving) 

– Implement c.wait 
– Implement c.signal 

• Implement 3 types of semaphores: 
1. mutex: for mutual exclusion 
2. condsem_c: for blocking on each condition c 
3. urgent: for blocking process after signal, to 

implement special high-priority queue 
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Implementing Monitor Primitives 
• Code for each procedure: 

P(mutex);  
procedure_body;   
if (urgentcnt > 0) V(urgent);  
else V(mutex);  

 
• Code for c.wait: 

condcnt_c = condcnt_c + 1;   
if (urgentcnt > 0) V(urgent);  
else V(mutex); 
P(condsem_c); 
condcnt_c = condcnt_c - 1;    

Code for c.signal: 
if (condcnt_c)  
{  
   urgentcnt = urgentcnt + 1;   
   V(condsem_c);  
   P(urgent);  
   urgentcnt = urgentcnt – 1; 
} 
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Clock and Time Management 
• Most systems provide hardware 

– ticker: issues periodic interrupt  
– countdown timer: issues interrupt after a set 

number of ticks 
• Build higher-level services using this hardware 

– Wall clock timers 
– Countdown timers (how to implement multiple 

logical timers using a single hardware 
countdown timer) 
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Wall clock times 
• Typical functions: 

Update_Clock: increment current time  
• typically number of clock ticks since some known 

time 

– Get_Time: return current time 
– Set_Time(tnew): set time to tnew 

• Must maintain monotonicity: for two successive 
clock readings, the second time should always be 
≥ the first time 
– So how do we set the clock back if we notice it 

is running fast? 
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Countdown Timer 
• Main use: as alarm clocks 
• Typical function: 

– Delay(tdel): block process for tdel time units 
• Implementation using hardware countdown: 

 
Delay(tdel)  { 
   Set_Timer(tdel);  /*set hardware timer*/ 
   P(delsem);  /*wait for interrupt*/ 
} 
 
Timeout()  {  /*called at interrupt*/ 
V(delsem); 
} 
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Logical countdown timers 
• Provides, at a minimum, the following functions: 

– tn = Create_LTimer() create new timer 
– Destroy_LTimer(tn) 

– Set_LTimer(tn,tdel) block process and call Timeout() at 
interrupt 

• Each process will want one or more logical times of its 
own 

• Implement multiple logical countdown timers using a 
single hardware timer 

• Two approaches 
– Priority queue with absolute wakeup times 
– Priority queue with time differences 
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Priority queue with absolute wakeup 
times 

 
• Store wakeup times of logical timers in a priority 

queue TQ  
• Function of Set_LTimer(tn,tdel): 

– Compute absolute wakeup time using wall clock: 
wnew = tdel+tnow 

– Insert new request into TQ (ordered by absolute 
wakeup time) 

– If new request is earlier than previous head of 
queue, set hardware countdown to tdel  
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Clock and Time Management 

Figure 4-8 

Absolute Wakeup Times Example:
 Set_LTimer(tn,35) 
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Priority queue with time differences 

• Priority queue TQ records only time increments, no 
wall-clock is needed 

• Function of Set_LTimer(tn,tdel) 
– Find the two elements L and R between which 

new request is to be inserted (add differences until 
tdel is reached) 

– split the current difference between L and R 
into difference between L and new element and 
difference between new element and R  

– If new request goes at front of TQ, reset the 
countdown time to tdel 
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Clock and Time Management 

 Time Differences Example:
 Set_LTimer(tn,35) 

Figure 4-9 



CompSci 143A Springr, 2013 32 

Communication Primitives 
send and receive each use a buffer to hold message 

Figure 4-10a 

1. How does sender process know that sbuf may be reused? 
2. How does system know that rbuf  may be reused 

overwritten? 
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Possible Solutions 
• Reusing sbuf: 

– Use blocking send.  Reuse when send returns 
– Provide a flag or interrupt for system to 

indicate release of sbuf 
• Reusing rbuf: 

– Provide a flag for sender to indicate release of 
rbuf 

• These solutions are awkward 
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Communication Primitives 
Better solution: Use pool of system buffers 

Figure 4-10b 

1. send copies sbuf to a system buffer 
2. send is free after copy is made 
3. Sender may continue generating messages 
4. System copies or reallocates full buffers to receiver 
5. receive copies system buffer to rbuf 
6. rbuf is overwritten with next message on nextcall to 

receive, which is controlled by the receiver. 

System Buffers 
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Communications Kernel 
• Copying of buffers is usually handled by a 

specialized communications kernel. 
• Involves considerable additional processing 

– Breaking into transmission packets 
– Routing packets through network 
– Reassembling message from packets at the 

destination 
– Handling transmission errors 
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Interrupt Handling 
Standard interrupt-handling sequence: 

1. Save state of interrupted process/thread  
2. Identify interrupt type and invoke appropriate interrupt 

handler (IH) 
3. IH services interrupt 
4. Restore state of interrupted process (or of another one) 

Figure 4-11a 
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Typical Interrupt Handling Scenario 
• User process p calls device interface procedure Fn  
• Fn initiates device, then blocks. 
• OS takes over, selects another process to run 
• When device terminates, it generates an interrupt, which 

invokes IH 
• IH services interrupt, unblocks P, and returns control to 

OS. 

Figure 4-11a 
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Interrupt Handling 
Main challenges: 

– Fn must be able to block itself on a given event. 
• If Fn is written by user, requires knowledge of the OS 

kernel, possibly modification of the OS kernel. 
– IH must be able to unblock p  
– IH must be able to return from interrupt. 

 
• Classical approach: specially designed kernel 

mechanisms 
• Another approach: extend process model into the 

hardware (so IH is included) and use standard 
synchronization constructs, such as monitors. 
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Interrupt Handling Using a Monitor 
 
• Fn waits on c 
• IH invoked by hardware process 
• IH signals c 

 

Figure 4-11b 
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