
CompSci 143A Springr, 2013 1

4. The OS Kernel
4.1 Kernel Definitions and Objects
4.2 Queue Structures
4.3 Threads
4.4 Implementing Processes and Threads

– Process and Thread Descriptors
– Implementing the Operations

4.5 Implementing Synchronization and Communication
Mechanisms
– Requesting and Releasing Resources
– Semaphores and Locks
– Building Monitor Primitives
– Clock and Time Management
– Communications Kernel

4.6 Interrupt Handling

CompSci 143A Springr, 2013 2

Kernel Definitions and Objects
• Basic set of objects, primitives,

data structures, processes
• Rest of OS is built on top of kernel
• Kernel defines/provides mechanisms

to implement various policies
– Process and thread management
– Interrupt and trap handling
– Resource management
– Input/output

CompSci 143A Springr, 2013 3

Queue Structures
• OS needs many different queues
• Single-level queues

– Implemented as array
• Fixed size
• Efficient for simple FIFO operations

– Implemented as linked list
• Unbounded size
• More overhead, but more flexible operations

CompSci 143A Springr, 2013 4

Queues
• Multi-level queues (priority queues)

– Support multiple priority levels
– Implemented as multiple single-level queues
– Implemented as heap

CompSci 143A Springr, 2013 5

Priority Queues: Multiple queues

Figure 4-3(a)

CompSci 143A Springr, 2013 6

Priority Queues: Binary Heap

Figure 4-3(b)

CompSci 143A Springr, 2013 7

Processes and threads
• Process has one or more threads
• All threads in a process share:

– Memory space
– Other resources

• Each thread has its own:
– CPU state

(registers, program counter)
– Stack

• Implemented in user space or
kernel space

• Threads are efficient, but lack
protection from each other

Figure 4-4

CompSci 143A Springr, 2013 8

Process status types
Running / Ready / Blocked
• Running: the process is currently running on a

processor
• Ready: the process is ready to run, waiting for a

processor
• Blocked: the process cannot proceed until it is

granted a particular resource (e.g., a lock, a file, a
semaphore, a message, …)

Active / Suspended
• Internal process may suspend other processes to

examine or modify their state (e.g., prevent
deadlock, detect runaway process, swap the
process out of memory…)

CompSci 143A Springr, 2013 9

Implementing Processes and Threads
• Process Control Block

(PCB)
– State Vector = Information

necessary to run process p
– Status

• Basic types: Running,
 Ready, Blocked

• Additional types:
– Ready_active,

 Ready_suspended
– Blocked_active,

 Blocked_suspended

Figure 4-5

CompSci 143A Springr, 2013 10

Implementing Processes and Threads
• State Transition Diagram

Figure 4-6

CompSci 143A Springr, 2013 11

Process Operations: Create
Create(s0, m0, pi, pid)
{
 p = Get_New_PCB(); pid = Get_New_PID();
 p->ID = pid; p->CPU_State = s0;
 p->Memory = m0; p->Priority = pi;
 p->Status.Type = ’ready_s’;
 p->Status.List = RL;
 p->Creation_Tree.Parent = self;
 p->Creation_Tree.Child = NULL;
 insert(self-> Creation_Tree.Child, p);
 insert(RL, p);
 Scheduler();
 }

CompSci 143A Springr, 2013 12

Process Operations: Suspend
Suspend(pid)
{
 p = Get_PCB(pid);
 s = p->Status.Type;
 if ((s==’blocked_a’)||(s==’blocked_s’))
 p->Status.Type = ’blocked_s’;
 else p->Status.Type = ’ready_s’;
 if (s==’running’)
 {
 cpu = p->Processor_ID;
 p->CPU_State = Interrupt(cpu);
 Scheduler();
 }
}

CompSci 143A Springr, 2013 13

Process Operations: Activate
Activate(pid)
{
 p = Get_PCB(pid);
 if (p->Status.Type == ’ready_s’)
 {
 p->Status.Type = ’ready_a’;
 Scheduler();
 }
 else p->Status.Type = ’blocked_a’;
}

CompSci 143A Springr, 2013 14

Process Operations: Destroy
Destroy(pid)
{ p = Get_PCB(pid); Kill_Tree(p); Scheduler();}

Kill_Tree(p)
{
 for (each q in p->Creation_Tree.Child)
 Kill_Tree(q);
 if (p->Status.Type == ’running’)
 {
 cpu = p->Processor_ID; Interrupt(cpu);
 }
 Remove(p->Status.List, p);
 Release_all(p->Memory);
 Release_all(p->Other_Resources);
 Close_all(p->Open_Files);
 Delete_PCB(p);
}

CompSci 143A Springr, 2013 15

Implementing Synchronization and
Communication Mechanisms

• Semaphores, locks,
monitors, messages, time,
etc. are resources

• Generic code to request a
resource:

Request(res)
{
 if (Free(res)) Allocate(res, self)
 else
 {
 Block(self, res);
 Scheduler();
 }
}

• Generic code to request a
resource

Release(res)
{
 Deallocate(res, self);
 if (Process_Blocked_in(res,pr))
 {
 Allocate(res, pr);
 Unblock(pr, res);
 Scheduler();
 }
}

CompSci 143A Springr, 2013 16

Specific Instantiations of
Resource Request, Release

• P and V operations on semaphores
• Operations embedded in monitor procedures
• Calls to manage clocks, timers, delays, timeouts
• Send/receive operations

CompSci 143A Springr, 2013 17

Implementing semaphores/locks
• Special hardware instruction: test_and_set
• Implementing binary semaphores
• Implementing general semaphores with

busy waiting
• Avoiding the busy wait: Implementing

general semaphores with blocking

CompSci 143A Springr, 2013 18

Test_and_Set Instruction

• Special test_and_set instruction: TS(R,X)
• Operates on variable X, register R
• Behavior: R = X; X = 0;

– Always set variable X = 0
– Register R indicates whether variable X

changed:
• R=1 if X changed (1→0)
• R=0 if X did not change (0→0)

• TS is indivisible (atomic) operation

CompSci 143A Springr, 2013 19

Binary Semaphores
• Binary semaphore sb: only 0 or 1
• Also known as a spin lock or a spinning lock (“Spinning” =

“Busy Waiting”)
• Two atomic operations: Pb and Vb. Behavior is:

Pb(sb): if (sb==1) sb=0;
 else wait until sb becomes 1
Vb(sb): sb=1;

• Indivisible implementation of Pb and Vb using TS instruction:
Pb(sb): do (TS(R,sb)) while (!R);/*wait loop*/
Vb(sb): sb=1;

• Note: sb is shared, but each process has its own R

CompSci 143A Springr, 2013 20

General Semaphores with busy wait
P(s) {
 Inhibit_Interrupts;
 Pb(mutex_s);
 s = s-1;
 if (s < 0)
 {
 Vb(mutex_s);
 Enable_Interrupts;
 Pb(delay_s);
 }
 Vb(mutex_s);
 Enable_Interrupts;
}

V(s) {
 Inhibit_Interrupts; Pb(mutex_s);
 s = s+1;
 if (s <= 0) Vb(delay_s);
 else Vb(mutex_s);
 Enable_Interrupts;
}

• Inhibit_interrupt prevents
deadlock due to context
switching

• Two binary semaphores used:
– delay_s implements the

actual wait, and may be
held for a long time

– mutex_s needed to
implement critical section
with multiple CPUs, only
held for a few instructions

• Note than when V executes the
call Pb(mutex_s), the
corresponding Vb(mutex_s),
may be executed by P

CompSci 143A Springr, 2013 21

General Semaphores: avoiding busy wait
P(s) {
 Inhibit_Interrupts;
 Pb(mutex_s); s = s-1;
 if (s < 0)
 {
 Block(self, Ls)
 Vb(mutex_s);
 Enable_Interrupts;
 Scheduler();
 }
 else
 {
 Vb(mutex_s);
 Enable_Interrupts;
 }
}

• Ls is a blocked list associated

with the semaphore s.

V(s) {
 Inhibit_Interrupts;
 Pb(mutex_s);
 s = s+1;
 if (s <= 0)
 {
 Unblock(q,Ls)
 Vb(mutes_x);
 Enable_Interrupts;
 Scheduler();
 }
 else
 {
 Vb(mutex_s);
 Enable_Interrupts;
 }
}

CompSci 143A Springr, 2013 22

Implementing Monitors
• Need to insert code to:

– Guarantee mutual exclusion of procedures
(entering/leaving)

– Implement c.wait
– Implement c.signal

• Implement 3 types of semaphores:
1. mutex: for mutual exclusion
2. condsem_c: for blocking on each condition c
3. urgent: for blocking process after signal, to

implement special high-priority queue

CompSci 143A Springr, 2013 23

Implementing Monitor Primitives
• Code for each procedure:

P(mutex);
procedure_body;
if (urgentcnt > 0) V(urgent);
else V(mutex);

• Code for c.wait:

condcnt_c = condcnt_c + 1;
if (urgentcnt > 0) V(urgent);
else V(mutex);
P(condsem_c);
condcnt_c = condcnt_c - 1;

Code for c.signal:
if (condcnt_c)
{
 urgentcnt = urgentcnt + 1;
 V(condsem_c);
 P(urgent);
 urgentcnt = urgentcnt – 1;
}

CompSci 143A Springr, 2013 24

Clock and Time Management
• Most systems provide hardware

– ticker: issues periodic interrupt
– countdown timer: issues interrupt after a set

number of ticks
• Build higher-level services using this hardware

– Wall clock timers
– Countdown timers (how to implement multiple

logical timers using a single hardware
countdown timer)

CompSci 143A Springr, 2013 25

Wall clock times
• Typical functions:

Update_Clock: increment current time
• typically number of clock ticks since some known

time

– Get_Time: return current time
– Set_Time(tnew): set time to tnew

• Must maintain monotonicity: for two successive
clock readings, the second time should always be
≥ the first time
– So how do we set the clock back if we notice it

is running fast?

CompSci 143A Springr, 2013 26

Countdown Timer
• Main use: as alarm clocks
• Typical function:

– Delay(tdel): block process for tdel time units
• Implementation using hardware countdown:

Delay(tdel) {
 Set_Timer(tdel); /*set hardware timer*/
 P(delsem); /*wait for interrupt*/
}

Timeout() { /*called at interrupt*/
V(delsem);
}

CompSci 143A Springr, 2013 27

Logical countdown timers
• Provides, at a minimum, the following functions:

– tn = Create_LTimer() create new timer
– Destroy_LTimer(tn)

– Set_LTimer(tn,tdel) block process and call Timeout() at
interrupt

• Each process will want one or more logical times of its
own

• Implement multiple logical countdown timers using a
single hardware timer

• Two approaches
– Priority queue with absolute wakeup times
– Priority queue with time differences

CompSci 143A Springr, 2013 28

Priority queue with absolute wakeup
times

• Store wakeup times of logical timers in a priority

queue TQ
• Function of Set_LTimer(tn,tdel):

– Compute absolute wakeup time using wall clock:
wnew = tdel+tnow

– Insert new request into TQ (ordered by absolute
wakeup time)

– If new request is earlier than previous head of
queue, set hardware countdown to tdel

CompSci 143A Springr, 2013 29

Clock and Time Management

Figure 4-8

Absolute Wakeup Times Example:
 Set_LTimer(tn,35)

CompSci 143A Springr, 2013 30

Priority queue with time differences

• Priority queue TQ records only time increments, no
wall-clock is needed

• Function of Set_LTimer(tn,tdel)
– Find the two elements L and R between which

new request is to be inserted (add differences until
tdel is reached)

– split the current difference between L and R
into difference between L and new element and
difference between new element and R

– If new request goes at front of TQ, reset the
countdown time to tdel

CompSci 143A Springr, 2013 31

Clock and Time Management

 Time Differences Example:
 Set_LTimer(tn,35)

Figure 4-9

CompSci 143A Springr, 2013 32

Communication Primitives
send and receive each use a buffer to hold message

Figure 4-10a

1. How does sender process know that sbuf may be reused?
2. How does system know that rbuf may be reused

overwritten?

CompSci 143A Springr, 2013 33

Possible Solutions
• Reusing sbuf:

– Use blocking send. Reuse when send returns
– Provide a flag or interrupt for system to

indicate release of sbuf
• Reusing rbuf:

– Provide a flag for sender to indicate release of
rbuf

• These solutions are awkward

CompSci 143A Springr, 2013 34

Communication Primitives
Better solution: Use pool of system buffers

Figure 4-10b

1. send copies sbuf to a system buffer
2. send is free after copy is made
3. Sender may continue generating messages
4. System copies or reallocates full buffers to receiver
5. receive copies system buffer to rbuf
6. rbuf is overwritten with next message on nextcall to

receive, which is controlled by the receiver.

System Buffers

CompSci 143A Springr, 2013 35

Communications Kernel
• Copying of buffers is usually handled by a

specialized communications kernel.
• Involves considerable additional processing

– Breaking into transmission packets
– Routing packets through network
– Reassembling message from packets at the

destination
– Handling transmission errors

CompSci 143A Springr, 2013 36

Interrupt Handling
Standard interrupt-handling sequence:

1. Save state of interrupted process/thread
2. Identify interrupt type and invoke appropriate interrupt

handler (IH)
3. IH services interrupt
4. Restore state of interrupted process (or of another one)

Figure 4-11a

CompSci 143A Springr, 2013 37

Typical Interrupt Handling Scenario
• User process p calls device interface procedure Fn
• Fn initiates device, then blocks.
• OS takes over, selects another process to run
• When device terminates, it generates an interrupt, which

invokes IH
• IH services interrupt, unblocks P, and returns control to

OS.

Figure 4-11a

CompSci 143A Springr, 2013 38

Interrupt Handling
Main challenges:

– Fn must be able to block itself on a given event.
• If Fn is written by user, requires knowledge of the OS

kernel, possibly modification of the OS kernel.
– IH must be able to unblock p
– IH must be able to return from interrupt.

• Classical approach: specially designed kernel

mechanisms
• Another approach: extend process model into the

hardware (so IH is included) and use standard
synchronization constructs, such as monitors.

CompSci 143A Springr, 2013 39

Interrupt Handling Using a Monitor

• Fn waits on c
• IH invoked by hardware process
• IH signals c

Figure 4-11b

	4. The OS Kernel
	Kernel Definitions and Objects
	Queue Structures
	Queues
	Priority Queues: Multiple queues
	Priority Queues: Binary Heap
	Processes and threads
	Process status types
	Implementing Processes and Threads
	Implementing Processes and Threads
	Process Operations: Create
	Process Operations: Suspend
	Process Operations: Activate
	Process Operations: Destroy
	Implementing Synchronization and Communication Mechanisms
	Specific Instantiations of �Resource Request, Release
	Implementing semaphores/locks
	Test_and_Set Instruction
	Binary Semaphores
	General Semaphores with busy wait
	General Semaphores: avoiding busy wait
	Implementing Monitors
	Implementing Monitor Primitives
	Clock and Time Management
	Wall clock times
	Countdown Timer
	Logical countdown timers
	Priority queue with absolute wakeup times
	Clock and Time Management
	Priority queue with time differences
	Clock and Time Management
	Communication Primitives
	Possible Solutions
	Communication Primitives
	Communications Kernel
	Interrupt Handling
	Typical Interrupt Handling Scenario
	Interrupt Handling
	Interrupt Handling Using a Monitor

