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3. Higher-Level Synchronization 

3.1 Shared Memory Methods  
– Monitors  
– Protected Types 

3.2 Distributed Synchronization/Comm. 
– Message-Based Communication  
– Procedure-Based Communication  
– Distributed Mutual Exclusion 

3.3 Other Classical Problems 
– The Readers/Writers Problem 
– The Dining Philosophers Problem  
– The Elevator Algorithm 
– Event Ordering with Logical Clocks  
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3.1 Shared Memory Methods 
• Monitors 
• Protected Types 
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Motivation 
• Semaphores and Events are:  

– Powerful but low-level abstractions 
• Programming with them is highly error prone 
• Such programs are difficult to design, debug, and 

maintain 
– Not usable in distributed memory systems 

• Need higher-level primitives  
– Based on semaphores or messages 
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Monitors 
– Follow principles of abstract data types 

(object-oriented programming): 
• A data type is manipulated only by a set of 

predefined operations 
– A monitor is 

1. A collection of data representing the state of the 
resource controlled by the monitor, and 

2. Procedures to manipulate the resource data 
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Monitors 
• Implementation must guarantee: 

1. Resource is only accessible by monitor 
procedures 

2. Monitor procedures are mutually exclusive 
• For coordination, monitors provide: 

c.wait 
• Calling process is blocked and placed on waiting 

queue associated with condition variable c 
c.signal 

• Calling process wakes up first process on queue 
associated with c 
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Monitors 
• “condition variable” c is  not a conventional 

variable 
– c has no value 
– c is an arbitrary name chosen by programmer  

• By convention, the name is chosen to reflect the an 
event, state, or condition that the condition variable 
represents 

– Each c has a waiting queue associated 
– A process may “block” itself on c -- it waits 

until another process issues a signal on c 
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Monitors 
• Design Issue: 

– After c.signal, there are 2 ready processes: 
• The calling process which did the c.signal 

• The blocked process which the c.signal “woke up” 

– Which should continue? 
 (Only one can be executing inside the monitor!) 
Two different approaches 
– Hoare monitors 
– Mesa-style monitors 
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Hoare Monitors 
• Introduced by Hoare in a 1974 CACM paper 
• First implemented by Per Brinch Hansen in 

Concurrent Pascal 
• Approach taken by Hoare monitor: 

– After c.signal, 
• Awakened process continues 
• Calling process is suspended, and placed on high-

priority queue 
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Hoare Monitors 

Figure 3-2 

Effect of wait 

Effect of signal 
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Bounded buffer problem 
monitor BoundedBuffer  
{    
    char buffer[n];     
    int nextin=0, nextout=0, fullCount=0;    
    condition notempty, notfull;    
   
    deposit(char data)  
    {      
      ... 
    }    
   
    remove(char data)  
    {    
      ... 
    } 
}     
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Bounded buffer problem 
deposit(char data)  
{      
   if (fullCount==n) notfull.wait;    
   buffer[nextin] = data;    
   nextin = (nextin+1) % n;    
   fullCount = fullCount+1;    
   notempty.signal;    
}    
   
remove(char data)  
{    
   if (fullCount==0) notempty.wait;    
   data = buffer[nextout];    
   nextout = (nextout+1) % n;    
   fullCount = fullCount - 1;    
   notfull.signal;    
}     
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Priority waits 
• Hoare monitor signal resumes longest waiting 

process (i.e., queue is a FIFO queue) 
• Hoare also introduced “Priority Waits” (aka 

“conditional” or “scheduled”): 
–  c.wait(p) 

– p is an integer (priority) 
– Blocked processes are kept sorted by p  

–  c.signal 
– Wakes up process with lowest (!) p 
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Example: alarm clock 
• Processes can call wakeMe(n) to sleep for n clock 

ticks 
• After the time has expired, call to wakeMe 

returns 
• Implemented using Hoare monitor with priorities 
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Example: alarm clock 
monitor AlarmClock {  
   int now=0;  
   condition wakeup;  
 
   wakeMe(int n) {      
      int alarm;  
      alarm = now + n;  
      while (now<alarm)wakeup.wait(alarm);  
      wakeup.signal;  
   }  
   tick() { 
   /*invoked by hardware*/ 
      now = now + 1;  
      wakeup.signal;  
   } 
}  
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Example: alarm clock 
• tick only wakes up one process 
• Multiple processes with same alarm time awaken 

in a chain:  
– tick wakes up the first process  
– the first process wakes up the second process 

via the wakeup.signal in wakeme 
– etc. 

• Without priority waits, all processes would need to 
wake up to check their alarm settings 
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Mesa-style monitors 
• Variant defined for the programming 

language Mesa 
• notify is a variant of signal 
• After c.notify: 

– Calling process continues 
– Awakened process continues when caller exits 

• Problem 
– Caller may wake up multiple processes P1,P2,P3, … 

– P1 could change condition on which P2 was 
blocked. 
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Mesa monitors 
• Solution 

instead of:      if (!condition) c.wait 

use:                while (!condition) c.wait 

• signal vs notify 
– (Beware: There is no universal terminology) 
– signal may involve caller “stepping aside” 
– notify usually has caller continuing 
– signal “simpler to use” but  notify may be more 

efficiently implemented 



Monitors in Java 
• Java supports synchronized methods, which 

permit Java objects to be used somewhat 
similarly to Mesa monitors 
– Every object has an implicit lock, with a single 

associated condition 
– If a method is declare synchronized, the object’s 

lock protects the entire method 
– wait() causes a thread to wait until it is notified 
– notifyAll() awakens all threads waiting on the 

object’s lock 
– notify () awakens a single randomly chosen thread 

waiting on the object’s lock 
• But there are differences… 
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Differences between Java objects 
and monitors 

• Monitors 
1. Resource is only accessible by monitor procedures 
2. Monitor procedures are mutually exclusive 

 
• Java objects 

1. Fields are not required to be private 
2. Methods are not required to be synchronized 

 
Per Brinch Hansen: “It is astounding to me that Java’s 

insecure parallelism is taken seriously by the 
programming community, a quarter of a century after the 
invention of monitors and Concurrent Pascal.  It has no 
merit.” [Java’s Insecure Parallelism, ACM SIGPLAN 
Notices 34: 38-45, April 1999]. 
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Protected types (Ada 95) 
• Encapsulated objects with public access 

procedures called entries . 
• Equivalent to special case of monitor where 

– c.wait is the first operation of a procedure 
– c.signal is the last operation 

• wait/signal combined into a when clause 
– The when c construct forms a barrier 
– Procedure continues only when the condition c 

is true 
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Example 
entry deposit(char c)  
    when (fullCount < n)  
    {  
        buffer[nextin] = c;  
        nextin = (nextin + 1) % n;   
        fullCount = fullCount + 1;  
    }   
  
entry remove(char c)   
    when (fullCount > 0)  
    {   
        c = buffer[nextout];   
        nextout = (nextout + 1) % n;   
        fullCount = fullCount - 1;  
    } 
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3.2 Distributed Synchronization and 
Communication 

• Message-based Communication 
– Direct message passing 
– Indirect message passing: channels, ports, 

mailboxes 
• Procedure-based Communication 

– Remote Procedure Calls (RPC) 
– Rendezvous 

• Distributed Mutual Exclusion 
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Distributed Synchronization 
• Semaphore-based primitive requires shared 

memory 
• For distributed memory: 

– send(p,m) 
• Send message m to process p 

– receive(q,m) 
• Receive message from process q in variable m 

• Semantics of send and receive vary 
significantally in different systems. 
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Distributed Synchronization 
• Types of send/receive: 

– Does sender wait for message to be accepted? 
– Does receiver wait if there is no message? 
– Does sender name exactly one receiver? 
– Does receiver name exactly one sender? 
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Types of send/receive 
send blocking nonblocking
explicit
naming

send m to r
wait until accepted

send m to r

implicit
naming

broadcast m
wait until accepted

broadcast m

receive blocking nonblocking
explicit
naming

wait for message
from s

if there is a message from s,
receive it; else proceed

implicit
naming

wait for message
from any sender

if there is a message from any
sender, receive it; else proceed
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Channels, Ports, and Mailboxes 
• Allow indirect communication 
• Senders/Receivers name channel/port/mailbox 

instead of processes 
• Senders/Receivers determined at runtime 

– Sender does not need to know 
who receives the message 

– Receiver does not need to know 
who sent the message 
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Named Message Channels 
• Named channel, ch1, connects processes 

p1 and p2 
• p1 sends to p2 using send(ch1,”a”) 
• p2 receives from p1 using: receive(ch1,x) 
• Used in CSP/Occam: Communicating Sequential 

Processes in the Occam Programming Language 
(Hoare, 1978) 
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Named Message Channels in CSP/Occam 

– Receive statements may be implemented as 
guarded commands  

• Syntax: when (c1) s1  
• s is enabled (able to be executed) only when c is 

true 
• If more than one guarded command is enabled, one 

of them is selected for execution 
• The condition c may contain receive statements, 

which evaluate to true if and only if the sending 
process is ready to send on the specified channel. 

• Allow processes to receive messages selectively 
based on arbitrary conditions 



CompSci 143A Spring, 2013 29 

Example: Bounded buffer with CSP 
• Producer P, Consumer C, and Buffer B are 

Communicating Sequential Processes 
• Problem statement:  

– When Buffer full: B can only send to C 
– When Buffer empty: B can only receive from P 
– When Buffer partially filled: B must know 

 whether C or P is ready to act 
• Solution: 

– C sends request to B first; B then sends data 
– Inputs to B from P and C are guarded with 

when clause 
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Bounded Buffer with CSP 
• Define 3 named channels  

– deposit:  P → B 
– request:         B ← C  
– remove:         B → C 

 
• P does: 

– send(deposit, data); 
 

• C does: 
– send(request) 
– receive(remove, data) 
 

• Code for B on next slide 
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Bounded buffer with CSP 
process BoundedBuffer  
{  
 ... 
    while (1) {  
    when ((fullCount<n) && receive(deposit, buf[nextin])) 
    {  
        nextin = (nextin + 1) % n;  
        fullCount = fullCount + 1;   
    }  or  
    when ((fullCount>0) && receive(request)) 
    { 
        send(remove, buf[nextout]);  
        nextout = (nextout + 1) % n;   
        fullCount = fullCount - 1;  
     }  
}   
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Ports and Mailboxes 
• Indirect communication (named message channels) 

allows a receiver to receive from multiple senders 
(nondeterministically) 

• When channel is a queue, send can be nonblocking  
• Such a queue is called mailbox or port, 

depending on number of receivers: 
– A mailbox can have multiple receivers 

• This can be expensive because receivers referring to 
the same mailbox may reside on different computers 

– A port can have only one receiver 
• So all messages addressed to the same port can be sent 

to one central place. 
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Ports and Mailboxes 

Figure 3-2 



UNIX implements of interprocess 
communication 

2 mechanisms: pipes and sockets 
• Pipes: Sender’s standard output is receiver’s standard input 

p1 | p2 | … | pn 
• Sockets are named endpoints of a 2-way channel between 

2 processes.  Processes may be on different machines.  To 
establish the channel: 
– One process acts as a server, the other a client 
– Server binds it socket to IP address of its machine and a 

port number 
– Server issues an accept statement and blocks until client 

issues a corresponding connect statement 
– The connect statement supplies the client’s IP address 

and port number to complete the connection. 
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Procedure-Based Communication 
• Send/Receive are low level (like P/V) 
• Typical interaction:  

 Send Request and then Receive Result 
Make this into a single higher-level primitive 

• Use RPC (Remote Procedure Call) or Rendezvous 
– Caller invokes procedure on remote machine 
– Remote machine performs operation and 

returns result 
– Similar to regular procedure call, but 

parameters cannot contain pointers or shared 
references, because caller and server do not 
share any memory 
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RPC 
• Caller issues:  
  result = f(params) 
• This is translated into: 
 

Calling Process   
...                   
send(server,f,params);      
receive(server,result);              
...                       

Server Process 
process RP_server  
{   
    while (1)  
    {  
        receive(caller,f,params);  
        result=f(params);  
        send(caller,result);  
    }  
}  
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Rendezvous 
– With RPC:  Called process p is part of a 

dedicated server 
– With Rendezvous:  

• p is part of an arbitrary process 
• p maintains state between calls 
• p may accept/delay/reject call 
• Setup is symmetrical:  

Any process may be a client or a server 
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Rendezvous (Ada 95) 
• Caller: Similar syntax/semantics to RPC 

q.f(param) 
where q is the called process (server) 

• Server: Must indicate willingness to accept: 
accept f(param) S 

• Rendezvous: 
Caller (calling process) or Server (called process) 
waits for the other, 
Then they execute in parallel. 

• (“Rendezvous” is French for “meeting.”) 



CompSci 143A Spring, 2013 39 

Rendezvous 

Figure 3-3 
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Rendezvous 
• To permit selective receive, Ada provides guarded when 

clauses (like in CSP/Occam) through the select statement 
• For an accept statement to be selected: 

– the when clause guarding it must be true;  and  
– there must be at least one pending procedure call to the 

accept statement. 
 select { 

  [when B1:] accept E1(…) S1; 
  or 
  [when B2:] accept E2(…) S2; 
  or 
  … 
  [when Bn:] accept En(…) Sn; 
  [else R] 
} 
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Example: Bounded Buffer 
process BoundedBuffer {    
while(1) {  
  select {   
    when (fullCount < n):   
      accept deposit(char c) {   
        buffer[nextin] = c;   
        nextin = (nextin + 1) % n;   
        fullCount = fullCount + 1;   
      }    
    or   
    when (fullCount > 0):   
      accept remove(char c) {   
        c = buffer[nextout];   
        nextout = (nextout + 1) % n;   
        fullCount = fullCount - 1;   
    }   
  }}}  
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Distributed Mutual Exclusion 
• Critical Section problem in a Distributed 

Environment 
– Several processes share a resource (a printer, a 

satellite link, a file…) 
– Only one process can use the resource at a time 

• Additional Challenges: 
– No shared memory 
– No shared clock 
– Delays in message transmission. 
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Distributed Mutual Exclusion 
• Central Controller Solution 

– Requesting process sends request to controller 
– Controller grants it to one processes at a time 
– Problems with this approach: 

• Single point of failure,      
• Performance bottleneck 

• Fully Distributed Solution: 
– Processes negotiate access among themselves 
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Distributed Mutual Exclusion 
• Token Ring solution 

– Each process has a controller 
– Controllers are arranged in a ring 
– Controllers pass a token around the ring 
– Process whose controller holds token may enter its 

CS 
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Distributed Mutual Exclusion with Token Ring 

Figure  3-4 
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Distributed Mutual Exclusion 
process controller[i] {   
    while(1) {  
        accept Token;  
        select {  
             accept Request_CS() {busy=1;}  
             else null;  
        }   
        if (busy) accept Release_CS() {busy=0;} 
        controller[(i+1) % n].Token;  
    } 
}      
process p[i] {   
    while(1) {   
        controller[i].Request_CS();  
         CSi;  
         controller[i].Release_CS();  
         programi;  
    } 
} 
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3.3  
Other Classical 

SynchronizationProblems 

• The Readers/Writers Problem 
• The Dining Philosophers Problem  
• The Elevator Algorithm 
• Event Ordering with Logical Clocks 
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Readers/Writers Problem 
• Extension of basic Critical Section (CS) problem 

(Courtois, Heymans, and Parnas, 1971) 
• Two types of processes entering a CS: Readers (R) and 

Writers (W) 
• CS may only contain 

– A single W process (and no R processes); or 
– Any number of R processes (and no W processes). 

• This is a relaxation of the mutual exclusion condition, 
because multiple readers are allowed at one. 

• A good solution should: 
– Satisfy this relaxed extended mutual exclusion condition 
– Take advantage of the fact that multiple R processes can 

be in the CS simultaneously 
– Prevent starvation of either process type 



Readers/Writers Problem 
• Two possible algorithms: 

1. R has priority over W:  No R is kept waiting 
unless a W has already obtained permission to 
enter the CS. 

2. W has priority over R : When a W is waiting, 
only those R processes already granted 
permission to read are allowed to continue.  
All other R processes must wait until the W 
completes. 

• Both of the above algorithms lead to starvation. 
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Readers/Writers Problem 
 

• Solution that prevents starvation of either 
process type: 

1. If R processes are in CS, a new R cannot 
enter if a W is waiting 

2. If a W is in CS, once it leaves, all R processes 
waiting can enter, even if they arrived after 
new W processes that are also waiting. 
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Solution using monitor 
monitor Readers_Writers {  
   int readCount=0,writing=0; 
   condition OK_R, OK_W; 
 
   start_read()  
   {  
      if (writing || !empty(OK_W))   
         OK_R.wait;  
      readCount = readCount + 1;  
      OK_R.signal;  
   }  
  
   end_read()  
   {   
      readCount = readCount - 1;  
      if (readCount == 0)  
         OK_W.signal;  
   }  

   start_write()  
   {   
      if ((readCount !=0)||writing)  
         OK_W.wait;  
      writing = 1;  
   }   
 
   end_write()  
   {   
      writing = 0;  
      if (!empty(OK_R)) 
         OK_R.signal;  
      else OK_W.signal;  
   } 
} 
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Dining philosophers Problem 
 

• Each philosopher needs both forks to eat 
• Requirements 

– Prevent deadlock 
– Guarantee fairness: 

 no philosopher must starve 
– Guarantee concurrency: 

non-neighbors may eat  
at the same time 
 

Figure 3-5 
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Dining philosophers problem 
• One obvious solution: each philosopher graps left fork first 

 p(i) : { 
  while (1) { 
    think(i); 
   grab_forks(i); 
   eat(i); 
   return_forks(i); 
        } } 
 
 grab_forks(i):   { P(f[i]); P(f[i%5 + 1]) } 
 
 return_forks(i): { V(f[i]); V(f[i%5 + 1]) } 
 

• May lead to deadlock (each philosopher has left fork, is
 waiting for right fork) 
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Dining Philosophers 
• Two possible solutions to deadlock 

1. Use a counter: 
At most n–1 philosophers may attempt to 
grab forks 

2. One philosopher requests forks in reverse 
order, e.g.,  

  grab_forks(1):  { P(f [2]); P(f [1]) } 
• Both violate concurrency requirement:  

– While P(1) is eating the others could be 
blocked in a chain.   

(Exercise: Construct a sequence of requests/releases 
where this happens.) 



CompSci 143A Spring, 2009 55 

Dining Philosophers 
Solution that avoids deadlock and provides concurrency: 
• Divide philosophers into two groups 

– Odd-numberered philosophers (1,3,5) grab left fork 
first 

– Even-numberered philosophers (2,4) grab right fork 
first 
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Elevator Algorithm 
• Loosely simulates an elevator 
• Same algorithm can be used for disk scheduling 
• Organization of elevator 

– n floors 
– Inside elevator, one button for each floor 
– At each floor, outside the door, there is a single (!) call 

button 
• Elevator scheduling policy 

– When elevator is moving up, it services all requests  at 
or above current position; then it reverses direction 

– When elevator is moving down, it services all requests 
at or below current position; then it reverses direction 

• We will present a monitor that governs the motion 
according to these scheduling rules 
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Elevator Algorithm 
• Two monitor calls 

– request(i): called when a stop at floor i is requested, 
either by pushing call button at floor i or by pushing 
button i inside the elevator. 

– release(): called when elevator door closes 
• Usage: 

– Process representing users call request(i) 
– Elevator process (or hardware) calls release() 

• Two condition variables (upsweep, downsweep) 
• Boolean busy indicates that either  

– the door is open or  
– the elevator is moving to a new floor. 
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Elevator algorithm 
• When call arrives for floor dest and elevator is 

currently at floor position 
– If elevator is busy 

• If position < dest wait in upsweep queue 
• If position > dest wait in downsweep queue 
• If position ==  dest  wait in upsweep or downsweep queue, 

depending on current direction 
– Otherwise, no wait is necessary 

• On return from wait (i.e., when corresponding signal is 
received), or if no wait was necessary, service the 
request  
– set busy = 1  
– move to the requested floor (dest) 



CompSci 143A Spring, 2013 59 

Elevator algorithm 
Monitor elevator { 
   int direction =1, up = 1, down = 0, 
     position =1, busy = 0; 
   condition upsweep, downsweep; 
 
   request(int dest) { 
      if (busy) {    
         if (position < dest) || 
                ( (position == dest) &&  
                  (direction == up) ) )   
            upsweep.wait(dest); 
         else 
            downsweep.wait(-dest); 
      } 
      busy = 1; 
      position = dest; 
   } 

  //Called when door closes 
release() { 
   busy = 0;  
   if (direction==up)  
      if (!empty(upsweep))  
         upsweep.signal;  
      else {  
         direction = down;  
         downsweep.signal;  
      } 
   else  /*direction==down*/ 
      if (!empty(downsweep))  
         downsweep.signal; 
      else { 
         direction = up;  
         upsweep.signal;  
      }  
   }  
}  
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Logical Clocks 
• Many applications need to time-stamp events for debugging, 

recovery, distributed mutual exclusion, ordering of broadcast 
messages, transactions, etc. 

• In a centralized system, can attach a clock value: 
•   C(e1) < C(e2) means e1 happened before e2 

• Physical clocks in distributed systems are skewed.  This can 
cause anomalies… 
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Skewed Physical  Clocks 

Based on times, the log shows an impossible sequence: 
e3, e1, e2, e4 

 
Message arrived before it was sent!! 
 
Possible sequences: 

 e1, e3, e2, e4      or      e1, e2, e3, e4 

Figure 3-7 
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Logical Clocks 
• Solution: time-stamp events using counters as 

logical clocks: 
1. Within a process p, increment counter for 

each new event: 
      Lp(ei+1) = Lp(ei) + 1 

2. Label each send event with new clock value: 
      Lp(es) = Lp(ei) + 1 

3. Label each receive event with new clock 
value based on maximum of local clock value 
and label of corresponding send event: 
      Lq(er) = max( Lp(es), Lq(ei) ) + 1 
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Logical Clocks 
• Logical Clocks yield a distributed happened-before 

relation: 
– ei ek  holds if 

• ei and ek belong to the same process and 
 ei happened before ek , or  

•  ei is a send and ek is the corresponding receive 
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Logical Clocks 

Figure 3-8 

Lp1(u)=4 

Lp2(v)=max(4,1)+1=5 

Lp3(x)=max(6,12)+1=13 

Lp2(y)=max(7,14)+1=15 



  
History 
• Originally developed by Steve Franklin 
• Modified by Michael Dillencourt, Summer, 2007 
• Modified by Michael Dillencourt, Spring, 2009 
• Modified by Michael Dillencourt, Winter, 2010 
• Modified by Michael Dillencourt, Summer, 2012 
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