
CompSci 143A Spring, 2013 1

3. Higher-Level Synchronization

3.1 Shared Memory Methods
– Monitors
– Protected Types

3.2 Distributed Synchronization/Comm.
– Message-Based Communication
– Procedure-Based Communication
– Distributed Mutual Exclusion

3.3 Other Classical Problems
– The Readers/Writers Problem
– The Dining Philosophers Problem
– The Elevator Algorithm
– Event Ordering with Logical Clocks

CompSci 143A Spring, 2013 2

3.1 Shared Memory Methods
• Monitors
• Protected Types

CompSci 143A Spring, 2013 3

Motivation
• Semaphores and Events are:

– Powerful but low-level abstractions
• Programming with them is highly error prone
• Such programs are difficult to design, debug, and

maintain
– Not usable in distributed memory systems

• Need higher-level primitives
– Based on semaphores or messages

CompSci 143A Spring, 2013 4

Monitors
– Follow principles of abstract data types

(object-oriented programming):
• A data type is manipulated only by a set of

predefined operations
– A monitor is

1. A collection of data representing the state of the
resource controlled by the monitor, and

2. Procedures to manipulate the resource data

CompSci 143A Spring, 2013 5

Monitors
• Implementation must guarantee:

1. Resource is only accessible by monitor
procedures

2. Monitor procedures are mutually exclusive
• For coordination, monitors provide:

c.wait
• Calling process is blocked and placed on waiting

queue associated with condition variable c
c.signal

• Calling process wakes up first process on queue
associated with c

CompSci 143A Spring, 2013 6

Monitors
• “condition variable” c is not a conventional

variable
– c has no value
– c is an arbitrary name chosen by programmer

• By convention, the name is chosen to reflect the an
event, state, or condition that the condition variable
represents

– Each c has a waiting queue associated
– A process may “block” itself on c -- it waits

until another process issues a signal on c

CompSci 143A Spring, 2013 7

Monitors
• Design Issue:

– After c.signal, there are 2 ready processes:
• The calling process which did the c.signal

• The blocked process which the c.signal “woke up”

– Which should continue?
 (Only one can be executing inside the monitor!)
Two different approaches
– Hoare monitors
– Mesa-style monitors

CompSci 143A Spring, 2013 8

Hoare Monitors
• Introduced by Hoare in a 1974 CACM paper
• First implemented by Per Brinch Hansen in

Concurrent Pascal
• Approach taken by Hoare monitor:

– After c.signal,
• Awakened process continues
• Calling process is suspended, and placed on high-

priority queue

CompSci 143A Spring, 2013 9

Hoare Monitors

Figure 3-2

Effect of wait

Effect of signal

CompSci 143A Spring, 2013 10

Bounded buffer problem
monitor BoundedBuffer
{
 char buffer[n];
 int nextin=0, nextout=0, fullCount=0;
 condition notempty, notfull;

 deposit(char data)
 {
 ...
 }

 remove(char data)
 {
 ...
 }
}

CompSci 143A Spring, 2013 11

Bounded buffer problem
deposit(char data)
{
 if (fullCount==n) notfull.wait;
 buffer[nextin] = data;
 nextin = (nextin+1) % n;
 fullCount = fullCount+1;
 notempty.signal;
}

remove(char data)
{
 if (fullCount==0) notempty.wait;
 data = buffer[nextout];
 nextout = (nextout+1) % n;
 fullCount = fullCount - 1;
 notfull.signal;
}

CompSci 143A Spring, 2013 12

Priority waits
• Hoare monitor signal resumes longest waiting

process (i.e., queue is a FIFO queue)
• Hoare also introduced “Priority Waits” (aka

“conditional” or “scheduled”):
– c.wait(p)

– p is an integer (priority)
– Blocked processes are kept sorted by p

– c.signal
– Wakes up process with lowest (!) p

CompSci 143A Spring, 2013 13

Example: alarm clock
• Processes can call wakeMe(n) to sleep for n clock

ticks
• After the time has expired, call to wakeMe

returns
• Implemented using Hoare monitor with priorities

CompSci 143A Spring, 2013 14

Example: alarm clock
monitor AlarmClock {
 int now=0;
 condition wakeup;

 wakeMe(int n) {
 int alarm;
 alarm = now + n;
 while (now<alarm)wakeup.wait(alarm);
 wakeup.signal;
 }
 tick() {
 /*invoked by hardware*/
 now = now + 1;
 wakeup.signal;
 }
}

CompSci 143A Spring, 2013 15

Example: alarm clock
• tick only wakes up one process
• Multiple processes with same alarm time awaken

in a chain:
– tick wakes up the first process
– the first process wakes up the second process

via the wakeup.signal in wakeme
– etc.

• Without priority waits, all processes would need to
wake up to check their alarm settings

CompSci 143A Spring, 2013 16

Mesa-style monitors
• Variant defined for the programming

language Mesa
• notify is a variant of signal
• After c.notify:

– Calling process continues
– Awakened process continues when caller exits

• Problem
– Caller may wake up multiple processes P1,P2,P3, …

– P1 could change condition on which P2 was
blocked.

CompSci 143A Spring, 2013 17

Mesa monitors
• Solution

instead of: if (!condition) c.wait

use: while (!condition) c.wait

• signal vs notify
– (Beware: There is no universal terminology)
– signal may involve caller “stepping aside”
– notify usually has caller continuing
– signal “simpler to use” but notify may be more

efficiently implemented

Monitors in Java
• Java supports synchronized methods, which

permit Java objects to be used somewhat
similarly to Mesa monitors
– Every object has an implicit lock, with a single

associated condition
– If a method is declare synchronized, the object’s

lock protects the entire method
– wait() causes a thread to wait until it is notified
– notifyAll() awakens all threads waiting on the

object’s lock
– notify () awakens a single randomly chosen thread

waiting on the object’s lock
• But there are differences…

CompSci 143A Spring, 2013 18

Differences between Java objects
and monitors

• Monitors
1. Resource is only accessible by monitor procedures
2. Monitor procedures are mutually exclusive

• Java objects

1. Fields are not required to be private
2. Methods are not required to be synchronized

Per Brinch Hansen: “It is astounding to me that Java’s

insecure parallelism is taken seriously by the
programming community, a quarter of a century after the
invention of monitors and Concurrent Pascal. It has no
merit.” [Java’s Insecure Parallelism, ACM SIGPLAN
Notices 34: 38-45, April 1999].

 CompSci 143A Spring, 2013 19

CompSci 143A Spring, 2013 20

Protected types (Ada 95)
• Encapsulated objects with public access

procedures called entries .
• Equivalent to special case of monitor where

– c.wait is the first operation of a procedure
– c.signal is the last operation

• wait/signal combined into a when clause
– The when c construct forms a barrier
– Procedure continues only when the condition c

is true

CompSci 143A Spring, 2013 21

Example
entry deposit(char c)
 when (fullCount < n)
 {
 buffer[nextin] = c;
 nextin = (nextin + 1) % n;
 fullCount = fullCount + 1;
 }

entry remove(char c)
 when (fullCount > 0)
 {
 c = buffer[nextout];
 nextout = (nextout + 1) % n;
 fullCount = fullCount - 1;
 }

CompSci 143A Spring, 2013 22

3.2 Distributed Synchronization and
Communication

• Message-based Communication
– Direct message passing
– Indirect message passing: channels, ports,

mailboxes
• Procedure-based Communication

– Remote Procedure Calls (RPC)
– Rendezvous

• Distributed Mutual Exclusion

CompSci 143A Spring, 2013 23

Distributed Synchronization
• Semaphore-based primitive requires shared

memory
• For distributed memory:

– send(p,m)
• Send message m to process p

– receive(q,m)
• Receive message from process q in variable m

• Semantics of send and receive vary
significantally in different systems.

CompSci 143A Spring, 2013 24

Distributed Synchronization
• Types of send/receive:

– Does sender wait for message to be accepted?
– Does receiver wait if there is no message?
– Does sender name exactly one receiver?
– Does receiver name exactly one sender?

CompSci 143A Spring, 2013 25

Types of send/receive
send blocking nonblocking
explicit
naming

send m to r
wait until accepted

send m to r

implicit
naming

broadcast m
wait until accepted

broadcast m

receive blocking nonblocking
explicit
naming

wait for message
from s

if there is a message from s,
receive it; else proceed

implicit
naming

wait for message
from any sender

if there is a message from any
sender, receive it; else proceed

CompSci 143A Spring, 2013 26

Channels, Ports, and Mailboxes
• Allow indirect communication
• Senders/Receivers name channel/port/mailbox

instead of processes
• Senders/Receivers determined at runtime

– Sender does not need to know
who receives the message

– Receiver does not need to know
who sent the message

CompSci 143A Spring, 2013 27

Named Message Channels
• Named channel, ch1, connects processes

p1 and p2
• p1 sends to p2 using send(ch1,”a”)
• p2 receives from p1 using: receive(ch1,x)
• Used in CSP/Occam: Communicating Sequential

Processes in the Occam Programming Language
(Hoare, 1978)

CompSci 143A Spring, 2013 28

Named Message Channels in CSP/Occam

– Receive statements may be implemented as
guarded commands

• Syntax: when (c1) s1
• s is enabled (able to be executed) only when c is

true
• If more than one guarded command is enabled, one

of them is selected for execution
• The condition c may contain receive statements,

which evaluate to true if and only if the sending
process is ready to send on the specified channel.

• Allow processes to receive messages selectively
based on arbitrary conditions

CompSci 143A Spring, 2013 29

Example: Bounded buffer with CSP
• Producer P, Consumer C, and Buffer B are

Communicating Sequential Processes
• Problem statement:

– When Buffer full: B can only send to C
– When Buffer empty: B can only receive from P
– When Buffer partially filled: B must know

 whether C or P is ready to act
• Solution:

– C sends request to B first; B then sends data
– Inputs to B from P and C are guarded with

when clause

CompSci 143A Spring, 2013 30

Bounded Buffer with CSP
• Define 3 named channels

– deposit: P → B
– request: B ← C
– remove: B → C

• P does:

– send(deposit, data);

• C does:
– send(request)
– receive(remove, data)

• Code for B on next slide

CompSci 143A Spring, 2013 31

Bounded buffer with CSP
process BoundedBuffer
{
 ...
 while (1) {
 when ((fullCount<n) && receive(deposit, buf[nextin]))
 {
 nextin = (nextin + 1) % n;
 fullCount = fullCount + 1;
 } or
 when ((fullCount>0) && receive(request))
 {
 send(remove, buf[nextout]);
 nextout = (nextout + 1) % n;
 fullCount = fullCount - 1;
 }
}

CompSci 143A Spring, 2013 32

Ports and Mailboxes
• Indirect communication (named message channels)

allows a receiver to receive from multiple senders
(nondeterministically)

• When channel is a queue, send can be nonblocking
• Such a queue is called mailbox or port,

depending on number of receivers:
– A mailbox can have multiple receivers

• This can be expensive because receivers referring to
the same mailbox may reside on different computers

– A port can have only one receiver
• So all messages addressed to the same port can be sent

to one central place.

CompSci 143A Spring, 2013 33

Ports and Mailboxes

Figure 3-2

UNIX implements of interprocess
communication

2 mechanisms: pipes and sockets
• Pipes: Sender’s standard output is receiver’s standard input

p1 | p2 | … | pn
• Sockets are named endpoints of a 2-way channel between

2 processes. Processes may be on different machines. To
establish the channel:
– One process acts as a server, the other a client
– Server binds it socket to IP address of its machine and a

port number
– Server issues an accept statement and blocks until client

issues a corresponding connect statement
– The connect statement supplies the client’s IP address

and port number to complete the connection.

CompSci 143A Spring, 2013 34

CompSci 143A Spring, 2013 35

Procedure-Based Communication
• Send/Receive are low level (like P/V)
• Typical interaction:

 Send Request and then Receive Result
Make this into a single higher-level primitive

• Use RPC (Remote Procedure Call) or Rendezvous
– Caller invokes procedure on remote machine
– Remote machine performs operation and

returns result
– Similar to regular procedure call, but

parameters cannot contain pointers or shared
references, because caller and server do not
share any memory

CompSci 143A Spring, 2013 36

RPC
• Caller issues:
 result = f(params)
• This is translated into:

Calling Process
...
send(server,f,params);
receive(server,result);
...

Server Process
process RP_server
{
 while (1)
 {
 receive(caller,f,params);
 result=f(params);
 send(caller,result);
 }
}

CompSci 143A Spring, 2013 37

Rendezvous
– With RPC: Called process p is part of a

dedicated server
– With Rendezvous:

• p is part of an arbitrary process
• p maintains state between calls
• p may accept/delay/reject call
• Setup is symmetrical:

Any process may be a client or a server

CompSci 143A Spring, 2013 38

Rendezvous (Ada 95)
• Caller: Similar syntax/semantics to RPC

q.f(param)
where q is the called process (server)

• Server: Must indicate willingness to accept:
accept f(param) S

• Rendezvous:
Caller (calling process) or Server (called process)
waits for the other,
Then they execute in parallel.

• (“Rendezvous” is French for “meeting.”)

CompSci 143A Spring, 2013 39

Rendezvous

Figure 3-3

CompSci 143A Spring, 2013 40

Rendezvous
• To permit selective receive, Ada provides guarded when

clauses (like in CSP/Occam) through the select statement
• For an accept statement to be selected:

– the when clause guarding it must be true; and
– there must be at least one pending procedure call to the

accept statement.
 select {

 [when B1:] accept E1(…) S1;
 or
 [when B2:] accept E2(…) S2;
 or
 …
 [when Bn:] accept En(…) Sn;
 [else R]
}

CompSci 143A Spring, 2013 41

Example: Bounded Buffer
process BoundedBuffer {
while(1) {
 select {
 when (fullCount < n):
 accept deposit(char c) {
 buffer[nextin] = c;
 nextin = (nextin + 1) % n;
 fullCount = fullCount + 1;
 }
 or
 when (fullCount > 0):
 accept remove(char c) {
 c = buffer[nextout];
 nextout = (nextout + 1) % n;
 fullCount = fullCount - 1;
 }
 }}}

CompSci 143A Spring, 2013 42

Distributed Mutual Exclusion
• Critical Section problem in a Distributed

Environment
– Several processes share a resource (a printer, a

satellite link, a file…)
– Only one process can use the resource at a time

• Additional Challenges:
– No shared memory
– No shared clock
– Delays in message transmission.

CompSci 143A Spring, 2013 43

Distributed Mutual Exclusion
• Central Controller Solution

– Requesting process sends request to controller
– Controller grants it to one processes at a time
– Problems with this approach:

• Single point of failure,
• Performance bottleneck

• Fully Distributed Solution:
– Processes negotiate access among themselves

CompSci 143A Spring, 2013 44

Distributed Mutual Exclusion
• Token Ring solution

– Each process has a controller
– Controllers are arranged in a ring
– Controllers pass a token around the ring
– Process whose controller holds token may enter its

CS

CompSci 143A Spring, 2013 45

Distributed Mutual Exclusion with Token Ring

Figure 3-4

CompSci 143A Spring, 2013 46

Distributed Mutual Exclusion
process controller[i] {
 while(1) {
 accept Token;
 select {
 accept Request_CS() {busy=1;}
 else null;
 }
 if (busy) accept Release_CS() {busy=0;}
 controller[(i+1) % n].Token;
 }
}
process p[i] {
 while(1) {
 controller[i].Request_CS();
 CSi;
 controller[i].Release_CS();
 programi;
 }
}

CompSci 143A Spring, 2013 47

3.3
Other Classical

SynchronizationProblems

• The Readers/Writers Problem
• The Dining Philosophers Problem
• The Elevator Algorithm
• Event Ordering with Logical Clocks

CompSci 143A Spring, 2013 48

Readers/Writers Problem
• Extension of basic Critical Section (CS) problem

(Courtois, Heymans, and Parnas, 1971)
• Two types of processes entering a CS: Readers (R) and

Writers (W)
• CS may only contain

– A single W process (and no R processes); or
– Any number of R processes (and no W processes).

• This is a relaxation of the mutual exclusion condition,
because multiple readers are allowed at one.

• A good solution should:
– Satisfy this relaxed extended mutual exclusion condition
– Take advantage of the fact that multiple R processes can

be in the CS simultaneously
– Prevent starvation of either process type

Readers/Writers Problem
• Two possible algorithms:

1. R has priority over W: No R is kept waiting
unless a W has already obtained permission to
enter the CS.

2. W has priority over R : When a W is waiting,
only those R processes already granted
permission to read are allowed to continue.
All other R processes must wait until the W
completes.

• Both of the above algorithms lead to starvation.

CompSci 143A 49 Spring, 2013

CompSci 143A Spring, 2009 50

Readers/Writers Problem

• Solution that prevents starvation of either
process type:

1. If R processes are in CS, a new R cannot
enter if a W is waiting

2. If a W is in CS, once it leaves, all R processes
waiting can enter, even if they arrived after
new W processes that are also waiting.

CompSci 143A 50 Spring, 2013

Solution using monitor
monitor Readers_Writers {
 int readCount=0,writing=0;
 condition OK_R, OK_W;

 start_read()
 {
 if (writing || !empty(OK_W))
 OK_R.wait;
 readCount = readCount + 1;
 OK_R.signal;
 }

 end_read()
 {
 readCount = readCount - 1;
 if (readCount == 0)
 OK_W.signal;
 }

 start_write()
 {
 if ((readCount !=0)||writing)
 OK_W.wait;
 writing = 1;
 }

 end_write()
 {
 writing = 0;
 if (!empty(OK_R))
 OK_R.signal;
 else OK_W.signal;
 }
}

CompSci 143A 51 Spring, 2013

CompSci 143A Spring, 2013 52

Dining philosophers Problem

• Each philosopher needs both forks to eat
• Requirements

– Prevent deadlock
– Guarantee fairness:

 no philosopher must starve
– Guarantee concurrency:

non-neighbors may eat
at the same time

Figure 3-5

CompSci 143A Spring, 2013 53

Dining philosophers problem
• One obvious solution: each philosopher graps left fork first

 p(i) : {
 while (1) {
 think(i);
 grab_forks(i);
 eat(i);
 return_forks(i);
 } }

 grab_forks(i): { P(f[i]); P(f[i%5 + 1]) }

 return_forks(i): { V(f[i]); V(f[i%5 + 1]) }

• May lead to deadlock (each philosopher has left fork, is
 waiting for right fork)

CompSci 143A Spring, 2013 54

Dining Philosophers
• Two possible solutions to deadlock

1. Use a counter:
At most n–1 philosophers may attempt to
grab forks

2. One philosopher requests forks in reverse
order, e.g.,

 grab_forks(1): { P(f [2]); P(f [1]) }
• Both violate concurrency requirement:

– While P(1) is eating the others could be
blocked in a chain.

(Exercise: Construct a sequence of requests/releases
where this happens.)

CompSci 143A Spring, 2009 55

Dining Philosophers
Solution that avoids deadlock and provides concurrency:
• Divide philosophers into two groups

– Odd-numberered philosophers (1,3,5) grab left fork
first

– Even-numberered philosophers (2,4) grab right fork
first

CompSci 143A 55 Spring, 2013

Elevator Algorithm
• Loosely simulates an elevator
• Same algorithm can be used for disk scheduling
• Organization of elevator

– n floors
– Inside elevator, one button for each floor
– At each floor, outside the door, there is a single (!) call

button
• Elevator scheduling policy

– When elevator is moving up, it services all requests at
or above current position; then it reverses direction

– When elevator is moving down, it services all requests
at or below current position; then it reverses direction

• We will present a monitor that governs the motion
according to these scheduling rules

CompSci 143A 56 Spring, 2013

Elevator Algorithm
• Two monitor calls

– request(i): called when a stop at floor i is requested,
either by pushing call button at floor i or by pushing
button i inside the elevator.

– release(): called when elevator door closes
• Usage:

– Process representing users call request(i)
– Elevator process (or hardware) calls release()

• Two condition variables (upsweep, downsweep)
• Boolean busy indicates that either

– the door is open or
– the elevator is moving to a new floor.

CompSci 143A 57 Spring, 2013

CompSci 143A Spring, 2013 58

Elevator algorithm
• When call arrives for floor dest and elevator is

currently at floor position
– If elevator is busy

• If position < dest wait in upsweep queue
• If position > dest wait in downsweep queue
• If position == dest wait in upsweep or downsweep queue,

depending on current direction
– Otherwise, no wait is necessary

• On return from wait (i.e., when corresponding signal is
received), or if no wait was necessary, service the
request
– set busy = 1
– move to the requested floor (dest)

CompSci 143A Spring, 2013 59

Elevator algorithm
Monitor elevator {
 int direction =1, up = 1, down = 0,
 position =1, busy = 0;
 condition upsweep, downsweep;

 request(int dest) {
 if (busy) {
 if (position < dest) ||
 ((position == dest) &&
 (direction == up)))
 upsweep.wait(dest);
 else
 downsweep.wait(-dest);
 }
 busy = 1;
 position = dest;
 }

 //Called when door closes
release() {
 busy = 0;
 if (direction==up)
 if (!empty(upsweep))
 upsweep.signal;
 else {
 direction = down;
 downsweep.signal;
 }
 else /*direction==down*/
 if (!empty(downsweep))
 downsweep.signal;
 else {
 direction = up;
 upsweep.signal;
 }
 }
}

CompSci 143A Spring, 2013 60

Logical Clocks
• Many applications need to time-stamp events for debugging,

recovery, distributed mutual exclusion, ordering of broadcast
messages, transactions, etc.

• In a centralized system, can attach a clock value:
• C(e1) < C(e2) means e1 happened before e2

• Physical clocks in distributed systems are skewed. This can
cause anomalies…

CompSci 143A Spring, 2013 61

Skewed Physical Clocks

Based on times, the log shows an impossible sequence:
e3, e1, e2, e4

Message arrived before it was sent!!

Possible sequences:

 e1, e3, e2, e4 or e1, e2, e3, e4

Figure 3-7

CompSci 143A Spring, 2013 62

Logical Clocks
• Solution: time-stamp events using counters as

logical clocks:
1. Within a process p, increment counter for

each new event:
 Lp(ei+1) = Lp(ei) + 1

2. Label each send event with new clock value:
 Lp(es) = Lp(ei) + 1

3. Label each receive event with new clock
value based on maximum of local clock value
and label of corresponding send event:
 Lq(er) = max(Lp(es), Lq(ei)) + 1

CompSci 143A Spring, 2013 63

Logical Clocks
• Logical Clocks yield a distributed happened-before

relation:
– ei ek holds if

• ei and ek belong to the same process and
 ei happened before ek , or

• ei is a send and ek is the corresponding receive

CompSci 143A Spring, 2013 64

Logical Clocks

Figure 3-8

Lp1(u)=4

Lp2(v)=max(4,1)+1=5

Lp3(x)=max(6,12)+1=13

Lp2(y)=max(7,14)+1=15

History
• Originally developed by Steve Franklin
• Modified by Michael Dillencourt, Summer, 2007
• Modified by Michael Dillencourt, Spring, 2009
• Modified by Michael Dillencourt, Winter, 2010
• Modified by Michael Dillencourt, Summer, 2012

CompSci 143A 65 Spring, 2013

	3. Higher-Level Synchronization
	3.1 Shared Memory Methods
	Motivation
	Monitors
	Monitors
	Monitors
	Monitors
	Hoare Monitors
	Hoare Monitors
	Bounded buffer problem
	Bounded buffer problem
	Priority waits
	Example: alarm clock
	Example: alarm clock
	Example: alarm clock
	Mesa-style monitors
	Mesa monitors
	Monitors in Java
	Differences between Java objects and monitors
	Protected types (Ada 95)
	Example
	3.2 Distributed Synchronization and Communication
	Distributed Synchronization
	Distributed Synchronization
	Types of send/receive
	Channels, Ports, and Mailboxes
	Named Message Channels
	Named Message Channels in CSP/Occam
	Example: Bounded buffer with CSP
	Bounded Buffer with CSP
	Bounded buffer with CSP
	Ports and Mailboxes
	Ports and Mailboxes
	UNIX implements of interprocess communication
	Procedure-Based Communication
	RPC
	Rendezvous
	Rendezvous (Ada 95)
	Rendezvous
	Rendezvous
	Example: Bounded Buffer
	Distributed Mutual Exclusion
	Distributed Mutual Exclusion
	Distributed Mutual Exclusion
	Distributed Mutual Exclusion with Token Ring
	Distributed Mutual Exclusion
	3.3 �Other Classical SynchronizationProblems
	Readers/Writers Problem
	Readers/Writers Problem
	Readers/Writers Problem
	Solution using monitor
	Dining philosophers Problem
	Dining philosophers problem
	Dining Philosophers
	Dining Philosophers
	Elevator Algorithm
	Elevator Algorithm
	Elevator algorithm
	Elevator algorithm
	Logical Clocks
	Skewed Physical Clocks
	Logical Clocks
	Logical Clocks
	Logical Clocks
	

