
2. Processes and Interactions
2.1 The Process Notion
2.2 Defining and Instantiating Processes

– Precedence Relations
– Implicit Process Creation
– Dynamic Creation With fork And join
– Explicit Process Declarations

2.3 Basic Process Interactions
– Competition: The Critical Section Problem
– Cooperation

2.4 Semaphores
– Semaphore Operations and Data
– Mutual Exclusion
– Producer/Consumer Situations

2.5 Event Synchronization

1 Spring, 2013 CompSci 143A

Processes
• A process is the activity of executing a program

on a CPU. Also, called a task.
• Conceptually…

– Each process has its own CPU
– Processes are running concurrently

• Physical concurrency = parallelism
This requires multiple CPUs

• Logical concurrency = time-shared CPU
• Processes cooperate (shared memory, messages,

synchronization)
• Processes compete for resources

2 Spring, 2013 CompSci 143A

Advantages of Process Structure
• Hardware-independent solutions

– Processes cooperate and compete correctly,
regardless of the number of CPUs

• Structuring mechanism
– Tasks are isolated with well-defined interfaces

3 Spring, 2013 CompSci 143A

Defining/Instantiating Processes
• Need to

– Define what each process does
– Specify precedence relations: when processes

start executing and stop executing, relative to
each other

– Create processes

4 Spring, 2013 CompSci 143A

Specifying precedence relations

• Process-flow graphs (unrestricted)
• Properly nested expressions/graphs (also

known as series-parallel graphs)

5 Spring, 2013 CompSci 143A

Process flow graphs
• Directed graphs
• Edges represent processes
• Vertices represent initiation, termination of

processes

6 Spring, 2013 CompSci 143A

Examples of Precedence Relationships
(Process Flow Graphs)

7

Figure 2-1
Spring, 2013 CompSci 143A

Process flow graphs
 (a + b) * (c + d) - (e / f) gives rise to

8

Figure 2-2

Spring, 2013 CompSci 143A

(Unrestricted) Process flow graphs
• Any directed acylic graph (DAG)

corresponds to an unrestricted process flow
graph, and conversely

• May be too general (like unrestricted goto
in sequential programming)

9 Spring, 2013 CompSci 143A

Properly nested expressions
• Two primitives, which can be nested:

– Serial execution
• Expressed as S(p1, p2, …)
• Execute p1, then p2, then …

– Parallel execution
• Expressed as P(p1, p2, …)
• Concurrently execute p1, p2,

• A graph is properly nested if it corresponds
to a properly nested expression

10 Spring, 2013 CompSci 143A

Examples of Precedence Relationships
(Process Flow Graphs)

11

Figure 2-1
Spring, 2013 CompSci 143A

Properly nested process flow graphs

• (c) corresponds to the properly nested expression
– S(p1, P(p2, S(p3, P(p4, p5)), p6), P(p7, p8))

• (d) is not properly nested
– (proof: text, page 44)

12 Spring, 2013 CompSci 143A

Process Creation
• Implicit process creation

– cobegin // coend,
– forall statement

• Explicit process creation
– fork/join
– Explicit process declarations/classes

13 Spring, 2013 CompSci 143A

Implicit Process Creation

• Processes are created dynamically using
language constructs.

• Process is not explicitly declared or initiated
• cobegin/coend statement
• Data parallelism: forall statement

14 Spring, 2013 CompSci 143A

Cobegin/coend statement

• syntax: cobegin C1 // C2 // … // Cn coend
• meaning:

– All Ci may proceed concurrently
– When all of the Ci’s terminate, the statement

following the cobegin/coend can proceed
• cobegin/coend statements have the same

expressive power as S/P notation
– S(a,b) ≡ a; b (sequential execution by default)
– P(a,b) ≡ cobegin a // b coend

15 Spring, 2013 CompSci 143A

cobegin/coend example

cobegin
 Time_Date // Mail //
 { Edit;
 cobegin
 { Compile; Load; Execute} //
 { Edit; cobegin Print // Web coend}
 coend
 }
coend

 16

Figure 2-4

Spring, 2013 CompSci 143A

Data parallelism
• Same code is applied to different data
• The forall statement

– syntax: forall (parameters) statements
– Meaning:

• Parameters specify set of data items
• Statements are executed for each item concurrently

17 Spring, 2013 CompSci 143A

Example of forall statement
• Example: Matrix Multiply

forall (i:1..n, j:1..m)
{
 A[i][j] = 0;
 for (k=1; k<=r; ++k)
 A[i][j] = A[i][j] + B[i][k]*C[k][j];
}

• Each inner product is computed sequentially
• All inner products are computed in parallel

18 Spring, 2013 CompSci 143A

Explicit Process Creation
• Using fork/join
• Explicit process declarations/classes

19 Spring, 2013 CompSci 143A

Explicit program creation: fork/join
• cobegin/coend are limited to properly nested

graphs
• forall is limited to data parallelism
• fork/join can express arbitrary functional

parallelism (any process flow graph)

20 Spring, 2013 CompSci 143A

The fork and join primitives
• Syntax: fork x

Meaning: create new process that
 begins executing at label x

• Syntax: join t,y
Meaning:

t = t–1;
if (t==0) goto y;

The operation must be indivisible. (Why?)

21 Spring, 2013 CompSci 143A

fork / join example
• Example: Graph in Figure 2-1(d)

 t1 = 2; t2 = 3;
 p1; fork L2; fork L5;
 fork L7; quit;
L2: p2; fork L3; fork L4; quit;
L5: p5; join t1,L6; quit;
L7: p7; join t2,L8; quit;
L4: p4; join t1,L6; quit;
L3: p3; join t2,L8; quit;
L6: p6; join t2,L8; quit;
L8: p8; quit;

22 Spring, 2013 CompSci 143A

The Unix fork statement
• procid = fork()

• Replicates calling process
• Parent and child are identical except for the

value of procid
• Use procid to diverge parent and child:

if (procid==0)do_child_processing
else do_parent_processing

23 Spring, 2013 CompSci 143A

Explicit Process Declarations
• Designate piece of code as a unit of

execution
– Facilitates program structuring

• Instantiate:
– Statically (like cobegin) or
– Dynamically (like fork)

24 Spring, 2013 CompSci 143A

Explicit Process Declarations
process p

 process p1
 declarations_for_p1
 begin ... end

 process type p2
 declarations_for_p2
 begin ... end

begin
 ...
 q = new p2;
 ...
end

25 Spring, 2013 CompSci 143A

Thread creation in Java
• Define a runnable class

Class MyRunnable implements runnable
{ …
 run() {…}
}

• Instantiate the runnable, instantiate and start a
thread that runs the runnable
Runnable r = new MyRunnable();
Thread t = new Thread(r);
t.start();

26 Spring, 2013 CompSci 143A

Process Interactions

• Competition/Mutual Exclusion
– Example: Two processes both want to access

the same resource.
• Cooperation

– Example:
 Producer → Buffer → Consumer

27 Spring, 2013 CompSci 143A

Process Interactions
• Competition: The Critical Section Problem

x = 0;
cobegin
p1: …
 x = x + 1;
 …
 //
p2: …
 x = x + 1;
 …
Coend

• After both processes execute , we should have x=2

28 Spring, 2013 CompSci 143A

The Critical Section Problem
• Interleaved execution (due to parallel processing

or context switching)

p1: R1 = x; p2: …
 R2 = x;
 R1 = R1 + 1;
 R2 = R2 + 1;
 x = R1 ;
 … x = R2;

• x has only been incremented once. The first

update (x=R1) is lost.

29 Spring, 2013 CompSci 143A

The Critical Section Problem
• Problem statement:

cobegin
p1: while(1) {CS_1; program_1;}
 //
p2: while(1) {CS_2; program_2;}
 //
 ...
 //
pn: while(1) {CS_n; program_n;}
coend

• Guarantee mutual exclusion: At any time,
at most one process should be executing within its
critical section (Cs_i).

30 Spring, 2013 CompSci 143A

The Critical Section Problem
In addition to mutual exclusion, prevent mutual

blocking:
1. Process outside of its CS must not prevent other processes

from entering its CS.
(No “dog in manger”)

2. Process must not be able to repeatedly reenter its CS and
starve other processes (fairness)

3. Processes must not block each other forever (no deadlock)
4. Processes must not repeatedly yield to each other (“after

you”--“after you”) (no livelock)

31 Spring, 2013 CompSci 143A

The Critical Section Problem
• Solving the problem is subtle
• We will examine a few incorrect solutions

before describing a correct one: Peterson’s
algorithm

32 Spring, 2013 CompSci 143A

Algorithm 1
• Use a single turn variable:

int turn = 1;
cobegin
p1: while (1) {
 while (turn != 1); /*wait*/
 CS_1; turn = 2; program_1;
 }
 //
p2: while (1) {
 while (turn != 2); /*wait*/
 CS_2; turn = 1; program_2;
 }
coend

• Violates blocking requirement (1), “dog in manger”
33 Spring, 2013 CompSci 143A

Algorithm 2
• Use two variables. c1=1 when p1 wants to enter its CS. c2=1

when p2 wants to enter its CS.

int c1 = 0, c2 = 0;
cobegin
p1: while (1) {
 c1 = 1;
 while (c2); /*wait*/
 CS_1; c1 = 0; program_1;
 } //
p2: while (1) {
 c2 = 1;
 while (c1); /*wait*/
 CS_2; c2 = 0; program_2;
 }
coend

• Violates blocking requirement (3), deadlock. Processes may
wait forever.

34 Spring, 2013 CompSci 143A

Algorithm 3
• Like #2, but reset intent variables (c1 and c2) each time:

 int c1 = 0, c2 = 0;
cobegin
p1: while (1) {
 c1 = 1;
 if (c2) c1 = 0; //go back, try again
 else {CS_1; c1 = 0; program_1}
 } //
p2: while (1) {
 c2 = 1;
 if (c1) c2 = 0; //go back, try again
 else {CS_2; c2 = 0; program_2}
 }
coend

• Violates blocking requirements (2) and (4), fairness and

livelock

35 Spring, 2013 CompSci 143A

Peterson’s algorithm
• Processes indicate intent to enter CS as in #2

and #3 (using c1 and c2 variables)
• After a process indicates its intent to enter, it

(politely) tells the other process that it will
wait (using the willWait variable)

• It then waits until one of the following two
conditions is true:
– The other process is not trying to enter; or
– The other process has said that it will wait (by

changing the value of the willWait variable.)

36 Spring, 2013 CompSci 143A

Peterson’s Algorithm

int c1 = 0, c2 = 0, willWait;
cobegin
p1: while (1) {
 c1 = 1; willWait = 1;
 while (c2 && (willWait==1)); /*wait*/
 CS_1; c1 = 0; program_1;
 }
 //
p2: while (1) {
 c2 = 1; willWait = 2;
 while (c1 && (willWait==2)); /*wait*/
 CS_2; c2 = 0; program_2;
 }
coend

• Guarantees mutual exclusion and no blocking
• Assumes there are only 2 processes

37 Spring, 2013 CompSci 143A

Another algorithm for the critical section
problem: the Bakery Algorithm

Based on “taking a number” as in a bakery or
post office

1. Process chooses a number larger than the
number held by all other processes

2. Process waits until the number it holds is
smaller than the number held by any other
process trying to get in to the critical
section

CompSci 143A 38 Spring, 2013

Code for Bakery Algorithm (First cut)
 int number[n]; //shared array. All entries initially set to 0
 //Code for process i. Variables j and x are local (non-shared) variables
 while(1) {

 program_i

 // Step 1: choose a number
 x = 0;
 for (j=0; j < n; j++)
 if (j != i) x = max(x,number[j]);
 number[i] = x + 1;

 // Step 2: wait until the chosen number is the smallest outstanding number
 for (j=0; j < n; j++)
 if (j != i) wait until ((number[j] == 0) or (number[i] < number[j]))
 CS_i

 number[i] = 0;
 }

CompSci 143A 39 Spring, 2013

Bakery algorithm, continued

• Complication: there could be ties in step 1.
This would cause a deadlock (why?)

• Solution: if two processes pick the same
number, give priority to the process with
the lower process number.

CompSci 143A 40 Spring, 2013

Correct code for Bakery Algorithm
 int number[n]; //shared array. All entries initially set to 0
 //Code for process i. Variables j and x are local (non-shared) variables
 while(1) {

 program_i

 // Step 1: choose a number
 x = 0;
 for (j=0; j < n; j++)
 if (j != i) x = max(x,number[j]);
 number[i] = x + 1;

 // Step 2: wait until the chosen number is the smallest outstanding number
 for (j=0; j < n; j++)
 if (j != i) wait until ((number[j] == 0) or (number[i] < number[j]) or
 ((number[i] = number[j]) and (i < j)))
 CS_i

 number[i] = 0;
 }

CompSci 143A 41 Spring, 2013

Software solutions to Critical Section problem

• Drawbacks
– Difficult to program and to verify
– Processes loop while waiting (busy-wait).

Wastes CPU time.
– Applicable to only to critical section problem:

(competition for a resource). Does not address
cooperation among processes.

• Alternative solution:
– special programming constructs (semaphores,

events, monitors, …)

 42 Spring, 2013 CompSci 143A

Semaphores
• A semaphore s is a nonnegative integer
• Operations P and V are defined on s
• Semantics:

P(s): if s>0, decrement s and proceed;
 else wait until s>0 and then decrement s and proceed
V(s): increment s by 1

• Equivalent Semantics:
P(s): while (s<1)/*wait*/; s=s-1
V(s): s=s+1;

• The operations P and V are atomic (indivisible)
operations

43 Spring, 2013 CompSci 143A

Notes on semaphores
• Invented by Dijkstra
• As we will see in Chapter 4, the waiting in the P operation

can be implemented by
– Blocking the process, or
– Busy-waiting

• Etymology:
– P(s), often written Wait(s); think “Pause”:

“P” from “passaren” (“pass” in Dutch) or from “prolagan,”
combining “proberen” (“try”) and “verlagen” (“decrease”).

– V(s), often written Signal(s):
think of the “V for Victory” 2-finger salute:
“V” from “vrigeven” (“release”) or “verhogen” (“increase”).

44 Spring, 2013 CompSci 143A

Mutual Exclusion w/ Semaphores
semaphore mutex = 1;
cobegin
p1: while (1) {
 P(mutex); CS1;V(mutex);program1;}
//
p2: while (1) {
 P(mutex);CS2;V(mutex);program2;}
//
...
//
pn: while (1) {
 P(mutex);CSn;V(mutex);programn;}
coend;

45 Spring, 2013 CompSci 143A

Cooperation
• Cooperating processes must also

synchronize
• Example: P1 waits for a signal from P2

before P1 proceeds.
• Classic generic scenario:
 Producer → Buffer → Consumer

46 Spring, 2013 CompSci 143A

Signal/Wait with Semaphores
semaphore s = 0;
cobegin
p1: ...
 P(s); /* wait for signal */
 ...
//
p2: ...
 V(s); /* send signal */
 ...
...
coend;

47 Spring, 2013 CompSci 143A

Bounded Buffer Problem
semaphore e = n, f = 0, b = 1;
cobegin
Producer: while (1) {
 Produce_next_record;
 P(e); P(b); Add_to_buf; V(b); V(f);
 }
//
Consumer: while (1) {
 P(f); P(b); Take_from_buf; V(b); V(e);
 Process_record;
 }
coend

48 Spring, 2013 CompSci 143A

Events

• An event designates a change in the system
state that is of interest to a process
– Usually triggers some action
– Usually considered to take no time
– Principally generated through interrupts and

traps (end of an I/O operation, expiration of a
timer, machine error, invalid address…)

– Also can be used for process interaction
– Can be synchronous or asynchronous

49 Spring, 2013 CompSci 143A

Synchronous Events
• Process explicitly waits for occurrence of a

specific event or set of events generated by
another process

• Constructs:
– Ways to define events
– E.post (generate an event)
– E.wait (wait until event is posted)

• Can be implemented with semaphores
• Can be “memoryless” (posted event disappears if

no process is waiting).

50 Spring, 2013 CompSci 143A

Asynchronous Events

• Must also be defined, posted
• Process does not explicitly wait
• Process provides event handlers
• Handlers are evoked whenever event is

posted

51 Spring, 2013 CompSci 143A

Event synchronization in UNIX

• Processes can signal conditions using asynchronous events:
 kill(pid, signal)

• Possible signals: SIGHUP, SIGILL, SIGFPE, SIGKILL, …
• Process calls sigaction() to specify what should happen

when a signal arrives. It may
– catch the signal, with a specified signal handler
– ignore signal

• Default action: process is killed
• Process can also handle signals synchronously by blocking

itself until the next signal arrives (pause() command).

52 Spring, 2013 CompSci 143A

Case study: Event synch. (cont)
• Windows 2000

• WaitForSingleObject or WaitForMultipleObjects
• Process blocks until object is signaled

53

object type signaled when:
process all threads complete
thread terminates
semaphore incremented
mutex released
event posted
timer expires
file I/O operation terminates
queue item placed on queue

Spring, 2013 CompSci 143A

History
• Originally developed by Steve Franklin
• Modified by Michael Dillencourt, Summer, 2007
• Modified by Michael Dillencourt, Spring, 2009
• Modified by Michael Dillencourt, Winter, 2010
• Modified by Michael Dillencourt, Summer, 2012

54 Spring, 2013 CompSci 143A

	2. Processes and Interactions
	Processes
	Advantages of Process Structure
	Defining/Instantiating Processes
	Specifying precedence relations
	Process flow graphs
	Examples of Precedence Relationships�(Process Flow Graphs)
	Process flow graphs
	(Unrestricted) Process flow graphs
	Properly nested expressions
	Examples of Precedence Relationships�(Process Flow Graphs)
	Properly nested process flow graphs
	Process Creation
	Implicit Process Creation
	Cobegin/coend statement
	cobegin/coend example
	Data parallelism
	Example of forall statement
	Explicit Process Creation
	Explicit program creation: fork/join
	The fork and join primitives
	fork / join example
	The Unix fork statement
	Explicit Process Declarations
	Explicit Process Declarations
	Thread creation in Java
	Process Interactions
	Process Interactions
	The Critical Section Problem
	The Critical Section Problem
	The Critical Section Problem
	The Critical Section Problem
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Peterson’s algorithm
	Peterson’s Algorithm
	Another algorithm for the critical section problem: the Bakery Algorithm
	Code for Bakery Algorithm (First cut)
	Bakery algorithm, continued
	Correct code for Bakery Algorithm
	Software solutions to Critical Section problem
	Semaphores
	Notes on semaphores
	Mutual Exclusion w/ Semaphores
	Cooperation
	Signal/Wait with Semaphores
	Bounded Buffer Problem
	Events
	Synchronous Events
	Asynchronous Events
	Event synchronization in UNIX
	Case study: Event synch. (cont)
	

