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Processes 
• A process is the activity of executing a program 

on a CPU.  Also, called a task. 
• Conceptually… 

– Each process has its own CPU 
– Processes are running concurrently 

• Physical concurrency = parallelism 
This requires multiple CPUs 

• Logical concurrency = time-shared CPU 
• Processes cooperate (shared memory, messages, 

synchronization) 
• Processes compete for resources 
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Advantages of Process Structure 
• Hardware-independent solutions 

– Processes cooperate and compete correctly, 
regardless of the number of CPUs 

• Structuring mechanism 
– Tasks are isolated with well-defined interfaces 
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Defining/Instantiating Processes 
• Need to 

– Define what each process does 
– Specify precedence relations: when processes 

start executing and stop executing,  relative to 
each other 

– Create processes 
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Specifying precedence relations 

• Process-flow graphs (unrestricted) 
• Properly nested  expressions/graphs (also 

known as series-parallel graphs) 
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Process flow graphs 
• Directed graphs 
• Edges represent processes 
• Vertices represent initiation, termination of 

processes 
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Examples of Precedence Relationships 
(Process Flow Graphs) 
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Figure 2-1 
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Process flow graphs 
 (a + b) * (c + d) - (e / f) gives rise to 
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Figure 2-2 
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(Unrestricted) Process flow graphs 
• Any directed acylic graph (DAG) 

corresponds to an unrestricted process flow 
graph, and conversely 

• May be too general (like unrestricted goto 
in sequential programming) 
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Properly nested expressions 
• Two primitives, which can be nested: 

– Serial execution 
• Expressed as S(p1, p2, …) 
• Execute p1, then p2, then … 

– Parallel execution 
• Expressed as P(p1, p2, …) 
• Concurrently execute p1, p2,  

• A graph is properly nested if it corresponds 
to a properly nested expression 
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Examples of Precedence Relationships 
(Process Flow Graphs) 
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Figure 2-1 
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Properly nested process flow graphs 

• (c) corresponds to the properly nested expression 
– S(p1, P(p2, S(p3, P(p4, p5)), p6), P(p7, p8)) 

• (d) is not properly nested 
– (proof: text, page 44) 
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Process Creation 
• Implicit process creation 

– cobegin // coend,  
– forall statement 

• Explicit process creation  
– fork/join 
– Explicit process declarations/classes 
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Implicit Process Creation 
 

• Processes are created dynamically using 
language constructs.  

• Process is not explicitly declared or initiated 
• cobegin/coend statement 
• Data parallelism: forall statement 
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Cobegin/coend statement 

• syntax: cobegin C1 // C2 // … // Cn coend 
• meaning:  

– All Ci may proceed concurrently 
– When all of the Ci’s terminate, the statement 

following the cobegin/coend can proceed 
• cobegin/coend statements have the same 

expressive power as S/P notation 
– S(a,b) ≡ a; b  (sequential execution by default) 
– P(a,b) ≡ cobegin a // b coend 
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cobegin/coend example 

cobegin 
  Time_Date // Mail // 
    {   Edit;  
        cobegin  
          {   Compile; Load; Execute} // 
          {   Edit; cobegin Print // Web coend} 
        coend 
    } 
coend 
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Figure 2-4 
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Data parallelism 
• Same code is applied to different data 
• The forall statement 

– syntax: forall (parameters) statements 
– Meaning:  

• Parameters specify set of data items  
• Statements are executed for each item concurrently 
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Example of forall statement 
• Example: Matrix Multiply 

forall ( i:1..n, j:1..m )  
{ 
   A[i][j] = 0; 
   for ( k=1; k<=r; ++k )   
      A[i][j] = A[i][j] + B[i][k]*C[k][j]; 
} 

• Each inner product is computed sequentially 
• All inner products are computed in parallel 
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Explicit Process Creation 
• Using fork/join 
• Explicit process declarations/classes 
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Explicit program creation: fork/join 
• cobegin/coend are limited to properly nested 

graphs 
• forall is limited to data parallelism 
• fork/join can express arbitrary functional 

parallelism (any process flow graph) 
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The fork and join primitives 
• Syntax: fork x 

Meaning: create new process that  
 begins executing at label x 

• Syntax: join t,y 
Meaning: 

t = t–1; 
if (t==0) goto y; 

The operation must be indivisible. (Why?) 
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fork / join example 
• Example: Graph in Figure 2-1(d)     

    t1 = 2; t2 = 3;  
    p1; fork L2; fork L5; 
        fork L7; quit; 
L2: p2; fork L3; fork L4; quit; 
L5: p5; join t1,L6; quit; 
L7: p7; join t2,L8; quit; 
L4: p4; join t1,L6; quit; 
L3: p3; join t2,L8; quit; 
L6: p6; join t2,L8; quit; 
L8: p8; quit;  
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The Unix fork statement 
• procid = fork() 

• Replicates calling process 
• Parent and child are identical except for the 

value of procid 
• Use procid to diverge parent and child: 

 
if (procid==0)do_child_processing 
else do_parent_processing 
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Explicit Process Declarations 
• Designate piece of code as a unit of 

execution  
– Facilitates program structuring 

• Instantiate: 
– Statically (like cobegin) or  
– Dynamically (like fork) 
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Explicit Process Declarations 
process p 
 
  process p1  
    declarations_for_p1  
  begin ... end  
 
  process type p2  
    declarations_for_p2  
  begin ... end  
 
begin  
  ...  
  q = new p2;  
  ...  
end  
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Thread creation in Java 
• Define a runnable class 

Class MyRunnable implements runnable 
{  … 
   run() {…} 
} 

• Instantiate the runnable, instantiate and start a 
thread that runs the runnable 
Runnable r = new MyRunnable(); 
Thread t = new Thread(r); 
t.start(); 
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Process Interactions 

• Competition/Mutual Exclusion 
– Example: Two processes both want to access 

the same resource. 
• Cooperation 

– Example:   
          Producer → Buffer → Consumer  
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Process Interactions 
• Competition: The Critical  Section Problem 

x = 0; 
cobegin 
p1: …   
    x = x + 1; 
    … 
    // 
p2: … 
    x = x + 1; 
    … 
Coend 

• After both processes execute , we should have x=2 
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The Critical Section Problem 
• Interleaved execution (due to parallel processing 

or context switching) 
 
p1: R1 = x;                  p2: …  
                                       R2 = x; 
      R1 = R1 + 1;              
                                       R2 = R2 + 1; 
      x = R1 ;                         
    …                                x = R2; 

 
• x has only been incremented once. The first 

update (x=R1) is lost.  
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The Critical Section Problem 
• Problem statement: 

cobegin  
p1: while(1) {CS_1; program_1;}   
    //  
p2: while(1) {CS_2; program_2;}  
    //  
    ...  
    //  
pn: while(1) {CS_n; program_n;}  
coend  

• Guarantee mutual exclusion:  At any time, 
at most one process should be executing within its 
critical section (Cs_i). 
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The Critical Section Problem 
In addition to mutual exclusion, prevent mutual 

blocking: 
1. Process outside of its CS must not prevent other processes 

from entering its CS.  
(No “dog in manger”) 

2. Process must not be able to repeatedly reenter  its CS and 
starve other processes (fairness) 

3. Processes must not block each other forever (no deadlock) 
4. Processes must not repeatedly yield to each other (“after 

you”--“after you”) (no livelock) 
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The Critical Section Problem 
• Solving the problem is subtle 
• We will examine a few incorrect solutions 

before describing a correct one: Peterson’s 
algorithm 
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Algorithm 1 
• Use a single turn variable: 

 
int turn = 1; 
cobegin  
p1: while (1) {  
      while (turn != 1); /*wait*/ 
      CS_1; turn = 2; program_1;  
      }       
 // 
p2: while (1) {  
      while (turn != 2); /*wait*/ 
      CS_2; turn = 1; program_2;  
      } 
coend 
 

• Violates blocking requirement (1), “dog in manger” 
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Algorithm 2 
• Use two variables. c1=1 when p1 wants to enter its CS. c2=1 

when p2 wants to enter its CS. 
 
int c1 = 0, c2 = 0; 
cobegin  
p1: while (1) {  
      c1 = 1; 
      while (c2); /*wait*/ 
      CS_1; c1 = 0; program_1;  
      } // 
p2: while (1) {  
      c2 = 1; 
      while (c1); /*wait*/ 
      CS_2; c2 = 0; program_2;  
      } 
coend 

• Violates blocking requirement (3), deadlock.  Processes may 
wait forever. 
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Algorithm 3 
• Like #2, but reset intent variables (c1 and c2) each time: 

 int c1 = 0, c2 = 0; 
cobegin  
p1: while (1) {  
      c1 = 1; 
      if (c2) c1 = 0; //go back, try again 
      else {CS_1; c1 = 0; program_1}   
      }  //  
p2: while (1) {  
      c2 = 1; 
      if (c1) c2 = 0; //go back, try again 
      else {CS_2; c2 = 0; program_2}   
      } 
coend 

 
• Violates blocking requirements (2) and (4), fairness and 

livelock 
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Peterson’s algorithm 
• Processes indicate intent to enter CS as in #2 

and #3 (using c1 and c2 variables) 
• After a process indicates its intent to enter, it 

(politely) tells the other process that it will 
wait (using the willWait variable) 

• It then waits until one of the following two 
conditions is true: 
– The other process is not trying to enter; or 
– The other process has said that it will wait (by 

changing the value of the willWait variable.) 
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Peterson’s Algorithm 
 
int c1 = 0, c2 = 0, willWait; 
cobegin 
p1: while (1) {   
      c1 = 1; willWait = 1; 
      while (c2 && (willWait==1)); /*wait*/ 
      CS_1; c1 = 0; program_1; 
      } 
 // 
p2: while (1) {   
      c2 = 1; willWait = 2; 
      while (c1 && (willWait==2)); /*wait*/ 
      CS_2; c2 = 0; program_2; 
      } 
coend 

 
• Guarantees mutual exclusion and no blocking 
• Assumes there are only 2 processes 
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Another algorithm for the critical section 
problem: the Bakery Algorithm 

Based on “taking a number” as in a bakery or 
post office 

1. Process chooses a number larger than the 
number held by all other processes 

2. Process waits until the number it holds is 
smaller than the number held by any other 
process trying to get in to the critical 
section 
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Code for Bakery Algorithm (First cut) 
 int number[n];  //shared array.  All entries initially set to 0 
     //Code for process i.  Variables  j and x are local (non-shared) variables 
    while(1)  { 

        program_i 

        // Step 1: choose a number 
        x = 0; 
        for (j=0; j < n; j++) 
            if (j != i)  x = max(x,number[j]); 
        number[i] = x + 1; 

        // Step 2: wait until the chosen number is the smallest outstanding number 
        for (j=0; j < n; j++) 
            if (j != i) wait until ((number[j] == 0) or (number[i] < number[j])) 
        CS_i 

        number[i] = 0; 
    } 
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Bakery algorithm, continued 

• Complication: there could be ties in step 1. 
This would cause a deadlock (why?) 

• Solution: if two processes pick the same 
number, give priority to the process with 
the lower process number. 
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Correct code for Bakery Algorithm 
 int number[n];  //shared array.  All entries initially set to 0 
     //Code for process i.  Variables  j and x are local (non-shared) variables 
    while(1)  { 

        program_i 

        // Step 1: choose a number 
        x = 0; 
        for (j=0; j < n; j++) 
            if (j != i)  x = max(x,number[j]); 
        number[i] = x + 1; 

        // Step 2: wait until the chosen number is the smallest outstanding number 
        for (j=0; j < n; j++) 
            if (j != i) wait until ((number[j] == 0) or (number[i] < number[j]) or  
                                                                       ((number[i] = number[j]) and (i < j))) 
        CS_i 

        number[i] = 0; 
    } 
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Software solutions to Critical Section problem 

• Drawbacks 
– Difficult to program and to verify 
– Processes loop while waiting (busy-wait).  

Wastes CPU time. 
– Applicable to only to critical section problem: 

(competition for a resource).  Does not address 
cooperation  among processes. 

• Alternative solution: 
– special programming constructs (semaphores, 

events, monitors, …) 
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Semaphores  
• A semaphore s is a nonnegative integer 
• Operations P and V are defined on s 
• Semantics: 

P(s):    if s>0, decrement s and proceed;  
            else wait until s>0 and then decrement s and proceed 
V(s):    increment s by 1 

• Equivalent Semantics: 
P(s): while (s<1)/*wait*/; s=s-1 
V(s): s=s+1; 

• The operations P and V are atomic  (indivisible) 
operations 
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Notes on semaphores 
• Invented by Dijkstra 
• As we will see in Chapter 4, the waiting in the P operation 

can be implemented by  
– Blocking the process, or 
– Busy-waiting  

• Etymology: 
– P(s), often written Wait(s); think “Pause”:  

“P” from “passaren” (“pass” in Dutch) or from “prolagan,” 
combining “proberen” (“try”) and “verlagen” (“decrease”). 

– V(s), often written Signal(s): 
think of the “V for Victory” 2-finger salute: 
“V” from “vrigeven” (“release”) or “verhogen” (“increase”). 
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Mutual Exclusion w/ Semaphores 
semaphore mutex = 1;  
cobegin  
p1: while (1) { 
      P(mutex); CS1;V(mutex);program1;}    
//  
p2: while (1) { 
      P(mutex);CS2;V(mutex);program2;} 
// 
...  
// 
pn: while (1) { 
      P(mutex);CSn;V(mutex);programn;} 
coend; 
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Cooperation 
• Cooperating processes must also 

synchronize  
• Example: P1 waits for a signal from P2 

before P1 proceeds. 
• Classic generic scenario:  
          Producer → Buffer → Consumer   
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Signal/Wait with Semaphores 
semaphore s = 0;  
cobegin  
p1:  ... 
      P(s); /* wait for signal */ 
      ...  
// 
p2:  ... 
      V(s);  /* send signal */ 
      ...  
...  
coend;  
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Bounded Buffer Problem 
semaphore e = n, f = 0, b = 1;  
cobegin  
Producer: while (1) {  
   Produce_next_record;    
   P(e); P(b); Add_to_buf; V(b); V(f);  
   }      
//  
Consumer: while (1) {    
   P(f); P(b); Take_from_buf; V(b); V(e);  
   Process_record;  
   }  
coend  
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Events 

• An event designates a change in the system 
state that is of interest to a process 
– Usually triggers some action 
– Usually considered to take no time 
– Principally generated through interrupts and 

traps (end of an I/O operation, expiration of a 
timer, machine error, invalid address…) 

– Also can be used for process interaction 
– Can be synchronous or asynchronous 
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Synchronous Events 
• Process explicitly waits for occurrence of a 

specific event or set of events generated by 
another process  

• Constructs: 
– Ways to define events 
– E.post (generate an event) 
– E.wait (wait until event is posted) 
 

• Can be implemented with semaphores 
• Can be  “memoryless” (posted event disappears if 

no process is waiting). 
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Asynchronous Events 

• Must also be defined, posted 
• Process does not explicitly wait 
• Process provides event handlers 
• Handlers are evoked whenever event is 

posted 
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Event synchronization in UNIX 

• Processes can signal conditions using asynchronous events: 
    kill(pid, signal) 

• Possible signals: SIGHUP, SIGILL, SIGFPE, SIGKILL, … 
• Process calls sigaction() to specify what should happen 

when a signal arrives.  It may  
– catch the signal, with a specified signal handler 
– ignore signal 

• Default action: process is killed 
• Process can also handle signals synchronously by blocking 

itself  until the next signal arrives (pause() command). 
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Case study: Event synch. (cont) 
• Windows 2000 

• WaitForSingleObject or WaitForMultipleObjects 
• Process blocks until object is signaled 
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object type signaled when: 
process all threads complete 
thread terminates 
semaphore incremented 
mutex released 
event posted 
timer expires 
file I/O operation terminates 
queue item placed on queue 
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History 
• Originally developed by Steve Franklin 
• Modified by Michael Dillencourt, Summer, 2007 
• Modified by Michael Dillencourt, Spring, 2009 
• Modified by Michael Dillencourt, Winter, 2010 
• Modified by Michael Dillencourt, Summer, 2012 
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