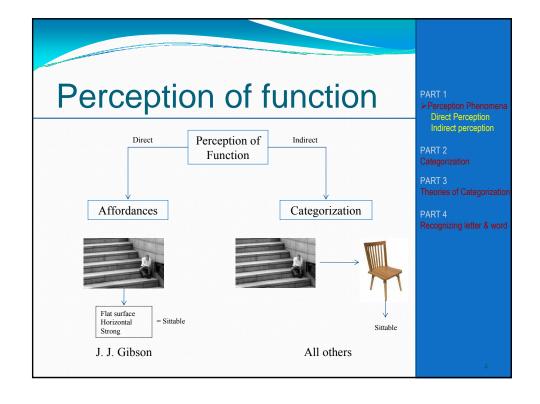
Perceiving Function and Category

Ish Rishabh and Vivek Singh

CS213: Visual Perception

Professor Aditi Majumder

1


Perceiving Function and Category

- Visually perceive
- Functionality of objects that we see
- Categorization: Classify into known types

Agenda Part 1: Perception of function Part 2: Categorization: Various phenomena Part 3: Theories of Categorization Part 4: Recognizing letters and words Part 4: Recognizing letters and words

Direct Perception of Function

- Traditional approach was categorization
- Gestalt psychologists argued direct perception
- *Affordances:* properties that prompt user interaction
- J. J. Gibson (1979) claimed that:
 - Objects can be grasped upon, sat upon
 - No standard categories for such affordances

PART 1

Perception PhenomerDirect PerceptionIndirect perception

PART 2

Categorization

PART:

Theories of Categorization

PART 4

Recognizing letter & word

5

Affordances

- Two important considerations:
 - 1. Functional form: Function must follow from form
 - Round wheels: rolling
 - Triangular wheel?
 - 2. *Observer relativity:* Affordances perceived depends upon the observer.

PART 1

Perception PhenomenaDirect PerceptionIndirect perception

PART 2

Categorization

PART 3

heories of Categorization

PART -

Recognizing letter & word

Affordances (continued)

- Neisser (1989)
- Functional properties that conform to both conditions are called *physical affordances*
- These are *necessary*, but *not sufficient* for direct perception (Gibson)

Similar affordances

Send Letters Different perceptions

Dumb garbage

PART 1

➤ Perception Phenomen➤ Direct Perception

PART 2

Categorization

PART:

Theories of Categorizatio

PART 4

Recognizing letter & word

Affordances (continued)

- Neisser suggested:
 - Affordances and categorization are fundamentally different *modes* of perception
 - Accomplished by *different* neural systems
- Evident in patient with damaged ventral system

PART 1

Perception PhenomenaDirect PerceptionIndirect perception

PART 2

Categorization

PART :

heories of Categorization

PART 4

Recognizing letter & word

Categorization (ventral)

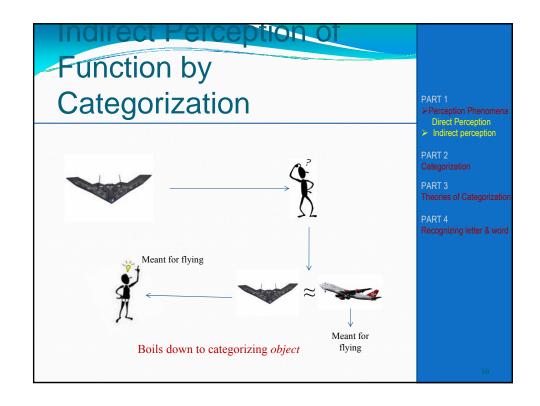
Affordances (shortcomings)

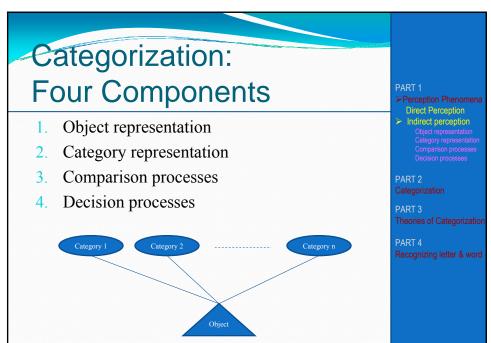
- Cannot account for all functional information that we perceive
 - Example: CDs
- Hence categorization approach is important

ΔRT 1

➤ Perception Phenomen
 Direct Perception

PART 2


Categorization


PART:

Theories of Categorization

PART 4

Recognizing letter & word

Categorization: 1. Object representation Shape is the most important Templates Fourier spectra Feature lists Structural descriptions Other information Texture Color Size Orientation

Categorization:

2. Category representation

- Shape is the most important
 - Templates
 - Fourier spectra
 - Feature lists
 - Structural descriptions
- Other information
 - Texture
 - Color
 - Size
 - Orientation

PART

- ➤ Perception Phenomena
 - Indirect perception
 - > Category representation
 Comparison processes

PART 2

Categorization

PART 3

Theories of Categorization

PART 4

Recognizing letter & word

13

Categorization:

3. Comparison processes

- Object and category *representations* should be of the same *type*
- Comparison: Serial or parallel?
 - Comparing across categories: parallel
 - Very large number of known categories
 - Comparing elements *within representation*: Not obvious.

PART 1

- ➤ Perception Phenomena
- Indirect perception
 Object representation
 - > Comparison processes

 Decision processes

PART 2

Categorizatio

PART 3

Theories of Categorization

PART 4

Recognizing letter & word

Categorization:

4. Decision processes

- Which category does the object belong to?
- Should support:
 - 1. Novelty
 - 2. Uniqueness
 - · For mutually exclusive classes
 - A thing cannot simultaneously be cat and dog
- Get fit value for each category
- Three *approaches* of decision making:
 - Threshold rule
 - Maximum (best-fit) rule
 - Maximum-over-threshold rule
 - · Most appropriate

PART 1

- ➤ Perception Phenomena
- Indirect perception
 Object representation
 Category representation
 Comparison processes

PART 2

Categorization

PART

Theories of Categorization

PART 4

Recognizing letter & word

15

Categorization

4. Decision processes (cont.)

Problem with threshold: Not unique

PART 1

- ➤ Perception Phenomena
- Indirect perception
 Object representation
 Category representation
 Comparison processes

PART 2

Categorization

PART 3

Theories of Categorization

PART 4

Recognizing letter & word

Categorization 4. Decision processes (cont.) Problem with best fit: No novelty PART 1 Perception Phenomena Direct Perception Indirect perception Object representation Cangarison processes Decision processes Decision processes PART 2 Categorization PART 3 Theories of Categorization PART 4 Recognizing letter & word

A. Decision processes (cont.) Maximum over threshold: Preserves novelty Maximum over threshold: Preserves novelty PART 1 Perception Phenomena Direct Perception Oliquity representation Companion processes Desicin processes D

Perceptual Categorization: Phenomena

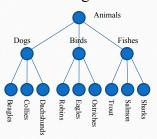
- 1. Defining categories and their structure
- 2. Effects of perspective viewing conditions on categorization
- 3. Does *part structure* help in categorization
- 4. Contextual effects on categorization
- 5. Visual agnosia

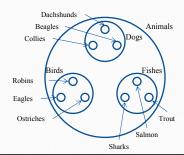
PART 1 √ Perception Phenomena

PART 2 ➤ Categorizat

Categories
Perspective viewing
Part structure
Context
Visual agnosia

PART


Theories of Categorization


PART 4

Recognizing letter & word

Perceptual Categorization: Defining categories

- Categorical structure is largely hierarchical
 - Dog < Mammal < Animal < Living thing ...
- Two ways of representing:
 - 1. Hierarchical trees
 - 2. Venn diagrams

PART 1 √

PART 2

Categorization

Categories
Perspective viewing
Part structure
Context

PART 3

heories of Categorization

PART 4

Recognizing letter & word

21

Perceptual Categorization: Defining categories (cont.)

- Variations within each category
 - Not all dogs look alike, nor all birds, nor cars
 - What is the basis of categorizing objects in a category?
- Classical approach: Aristotle
 - Category was designated by a set of *rules*
 - Necessary and sufficient conditions for membership
 - Conditions: List of properties that object must have
 - Example: Triangle (closed polygon, three lines)

PART 1 √ Perception Phenomena

PART 2

➤ Categorization

Categories
Aristotle View
Prototype
Perspective viewin
Part structure
Context

Visual agnosia

PART 3

Theories of Categorization

PART 4

Recognizing letter & word

Perceptual Categorization: Aristotelian view

- Binary category membership
 - Either in category or not
- Is it good at explaining natural perceptual categories?
- Ludwig Wittgenstein (1953) said "No".
 - Name features common to all games
 - Family members resemblance, but no necessary or sufficient condition definition

PART 1 √ Perception Phenomena

PART 2

Categorization
Categories
Aristotle View
Prototype
Perspective viewing
Part structure
Context

PART 3

heories of Categorization

PART 4

Recognizing letter & word

23

Perceptual Categorization: Prototype

- Eleanor Rosch, UC Berkeley (1970s)
- All natural categories might be structured in a similar way in terms of a central or ideal example
- This is called Prototype
- Prototype is an average member
 - 'Doggiest' possible dog

PART 1 √ Perception Phenomena

PART 2

CategorizationCategories

Aristotle View
> Prototype
Perspective viewing
Part structure

Context Visual agnosia

Theories of Categorization

PART 4

Recognizing letter & word

Perceptual Categorization: Aristotelian vs Prototype

- Rule-based vs instance-based representation
- Binary versus graded membership
 - How doggy a dog is?
- Prototypes are used naturally
 - Chihuahua rated poorly as dogs than beagles

PART 1 √
Perception Phenomena

PART 2

Categorization
Categories

Perspective viewing
Part structure
Context

PART 3

Theories of Categorizatio

PART 4

Recognizing letter & word

25

Perceptual Categorization: Levels of categories

- At which hierarchical level do we categorize an object?
 - Lassie < Dog < Mammal < Animal < ...?
- Most people identify object at an *intermediary* level
- Rosch defined it as basic-level category
- Superordinate categories: above basic
- Subordinate categories: below basic

PART 1 √ Perception Phenomena

PART 2

Categories

Aristotle View

Prototype

Basic-level categories

Entry-level categories

Perspective viewing Part structure Context

PART 3

Theories of Categorization

PART 4

Recognizing letter & word

Perceptual categorization: Basic-level categories

- Highest level category such that:
 - 1. Similar shape
 - 2. Similar motor interactions
 - · Piano, guitar
 - Common attributes

PART 1 √ Perception Phenomena

PART 2

Categorization

- Categories
 Aristotle View
 - > Prototype

 > Basic-level categories

 Entry-level categories

Perspective viewing Part structure Context

PART 3

heories of Categorization

PART 4

Recognizing letter & word

27

Perceptual Categorization: Entry-level categories

- Example:
 - Category: Bird
 - Robin, sparrow: identified as 'birds'
 - · Ostrich: identified as 'ostrich'
- For some basic-level categories with *wide variety*:
 - Typical objects are classified at basic level
 - Atypical objects are classified at subordinate level
- Jolicoeur (1984) called them entry-level

PART 1 √ Perception Phenomena

PART 2

Categorization

- Aristotle View
- > Prototype
- Basic-level categorie

Perspective viewing Part structure Context

Visual agnosia

Theories of Cotegorization

PART 4

Recognizing letter & word

Categorization: Perspective Viewing

- Perspective views influence speed and accuracy of recognition
- Some views of objects are easier to recognize than other

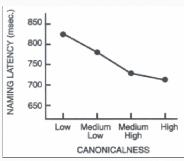
PART 1 √ Perception Phenomena

PART 2

- Categorization
- Perspective viewing
 Part structure
 Context

PART 3

Theories of Categorization


PART 4

Recognizing letter & word

29

Categorization: Perspective Viewing

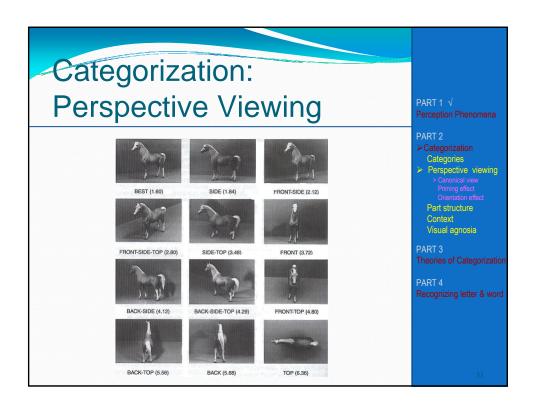
- Experiment: Palmer, Rosch and Chase (1981)
- Subjects rated many views of the same object
 - Canonical Perspective
- Other subjects named entry-level category of many objects
 - Latency was noted

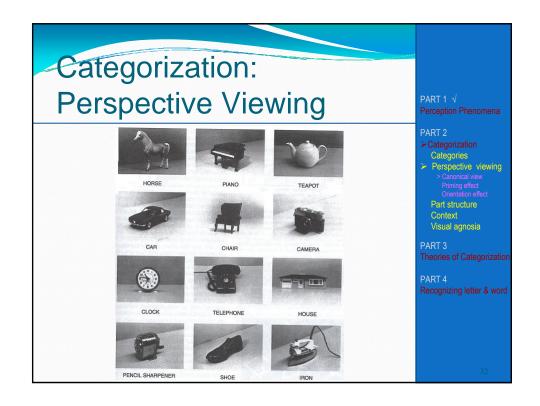
PART 1 √

PART 2

➤ Categorization

Perspective viewing
 Canonical view
 Priming effect
 Orientation effect


Part structure
Context


PART 3

Theories of Categorization

PART 4

Recognizing letter & word

Canonical view

Canonical view hypotheses

- Hypotheses:
 - 1. Frequency hypothesis
 - Frequently seen views are more canonical
 - But cups seen from above are not
 - 2. Maximal information hypothesis
 - Views that provide more information about shape and use of object are more canonical
 - Best views tend to show multiple sides
- Both hypotheses are true to some extent

PART 1 √ Perception Phenomena

PART 2

- Categorizatio
- Perspective viewing
 Canonical view
 Priming effect
- Part structure Context

Visual agnosia

PART 3 Theories of Categorization

PART 4

Recognizing letter & word

33

Perspective Viewing: Relation to Priming effect

- Priming effect (Bartram, 1974)
 - Two sets of images shown. Latency noted.
 - Categorizing is faster and more accurate if the object is presented a second time
 - Heightened state of readiness
 - Repetitions need not be exact replica
 - Different perspective view may be presented
- Irving Biederman used this to study the effect on perspective viewing on categorization

PART 1 √ Perception Phenomena

PART 2

- Categories
- Derenective view
- Canonical view
 - > Priming effect
- Part structure
- Visual agnosia

PART 3

Theories of Categorization

PART 4

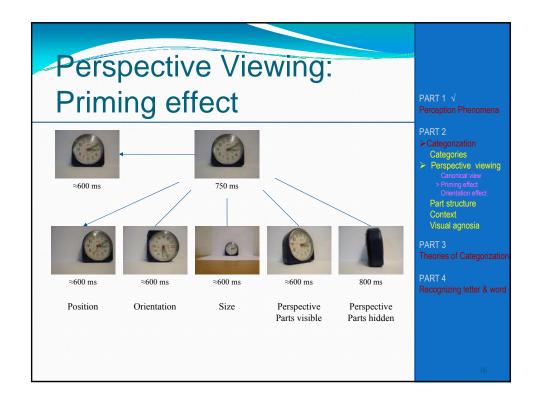
Recognizing letter & word

Perspective Viewing: Priming effect

- Modification in position, reflection or size does not affect priming effect
- Changes in perspective does
- However, if same parts are visible in different perspective, then no effect

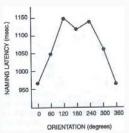
PART 1 √
Percention Phenomer

PART 2


- Categorization
 Categories
- Perspective viewing Canonical view
- Orientation effect
 Part structure
 Context
 Visual agnosia

PART 3

Theories of Categorization


PART 4

Recognizing letter & word

Categorization: Orientation effect

- Rotation of object along line of sight
- Pierre Jolicoeur (1985)
 - Faster categorization of objects in their normal, upright orientation
- Orientation effects diminish with practice
 - People may store multiple representations of the same object at different orientations

PART 1 √ Perception Phenomena

PART 2

- Categorization
- Perspective viewing
 Canonical view
 Priming effect
 > Orientation effect
 Part structure

PART 3

Theories of Categorization

Visual agnosia

PART 4

Recognizing letter & word

37

Categorization: Effects of Part structure

- Biederman and Cooper (1991)
- 2 experiments
 - Based on priming effect
 - Used line drawings of objects
- Experiment 1
 - In first image, half contours were deleted
 - Compliment image had only those lines
- Experiment 2
 - First image, some parts deleted
 - Compliment image has only those *parts*

PART 1 √ Perception Phenomena

PART 2

Categorization

Perspective viewing

Part structure
Context
Visual agnosia

PART 3

Theories of Categorization

PAR

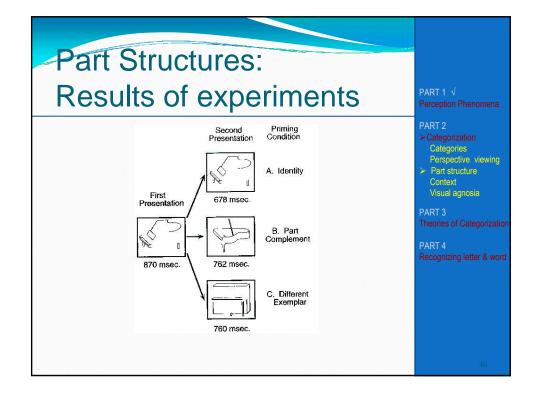
Recognizing letter & word

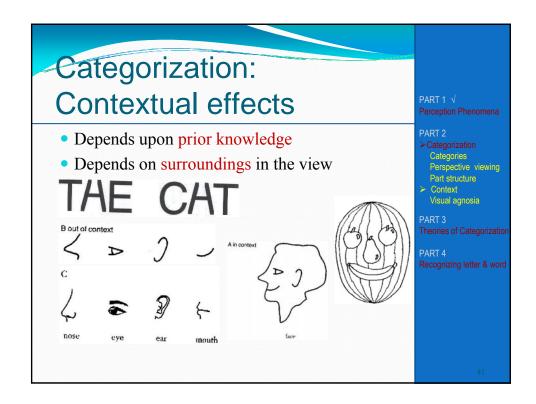
Part Structure: Experiments

- Identity priming
 - Same set was used in two trials
 - Just for baseline
- Compliment priming
 - Complement sets were used in two trials
- Different exemplar priming
 - A totally different perspective view was used in the second trial

PART 1 √

PART 2


- Categories
 Perspective viewing
- Part structure
 Context
 Visual agnosia


PART

Theories of Categorization

PART 4

Recognizing letter & word

Visual Agnosia phenomenon

- Brain damaged patients
- Inability to categorize previously known objects
- Apperceptive agnosia
 - Sensory processing damaged
- Associative agnosia
 - Perceptual part intact, but association lost
- Prosopagnosia
 - Cannot recognize faces visually

ART 1 √ erception Phenomena

PART 2

- Categories
 Perspective viewing
 Part structure
- Visual agnosia

PART 3

Theories of Categorization

PART 4

Recognizing letter & word

Visual agnosia PART 2 Categorization Categories Perspective viewing Part structure Context Visual agnosia PART 3 Theories of Categorization PART 4 Recognizing letter & word

Recap

- Perception of function
 - 1. Direct (affordances)
 - 2. Indirect (categorization)
- Categorization
 - Categories (basic-level, entry-level)
 - Effects of perspective on categorization
 - Effects of part structure
 - Effects of surrounding context
 - Visual agnosia is related to categorization

ART 1 √

PART 2 √
Categorization

PART:

heories of Categorization

PART

Recognizing letter & word

Theories for Object Categorization

- How objects might be perceived in the visual human system
- Most Prominent:
 - Recognition by Components (RBC) Theory
 - Irving Biederman (1985,1987)
 - Also called Geon theory

PART 1
Percention Phenor

PART 2

DADT 1

➤ Theory of categorization

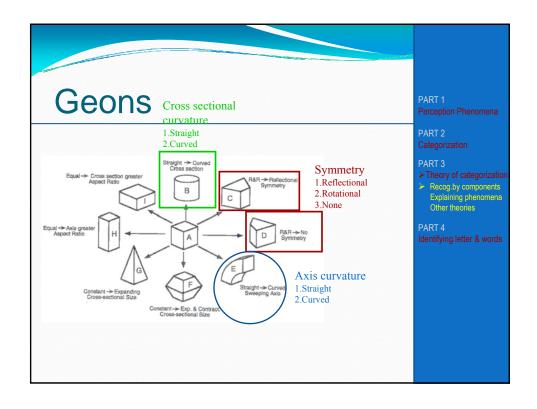
Recog.by component:
 Explaining phenomen
 Other theories

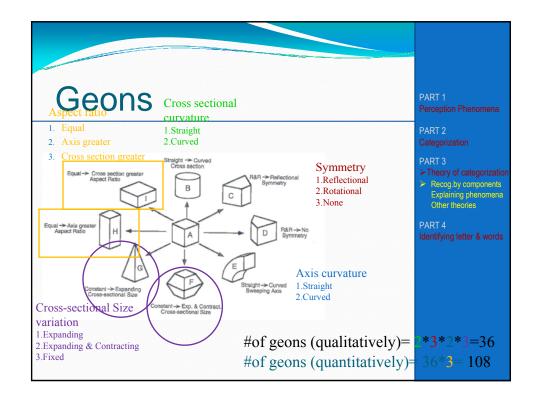
PART 4

Identifying letter & words

Recognition By Components Theory

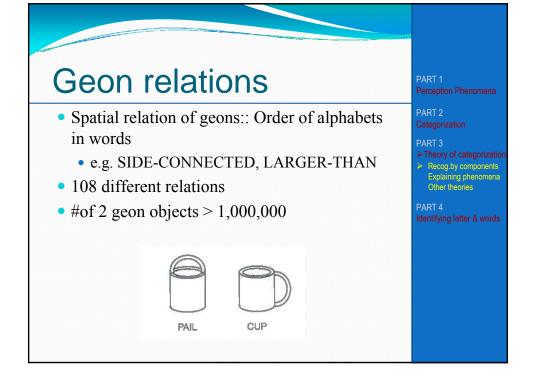
- Objects can be specified as spatial arrangements of primitive volumetric components called *geons*.
- Geons
 - geometric ions
 - A set of generalized cylinders which are easily distinguishable from each other.
 - Letters: Words :: Geons: Objects

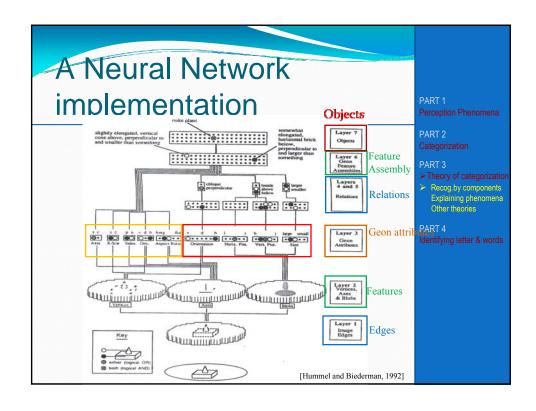

PART 1 Perception Phenomena

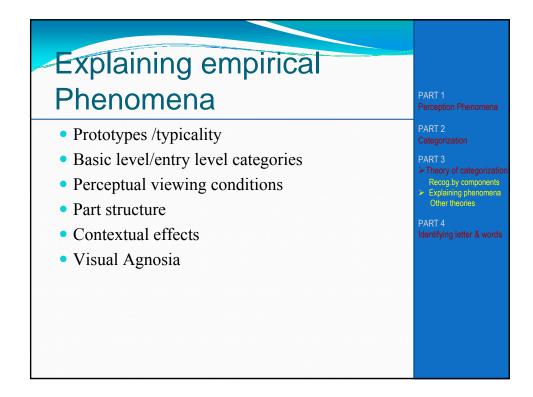

PART 2 Categorization

PART

- ➤ Theory of categorizatio
- Recog.by components
 Explaining phenomena
 Other theories


PART 4
Identifying letter & wor





Nonaccidental features PART 1 • Properties to identify geons. • Not dependent on 'accidents' of viewpoint. Explaining phenomena "CYLINDERS" • 2 parallel straight edges: 3 sets of 3 parallel edges: (a, h, d) (b, e, g) (c, f, i) (a, c) 2 parallel curved edges: 1 inner Y-vertex: (d, e) a 2 tangent Y-vertices: 3 outer arrow vertices: (afg) (bch) (dei) (abe) (bce) Figure 9.3.3 Nonaccidental properties of two geons. A brick and a cylinder can be distinguished by many properties that are

present from all but a few specific viewpoints.

Prototypes/typicality

- Categorization is function of geon matching
 - 'Rough' i.e. qualitative descriptions
 - Subordinate category (fine grained changes) can not be explained.

PART 1

PART 2

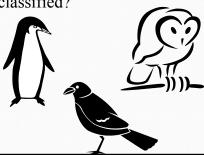
PART 3

- ➤ Theory of categorization
- Recog.by components

 Explaining phenomena

 Other theories

PART 4


Identifying letter & words

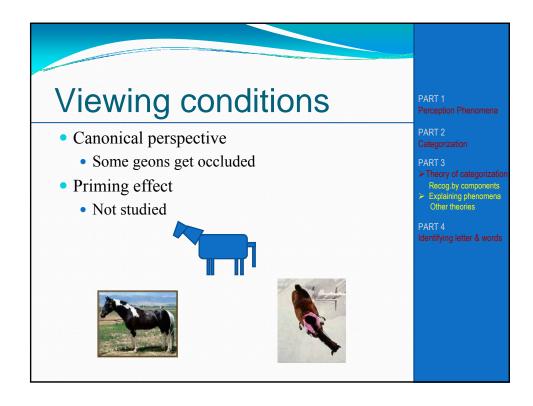
Basic level/entry level categories

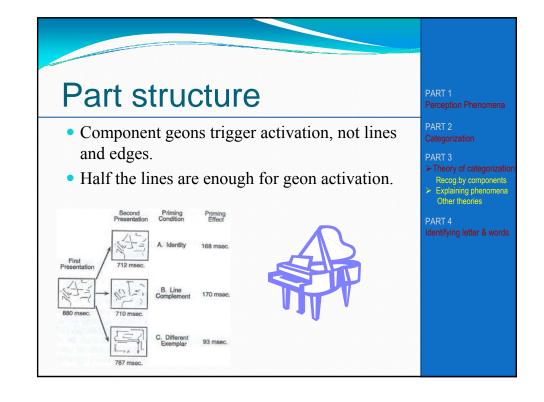
- Typical members closely match the geons for basic level descriptions
- Atypical members do not. Hence not normally classified in Basic level.
- But, how are they classified?

• Not clear

ART 1

PART 2


Categorizat


- ➤ Theory of categorization
- Recog.by components

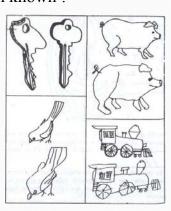
 Explaining phenomena
 Other theories

PART 4

Identifying letter & words

Contextual effects

- Cannot be explained as RBC looks only at parts of the object.
- But the idea can be extended to 'scenes' whose components are 'objects'.



THE CHT

PART 1

Visual Agnosia

- All views are 'unusual' to patients.
- Not much known!

- Explaining phenomena Other theories

Weaknesses

- Lack of representation power
 - 108 cylinders, 108 relations
- Finer discrimination required
 - Dog Vs Cat
 - Face recognition
- Implementation?

PART 1
Perception Phenomena

PART 2
Categorization

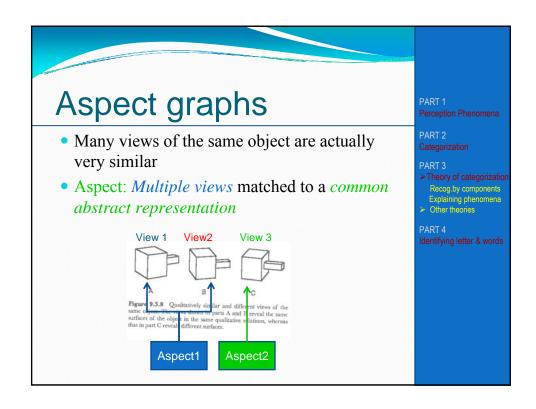
PART 3

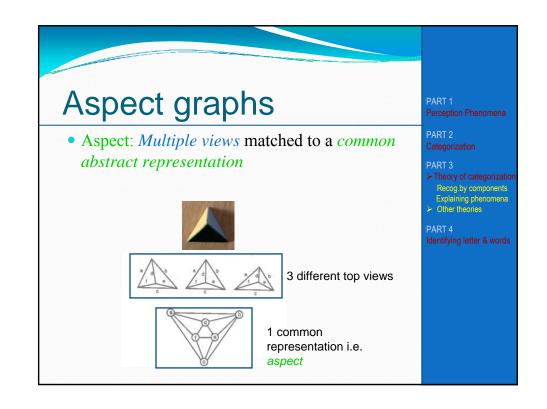
- ➤ Theory of categorization
- Recog.by components

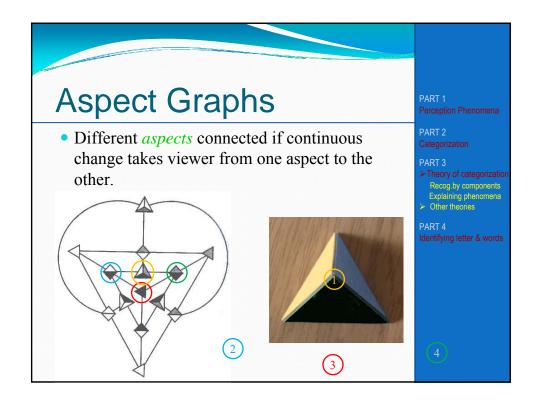
 Explaining phenomena
 Other theories

PART 4 Identifying letter & words

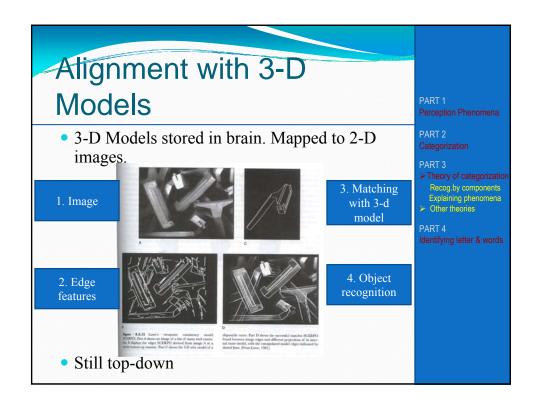
Viewpoint specific theories

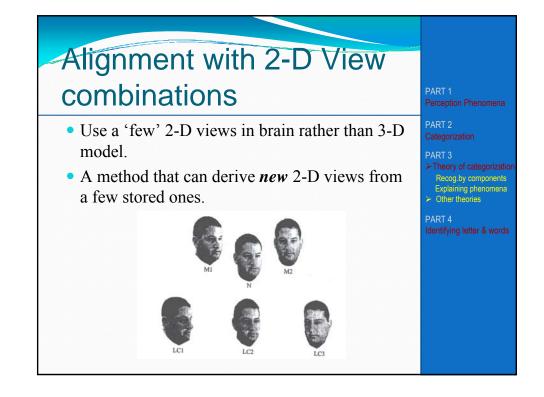

- Multiple Views are required
 - 1 view cannot capture the 3D model
 - Multiple 'good' views with low latency
- Hence:
 - Aspect Graphs
 - Alignment with 3-D models
 - Alignment with 2-D view combinations


PART 1 Perception Phenomena


PART 2


PART


- ➤ Theory of categorization
 Recog.by components
 Explaining phenomena
 ➤ Other theories
- PART 4



Weaknesses

- View point theories don't explain:
 - Innate 3-D ability
 - Novel objects
 - Non rigid objects
 - Part structure
 - Exemplar variation

PART 1

PART 2

DADT

- ➤ Theory of categorization
 Recog.by components
 Explaining phenomena
- Other theories

PART 4

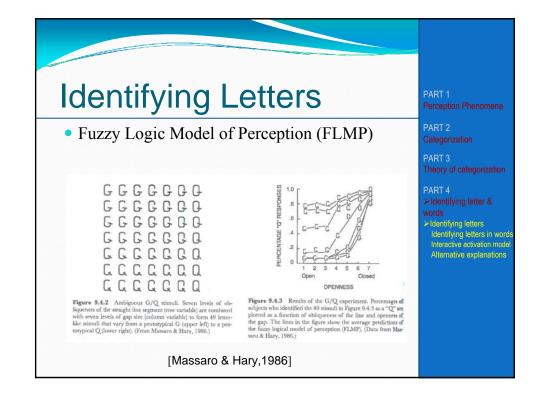
Identifying letter & words

Identifying Letters and words

- Perceiving letters as well as understanding words.
- Easier than object categorization:
 - Two-Dimensionality
 - Combinatorial structure
- Study:
 - Identifying Letters
 - Identifying within words
 - Interactive activation model

PART 1

PART 2


Categorization

Theory of categorization

PART 4

➤ Identifying letter & words ➤ Identifying letters

Identifying letters in words Interactive activation model Alternative explanations

dentifying letters within words

• Letters are **not** detected independently of words.

TAE CAT

- HWO NMYA RSETELTE NCA OYU RPTERO WNO
- HOW MANY LETTERS CAN YOU REPORT NOW?

PART 1

Perception Phenomen

PART 2

Categorization

PART 3

Theory of categorization

PART 4

➤ Identifying letter 8

Identifying letters
Identifying letters in words
Interactive activation model
Alternative explanations

Effects Word superiority [McCelelland & Rumelhart, 1981] effect --- ^D_K 83% Word-nonword effect words Identifying letters 70% ORWD 8888 Word-letter effect Identifying letters in words Interactive activation mode D K ⊗⊗⊗⊗ Alternative explanations 70% Figure 9.4.5 A controlled experiment demonstrating the word appriority effect. A word, nonword anagram, or single letter was presented briefly, followed by a mask and a two-alternative forced chief. Subjects were more accurate in the word condition than in either of the other two.

Interactive Activation Model

- Proposes a multilayer neural network like model.
 - Feature level
 - Letter level
 - Word Level

HICIEFEHI STUVWXYZ

Figure 9.4.7 The letter font used by the interactive activation model Earls letter is composed of a subset of the 12 possible segments shown at the bottom, (From McClelland & Rumelhart, the

PART 1

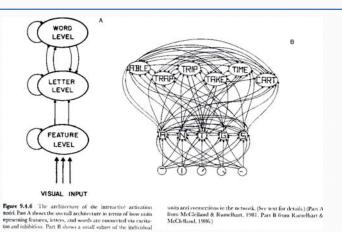
erception Phenomena

PART 2

Categorization

PART 3

Theory of categorization


PART

➤ Identifying letter 8

ords
Identifying letters

Identifying letters in words
Interactive activation model
Alternative explanations

Interactive Activation Model

PART 1

PART 2

Calegorization

Theory of categorizatio

PART

➤ Identifying letter &

words
Identifying letters
Identifying letters in words
≻Interactive activation model
Alternative explanations

Alternative Explanations

- Word shape
- Serial Letter recognition
- Parallel recognition
 - Moving window effect
 - Boundary effect

PART 1

Percention Phenomens

PART 2

Categorization

PART

Theory of categorization

PART

➤ Identifying letter 8

Identifying letters
Identifying letters in words
Interactive activation model
Alternative explanations

Word Shape

• We recognize a word is the pattern of ascending, descending, and neutral characters [James Cattell, 1886]

	test	Error rates	Explanation
	tesf	13%	Consistent word shape
	tesc	7%	Inconsistent word shape

PART 1

ception Phenomena

PART 2

Categorization

PART 3

heory of categorization

PART 4

➤ Identifying letter δ words

Identifying letters Identifying letters in words Interactive activation model

Word Shape Vs. Letter Shape

 Letter shape more important than Word shape [Monk & Hulme, 1983]

than	Same Word shape	Different Word shape
Same letter shape	t <u>b</u> an 15% missed	19% missed
Different letter shape	tdan 8% missed	10% missed

PART 1

Perception Phenomena

PART 2

ategorization

PART 3

heory of categorization

PART

➤ Identifying letter words

Identifying letters
Identifying letters in word
Interactive activation mode
Alternative explanations

Serial letter recognition

- Analogy to dictionary [Gough, 1972].
 - Start with 1st letter, then 2nd and so on.
- Search for a letter in random strings.
 - 3rd letter 30 ms, 4th letter 40 ms.
- Bigger words take longer to recognize.
- Effects
 - NOUTH
 - SORTH
- Cannot explain word superiority effect

PART 1
Perception Phenomena

PART 2
Categorization

PART 3
Theory of categorization

PART 4
> Identifying letter &

Identifying letters
Identifying letters in words
Interactive activation model
Alternative explanations

Parallel letter recognition

• Moving window effect [McConkie & Rayner 1975]

Roadside joggers endure sweat, pain and angry drivers in the name of fitness. A healthy body may seem reward ...

- Fixate on words (200-300ms), then saccadic movement (20-35ms).
 - Fovea (3 or 4 letters)
 - Neighboring (8 or 9 letters)
 - Parafovea (15 to 20 characters)

PART 1

erception Phenomena

PART 2

Categorization

PART

Theory of categorization

PART 4

➤ Identifying letter words

Identifying letters
Identifying letters in words
Interactive activation model
Alternative explanations

Moving window effect

Window size	Sentence	Reading rate
3 letters	An experimxxx xxx xxxxxxxx xx	207 wpm
9 letters	An experiment wax xxxxxxxx xx	308 wpm
15 letters	An experiment was condxxxxx xx	340 wpm

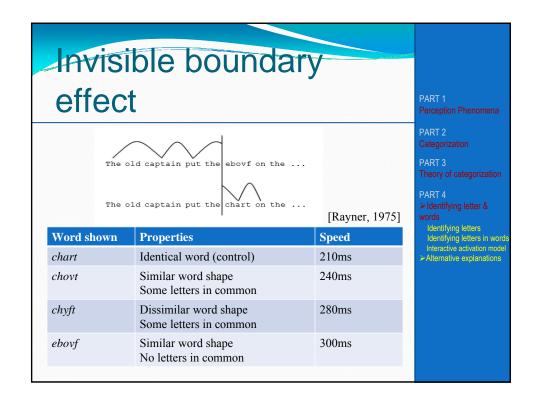
PART 1

rception Phenomen

PART 2

Categorization

PART 3


heory of categorization

PART 4

➤ Identifying letter &

Identifying letters
Identifying letters in words
Interactive activation model

Alternative explanations

Summary

- Part 1: Perception of function phenomena
 - Direct Vs. Indirect
- Part 2: Categorization phenomena
 - Parts, categories, viewpoints, agnosia
- Part 3: Theory of categorization
 - Recognition By Components
- Part 4: Recognizing letters and words
 - Interactive Activation model