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Abstract

In this paper we propose a compact device-independent
representation of the photometric properties of a camera,
especially the vignetting effect. This representation can
be computed by recovering the photometric parameters at
sparsely sampled device configurations(defined by aper-
ture, focal length and so on). More importantly, this can
then be used for accurate prediction of the photometric
parameters at other new device configurations where they
have not been measured.

1. Introduction
In this paper we present a device independent represen-

tation of the photometric properties of a camera, in partic-
ular the vignetting effect. The photometric properties of a
camera consist of the intensity transfer function, commonly
called the response curve, and the spatial intensity variation,
marked by a characteristic intensity fall-off from the center
to fringe, commonly called the vignetting effect.

Cameras are common today in many applications in-
cluding scene reconstruction, surveillance, object recogni-
tion and target detection. They are also used extensively in
many projector camera applications like scene capture, 3D
reconstruction, virtual reality, tiled displays, and so on. In
a research and development environment the same camera
may be used for several different applications and differ-
ent settings. But for each particular scenario, we need to
calibrate this camera anew when properties like vignetting
effect or response curve depend only on device parameters
and change very slowly, if at all, with time. Photometric
calibrations are often time consuming and may need spe-
cific patterns and conditions which are hard to generate (e.g.
diffused object illuminated in a diffused manner).

We design a compact device-independent representa-
tion of the non-parametric photometric parameters in a
space spanned by the device settings like aperture and fo-
cal lengths. We propose a higher-dimensional Bezier patch
for our device-independent representation based on the crit-
ical observation that the photometric parameters of a cam-

era change smoothly across different device configurations.
The primary advantages of this representation are the fol-
lowing: (a) generation of an accurate representation using
the measured photometric properties at a few device config-
urations obtained by sparsely sampling the device settings
space; (b) accurate prediction of the photometric parame-
ters from this representation at unsampled device configu-
rations. To the best of our knowledge, we present the first
device independent representation of photometric proper-
ties of cameras which has the capability of predicting device
parameters at configurations where it was not measured.

Our device independent representation opens up the op-
portunity of factory calibration of the camera and the data
then being stored in the camera itself. Our compact repre-
sentation requires very small storage. Further, the predictive
nature of our model assures that properties at many different
settings can be accurately generated from this representa-
tion. Finally, our Bezier based representation can be easily
computed using a inexpensive embedded hardware allow-
ing on-the-fly generation of the photometric properties at
different device settings which can then be used to correct
the imagery in real-time.

2. Related Work
There are many methods that use a parametric model to

represent and estimate the camera response curve [16, 18,
7, 25, 20, 10, 11, 6]. [4, 15] use a non-parametric model
for estimating the response curve. Other methods estimate
the vignetting effect of a camera when the response curve
is known using a parametric model [1, 29, 28, 26, 2, 23,
3, 5, 30]. The problem of estimating an unknown response
curve and the vignetting effect of the camera is an undercon-
strained one. [12, 13, 9] estimate both the response curve
and the vignetting effect simultaneously using parametric
models, and can recover the vignetting effect only up to an
exponential ambiguity.

The changes in the photometric properties of a camera
depend on a large number of unforseen physical parame-
ters, especially in today’s inexpensive highly miniaturized
devices which often undergo adverse optical aberrations due
to low quality material properties. Hence, almost all of the
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(a) (b)

(c) (d)

Figure 1. The camera vignetting effect estimated at (a) f/16, (b) f/8, (c) f/4 and (d) f/2.8. Note that the vignetting effect gets more
pronounced as the aperture size increases from (b) to (d).

models for the photometric properties mentioned above are
device-dependent physically-based model of the response
curve and the vignetting effect. Accounting for all these
physical influences accurately is very difficult in a device-
dependent model. Hence, many simplifying assumptions
are made (like principal center coincides with the image
center, the vignetting is a polynomial function of the radius
and so on), which are often not true physically.

Contrary to these models, we seek a device-independent
representation defined in a multi-dimensional space
spanned by the several controllable device settings like
aperture and focal length. Hence, our model precludes
any such assumptions common in device dependent mod-
els. Since it depends only on the device settings, it is easily
scalable to large number of device settings. Our method
can easily be applied when the estimated parameters are in
non-parametric form as in [4, 15]. More recently, there have
been works which constrain the under-constrained problem
of finding response curve and vignetting effect of a camera
by introducing a projector in a closed feedback loop where
the projected input images seen by the camera are known
[8, 24]. These can thus estimate the response curves and

vignetting effects of both the camera and the projector si-
multaneously. These methods use non-parametric represen-
tations of the photometric properties particularly suited for
our representation. For methods that use parametric repre-
sentation, a intermediate non-parametric representation can
be easily generated to make it conducive to our device inde-
pendent representation.

3. Device-Independent Representation

In this section we present a new and efficient device in-
dependent representation of the photometric properties of a
camera.

We seek a device-independent representation with the
following goals. First, the representation should be defined
in a multi-dimensional space spanned by the controllable
device settings like aperture and focal length. We call this
space as the device settings space. Second, the representa-
tion should be compact. Third, it should be easy to compute
the parameters of the representation by estimating the pho-
tometric properties (response curve and vignetting effect)
at sparsely sampled points in the device settings space. Fi-
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nally, the photometric parameters at new points on the de-
vice settings space (where it was not measured) should be
predicted easily and accurately from this compact represen-
tation.

Our representation of photometric camera properties and
its efficient one-time evaluation can have a significant im-
pact in the performance of projector-camera or capture sys-
tems. Currently, the camera used in such systems are not
corrected for their vignetting effect due to difficult calibra-
tion processes. So, usually only a small central part of the
image is considered to avoid whatever vignetting effect is
present. To avoid this inefficiency in making use of the
whole resolution of the camera, more often the camera is
set to low aperture (f/16 or lower) [4] where the vignetting
is considered insignificant. But this results in noisy im-
ages due to low light. Allowing more light without chang-
ing the aperture setting is only possible via a higher shutter
speed. But, in this case, the camera cannot tolerate move-
ments leading to motion-blurred images. Our method can
now enable using factory-calibrated cameras in any setting
appropriate for the demands made by the application.

Of the photometric properties, the response curve is spa-
tially invariant and the vignetting effect is input invariant.
Usually vignetting shows changes from one device set-
ting to another, while the response curve remains the same
[4, 14]. So, in our discussion, we only consider the vi-
gnetting effect assuming a compact polynomial represen-
tation for the 1D response curve. First, we describe our
method for two controllable device settings in our cameras,
focal length and aperture. This will be followed by a gener-
alization of the scheme to allow more device settings. Fig-
ure 1 provides an example of the input to our method – the
vignetting effect of the camera at different aperture settings.

We desire to represent the vignetting effect of the camera
as a function C(u, v, f ′, a′) that returns the vignetting effect
at spatial coordinate (u, v) for device settings parameters
of focal length, f , and aperture, a. We call the 2D space
spanned by f and a as the device settings space. f ′ and a′

are functions of f and a and provide a parametrization of
the device settings space most suited for finding C. This
will be explained in details in Section 3.1.

Our representation for the vignetting effect C is based on
the critical observation that it changes smoothly and coher-
ently with change in device settings and with spatial coor-
dinates. Hence, we choose a 4 dimensional Bézier surface
to represent this compactly. We define the Bézier surface
C(u, v, pf , pa) as

Nu∑
i=0

Nu∑
j=0

Nf∑
k=0

Na∑
l=0

Bi(u)Bj(v)Bk(f ′)Bl(a′)Pi,j,k,l

=
Nu∑
i=0

Nv∑
j=0

Nf∑
k=0

Na∑
l=0

Bi,j,k,l(u, v, f ′, a′)Pi,j,k,l

where u,v,f ′ and a′ are normalized in [0, 1], Pi,j,k,l are the
control points of the Bézier. Bi’s are the Bernstein polyno-
mials described by:

Bi(u) =
(

Nu

i

)
ui(1− u)Nu−i (1)

Note that in the above equations, Nu, Nv and Na and Nf

can be different. This assures that the smoothness of the
Bézier can be different in the domains of u, v, f ′ and a′.
For example, in a very high-end camera, if the vignetting is
very limited, it may suffice to have Nu = Nv = 3, but it
may change over the aperture setting to result in Na = 4.

Our method involves three steps: (a) First, the device
settings space spanned by f and a is sparsely sampled. The
self calibration method mentioned in the previous section is
used to estimate the vignetting effect at these sparsely sam-
pled device settings. (b) Second, the device parameters f
and a are parameterized between [0, 1] to yield the parame-
ters f ′ and a′ respectively that will be used to parameterize
the fitting of the Bézier. (c) Third, a four dimensional Bézier
surface C(u, v, f ′, a′) is fitted to this data and the control
points, Pi,j,k,l are estimated from the fitted function. (c)
Finally, the vignetting effect at an unknown device configu-
ration is predicted by evaluating the fitted C(u, v, f ′, a′) at
the new device settings.

3.1. Parametrization

The parametrization of device settings parameters f and
a to the normalized parameters pf and pa that range be-
tween 0 and 1 is critical to achieve a good fit for C and is
described in details in this section.

Let us assume that the device settings parameter f and
a are sampled at F and A values respectively. These are
f1, f2, . . . , fF and a1, a2, . . . , aA respectively. Thus, the
total number of sampled device configurations in the device
settings space is given by F×A. We estimate the vignetting
effect using the self-calibration technique at each of the F×
A device configurations.

We first consider iso-parametric curves for f i.e. a curve
where a is constant. Note that there will be A such iso-
parametric curves. Let us consider one such iso-parametric
curve where a = a1. The distance between adjacent nor-
malized parametric values at (fi, a1) and (fi+1, a1) on this
curve is assigned in such a way that they are proportional
to the distance between the two dimensional surfaces rep-
resenting the vignetting effect at these two device settings
of (fi, a1) and (fi+1, a1), estimated using the self calibra-
tion technique. For measuring the distance between two
surfaces we used the L∞ distance (maximum distance) be-
tween them. Note that this parametrization is a non-linear
monotonically increasing function of both f and a. We de-
note this by f ′ = pf (f, a) and a′ = pa(f, a). Further, a
uniform sampling of the device settings space spanned by f
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Figure 2. (a) This plot shows the sampling of the devices parameter space using for recovering the Bezier function and the corresponding
mean and std error of the fitted vignetting from the estimated vignetting at the sampled settings. (b) This plot shows the device param-
eters where we verified our prediction method and the corresponding mean and std errors of the predicted vignetting from the estimated
vignetting at these settings.

(a) (b) (c)

Figure 3. Comparison of vignetting correction: (a) uncorrected image captured at f/3.3 (b) corrected image using actual vignetting effect
from calibration (c) corrected image using predicted vignetting effect.

and a does not assure an uniform sampling of the normal-
ized parameter space spanned by f ′ and a′.

After f and a are parameterized to f ′ and a′ as above, we
fit a four dimensional Bézier using linear least squares to es-
timate C(u, v, f ′, a′) and the control points Pi,j,k,l thereof.

3.2. Prediction

Once the function C(u, v, f ′, a′) is estimated, we use
it to predict the vignetting at a new device configuration
(fnew, anew). The most critical aspect of this predic-
tion is the parametrization of these new device settings
(fnew, anew) to (f ′new, a′new) that will yield accurate pre-
diction from the fitted C(u, v, f ′, a′). This in turn depends
on how the functions pf and pa are approximated. We tried
both global and local approximation techniques with similar
results. These are summarized in the next section.

3.3. Experiments

We have experimented our representation on two cam-
eras: a high-resolution (3.4-13.5 Megapixels) expensive
camera like the Kodak DCS and an low-resolution (VGA)
Point Grey camera with similar results. We found that a
surface of at least degree 4 is needed in both cases. Hence,
Nu = Nv = N1 = N2 = 4.

To reconstruct the Bézier function C(u, v, f ′, a′), we
used 5 samples of the aperture settings at f/22, f/11, f/5.6,
f/3.3 and f/2.8 (A = 5) and four samples of focal length
at 28mm, 35mm, 62mm and 75mm (F = 4). Thus, we
estimate the vignetting effect using our self-calibration pro-
cedure at F ×A = 20 device configurations. This sampled
device settings are illustrated in Figure 2(a) demonstrating
that estimation of the vignetting effect is required only at a
few sparse samples in the device settings space. We assume
the vignetting effect at a smaller aperture, say f/32.0, is neg-
ligible and include a flat surface at this aperture for our data

4
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Table 1. Percentage error of the fitted four dimensional Bézier
function of degree 4 from the vignetting effect estimated using the
self-calibration method.

focal length f/Stop Mean STD
28mm f/2.8 1.27% 1.23%
28mm f/3.3 1.06% 0.97%
28mm f/5.6 0.66% 0.58%
28mm f/11.0 0.68% 0.53%
28mm f/22.0 0.43% 0.41%
35mm f/2.8 1.45% 1.83%
35mm f/3.3 1.53% 0.99%
35mm f/5.6 2.88% 1.75%
35mm f/11.0 1.63% 1.06%
35mm f/22.0 0.56% 0.47%
62mm f/2.8 0.88% 1.13%
62mm f/3.3 1.22% 0.90%
62mm f/5.6 1.42% 1.10%
62mm f/11.0 0.36% 0.26%
62mm f/22.0 0.34% 0.30%
75mm f/2.8 1.25% 1.08%
75mm f/3.3 1.61% 0.65%
75mm f/5.6 0.35% 0.48%
75mm f/11.0 0.24% 0.21%
75mm f/22.0 0.31% 0.24%

Average 0.84% 0.72%

fitting. Table 1 presents the percentage error of our fitted
data from the estimated vignetting effects at these sampled
device settings which are also plotted in Figure 2(a). Our
average mean error is less than 1% with the average stan-
dard deviation being also less then 1%. The low mean and
standard deviation from the mean of this error justifies our
use of a Bézier representation.

Next, we use the recovered C(u, v, f ′, a′) to predict the
vignetting effect at several new device settings. These de-
vice settings are shown in Figure 2(b). To parameterize the
new device settings parameters to the new normalized pa-
rameters, we interpolate the approximation of pf and pa

using two different techniques.
Global fitting: In the first case, we used the computed

(f ′, a′) at all device settings where the photometric param-
eters are measured i.e. {(f, a)|f ∈ {f1, f2, . . . , fF }, a ∈
{a1, a2, . . . , aA}} (see (Figure 2(a)) to approximate pf and
pa with a globally fitted 2D Bézier function, as illustrated
in. Figure 4. A Bézier of degree 3 was sufficient for this
purpose. Next we evaluate this fitted function at the new
device parameters (fnew, anew) to generate the new nor-
malized parameters (f ′new, a′new).

Local fitting: In this we use a local cubic interpolation
of the (f ′, a′) to generate the new normalized parameters
(f ′new, a′new). Thus, in this case the function pf and pa are
approximated by piecewise cubic patches.

To verify the accuracy of our prediction, we estimate the

vignetting at the same device settings and compared it with
the predicted vignetting. To recover the photometric proper-
ties we use the method presented by [8] for self-calibrating
a projector-camera pair. Table 2 and 3 presents the percent-
age error of our predicted vignetting from the estimated one
for the global and local fitting respectively. The results are
comparable and both show an average mean error of less
than 2% and the average standard deviation from the mean
of less the 1.5%. The errors of Table 2 is also plotted with
the associated device settings in Figure 2(b). A visual com-
parison is available in Figure 3 where a captured image is
corrected using both the predicted and estimated vignetting.
Note that the difference between the two is visually indis-
tinguishable.

Table 2. Percentage error in predicted vignetting using global fit-
ting for interpolating normalized parameters

focal length f/Stop Mean STD
28mm f/4.0 1.19% 0.90%
28mm f/8.0 1.75% 1.31%
28mm f/16.0 2.26% 1.50%
35mm f/4.0 1.74% 1.51%
35mm f/8.0 2.46% 1.69%
35mm f/16.0 3.02% 2.26%
50mm f/2.8 1.56% 1.03%
50mm f/3.3 2.04% 2.00%
50mm f/4.0 2.13% 1.58%
50mm f/5.6 2.32% 1.38%
50mm f/8.0 1.26% 0.97%
50mm f/11.0 1.15% 0.89%
50mm f/16.0 1.94% 1.27%
50mm f/22.0 1.61% 1.15%
62mm f/4.0 1.57% 1.43%
62mm f/8.0 1.21% 0.81%
62mm f/16.0 1.17% 0.99%
75mm f/4.0 1.10% 0.84%
75mm f/8.0 5.62% 2.89%
75mm f/16.0 1.60% 0.62%

Average 1.96% 1.35%

Finally, a projector is a dual of a camera [22]. Hence we
anticipate our representation, parametrization and predic-
tion to work equally well for a the photometric properties of
a projector. However, currently it is difficult to experiment
in projectors unless we get digitally controlled zoom and fo-
cus capability, only available today in high end projectors.
We believe that the same paradigm can be extended to find
a compact predictive representation of projector vignetting
function as the orientation of the projector with respect to
the screen changes or the distance of the projector with re-
spect to the screen changes. Hence, our device independent
representation can be applied in other projector and camera
related problems. In fact, we use this representation to store
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(a) (b)

Figure 4. These shows the plot of the function F1(a) and F2(b) respectively corresponding to device parameters aperture and focal length
respectively. These are represented using 2D Bézier patches of degree 3.

Table 3. Percentage error in predicted vignetting using local fitting
for interpolating normalized parameters.

focal length f/Stop Mean STD
28mm f/4.0 2.26% 1.13%
28mm f/8.0 1.71% 1.15%
28mm f/16.0 4.61% 2.84%
35mm f/4.0 1.54% 1.10%
35mm f/8.0 2.39% 1.43%
35mm f/16.0 4.43% 1.92%
50mm f/2.8 1.45% 1.06%
50mm f/3.3 1.28% 1.28%
50mm f/4.0 2.11% 1.43%
50mm f/5.6 1.53% 0.86%
50mm f/8.0 0.94% 0.82%
50mm f/11.0 0.72% 0.56%
50mm f/16.0 0.55% 0.65%
50mm f/22.0 0.57% 0.44%
62mm f/4.0 1.41% 1.06%
62mm f/8.0 1.40% 0.93%
62mm f/16.0 0.51% 0.31%
75mm f/4.0 1.05% 0.83%
75mm f/8.0 4.91% 2.73%
75mm f/16.0 0.27% 0.21%

Average 1.75% 1.10%

our projector vignetting functions for a multi-based display
applications [?, ?]. However, we do not use it yet for pre-
diction since we do not have a way to digitally control the
settings of our inexpensive commodity projectors.

3.4. Handling Higher Dimensional Device Setting
Space

The above representation can be easily generalized
for a device settings space that involves more that
two parameters. For a M dimensional device settings
space spanned by M device parameters d1, d2, . . . , dM ,
the representation will be a M + 2 dimensional
Bézier given by C(u, v, d′1, d

′
2, . . . , d

′
M ), where d′k =

pdk
(d1, d2, . . . , dM ), 1 ≤ k ≤ M . Also, in this general

case, during prediction using global fitting, the d′k will be
approximated using a M dimensional Bézier function

3.5. Discussion

The choice of Bézier surface was motivated by the goal
of a general representation. First, Bézier surfaces provides
the ability to represent a large number of smooth variations
of several orders and dimensions. Thus they are flexible. By
changing just a single parameter, the degree of the Bézier
surface, one can capture the different rate of change in the
smoothness of the surface in different devices. Smooth sur-
faces have a lower degree while surfaces that are not as
smooth have a higher degree. Also, as mentioned below
the smoothness of the photometric properties can vary dif-
ferently with different device settings (different parameters
of the Bézier) and can also be easily captured by changing
the degree of the constituting Bernstein polynomials.

Second, Bézier surfaces provide a very compact repre-
sentation. For example, in a 6 megapixel camera where the
captured images are 3000 × 2000 pixels, to store the vi-
gnetting effect for 100 apertures in a non-parametric repre-
sentation, one would need to store 100 × 3000 × 2000 =
600, 000, 000 floating point numbers. If each floating point
number occupies 4 bytes, this is 9100 MB. If we resort to
a existing parametric notation of polynomial representation
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(degree 4), this would need storing 5× 100 = 500 floating
point numbers. But, a quadric Bézier surface representa-
tion would represent this with only 125 floating point num-
bers. The compactness is exploited more with the increase
in the number of device parameters. This compact repre-
sentation opens up the possibility of one time calibration
(maybe in the factory prior to the sale of the product) and
compact storage of photometric properties in the camera it-
self, maybe in the form of a look-up-table(LUT). Further,
one can even imagine storing these properties in the lens it-
self. Currently, lenses use some small amount of memory
to store focal length, aperture and other settings. Our repre-
sentation, being small, can be accommodated even in such
a limited storage.

Finally, the prediction and data-fitting calculations re-
lated to a Bézier surface is relatively simple and can be
easily embedded in hardware. The Bézier parameters can
be embedded as the metadata to the image along with other
common parameters like focal length, white balance and so
on. The embedded hardware can then automatically cor-
rect for the artifacts on-the-fly or can be used for software
postprocessing.

4. Conclusion
In conclusion, we have presented a simple device inde-

pendent representation of the photometric properties of a
camera. This opens up the potential of embedding these
parameters and a process to correct images using them ap-
propriately within the camera hardware itself.
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