
1

Perspective Projection

There are four parameters involved.

1. Eye

2. View Direction

3. View Up Vector

4. Normal to the Image Plane

Case I: Eye is at(0, 0, 0), View Direction and Normal to the Image Plane is coincident with thez axis and View
Up vector is coincident withy axis.

E

(0,0,0)

V

(0,0,zp)
(0,0,z)

d

yp

xp

x

y

P

Pp

E
(0,0,0)

d

(0,0,zp) (0,0,z)

yp
y

Figure 1: Left: 3D diagram for case I. Right: 2D version by projection onyz plane.

In this case, by similar triangles we get,
xp

x
=

yp

y
=

zp

z

From this we get,

xp =
x
z
d

; yp =
y
z
d

This can be expressed in the form of matrix as,
xp

yp

zp

1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

d 0




x
y
z
1



2

E

(0,0,0)

V

(0,0,zp)
(0,0,z)

d

yp

xp

x

y

P

Pp

(xv,yv,zp)

E
(0,0,0)

d

(0,0,zp) (0,0,z)

yp
y

(xv,yv,zp)

Figure 2: Left: 3D diagram for case II. Right: 2D version.

In other notation,
Pp = M(d).P

Case II: Eye is at(0, 0, 0), Normal to the Image Plane is coincident with thez axis and View Up vector is
coincident withy axis, View Direction defined by(xv, yv, zp).
How to make(xv, yv, zp) coincident with(0, 0, zp)?
A shear can do the job. Hence, we want to find the shear matrix that satisfies

0
0
zp

1

 =


1 0 a 0
0 1 b 0
0 0 1 0
0 0 0 1




xv

yv

zp

1


From this we find,

a =
−xv

d
; b =

−yv

d

This shear matrix is define as

Sh(−xvd,−yvd) =


1 0 −xv

d 0
0 1 −yv

d 0
0 0 1 0
0 0 0 1


So, the final projection equation is

Pp = Sh−1.M(d).Sh.P

Case III: The image plane is no longer perpendicular toz. The plane’s direction is given byN = (xn, yn, zn). V
need not be orthogonal toN and need not coincide withy.

3

E
(0,0,0)

(0,0,zp) (0,0,z)

(xv,yv,zv)

(xn,yn,zn)
V

E
(x0,y0,z0)

(0,0,zp) (0,0,z)

(xv,yv,zv)

(xn,yn,zn)
V

(0,0,0)

Figure 3: Left: 2D version of case III. Right: 2D version of case IV.

First we define a coordinate system at E so thatN coincides withz axis.

u′z =
N

|N |

u′x =
V

|V |
× u′z

u′y = u′z × u′x

Rotation required to coincideN with z axis is given by

R(N,V) =


ux1 ux2 ux3 0
uy1 uy2 uy3 0
uz1 uz2 uz3 0
0 0 0 1


Note that after this rotation, the case reduces to case II. But we need to find where the view vector hits the plane at
distance|N | from the eye alongz direction. This point is achieved by

x′v
y′v
|N |
1

 = R.


xv

yv

zv

1


So, the final projection matrix is given by,

Pp = R−1.Sh−1.M(|N |).Sh.R.P

Case IV: The most general case is where the Eye is not at(0, 0, 0) but at(x0, y0, z0). The transformation then is
given by

Pp = T (x0, y0, z0).R−1.Sh−1.M(|N |).Sh.R.T (−x0,−y0,−z0).P

Note that thePp thus given out of the above equation is in the world coordinates within which the eye, normal
etc are define. Now, when we are talking about image generation, we would like to define thePp in a coordinate

4

system, called the coordinate system of the eye, whereE is the origin, the view up vector is aligned with theY
axis, the view direction is perpendicular to the image plane. Note that the matrixSh.R.T (−x0,−y0,−z0) gives
this transformation which would bring the world coordinates to the coordinate system of the eye. The perspective
projection matrixM(|N |) is applied after that which achieves the perspective projection in the coordinate system
of the eye. Then the matrixT (x0, y0, z0).R−1.Sh−1 is used to transform it back to the world coordinate system.
So, if we want to get the perspective transformation in the eye’s coordinate system, all we need to do is not take it
back to the world coordinate system by applying the inverse transformations. Thus the perspective projectionPE

p

is the eye’s coordinate system is given by

PE
p = M(|N |).Sh.R.T (−x0,−y0,−z0).P

Note thatR depends only on direction of the normal and direction of the view up vector. The length of the normal
|N | is only important for the matrixM .

In graphics, the rotation and translation is defined in the world coordinate system. This is given by a function
call
gluLookAt (Eye Coordinate: E, View Up Vector: V, Normal to the Image Plane: N)
Hence, with this command the matrixR(N,V).T (−E) is applied to all objects to get them in eye’s coordinate
system. Note that now the image plane is perpendicular to thez axis. The distance of the image plane from the
eye is given by|N |. Let |N | = n. Note that the transformation mentioned above brings thez of any point ton
which is the image plane.

Note that ideally image plane is infinite. When generating an image in the eye, we do not have an infinite image
plane. So, we need to limit the plane somehow. This is done by defining a window(r, l, t, b) on the image plane
in the eye’s coordinate system. The defined(r, l, t, b) says that the eye would get the image in the rectangular
window whose left, right, top and bottom ends are defined byr, l, t, andb respectively.

Note that indirectly, the center of this window now defines the view direction and is given by(r+l
2 , t+b

2 , n).
Thus, as before, the shear matrix required to bring the view direction(r+l

2 , t+b
2 , n) to be coincident with(0, 0, n)

is given bySh(r+l
2n , t+b

2n).
This says that the range ofxE

p andyE
p achieved by the transformationM(n).Sh(r+l

2n , t+b
2n).R(N,V).T (−E)

will vary between[− r−l
2 , r−l

2] and [− t−b
2 , t−b

2] respectively, and thez will be n. The problem with this is we
cannot limit our framebuffer since it is dependent on(r, l, t, b). So, what we would like to do is toxE

p andyE
p to

range between[−1, 1] only. This means we would like

r − l

2
→ 1, in x direction

t− b

2
→ 1, in y direction

So, for this we need a scaling matrix defined bySc(2
r−l ,

2
t−b , 1). Thus,

xE
p

yE
p

zE
p

1

 = Sc(
2

r − l
,

2
t− b

, 1).M(n).Sh(
r + l

2n
,
t + b

2n
).R(N,V).T (−E)


x
y
z
1


This can be written in terms of the 3D coordinates in eye’s coordinate system as,

xE
p

yE
p

zE
p

1

 = Sc(
2

r − l
,

2
t− b

, 1).M(n).Sh(
r + l

2n
,
t + b

2n
)


xE

yE

zE

1

 (1)

5

From this equation we get 
xE

p

yE
p

zE
p

1

 =


2nxE

zE(r−l)
2nyE

zE(t−b)

n
1


However, there lies a problem in this, at least for the computers. To generate a scene in graphics, we take a

triangle representation of a model. While rendering, every vertex of the triangle is projected on the image plane
and the color within this projected triangle is filled up. This filling up is called rasterization. But, the problem
is, since thez always maps ton, from the projected point, you cannot know which on is in front of the other.
Note, every point in the image plane has the color from the closest object, everything behind is occluded. So, what
we would need to do is to take objects in back to front order and draw. But this does not work when objects are
intersecting each other. So, the only option left, is to take corresponding point that lies on the same ray from the
two objects, find where they hit the objects and find who is in front of whom. But, this is extremely inefficient,
especially when in real scene several such situations may arise.

A better way is if we can somehow encode this relationship inzE
p so that just by seeing thezE

p present in the
framebuffer from raterization of previous triangle can be compared with the projection of the point that is being
rendered currently to decide whether that image coordinate should get the color from this point or not. To achieve
this we define a far plane beyond which we do not want to consider objects. Let this far plane be atf . Note the
(r, l, t, b, n, f) thus defines a view volume, objects within which are considered for rendering. So, now we may
say that we want a transformation which satisfies


xE

p

yE
p

zE
p

1

 =


2nxE

zE(r−l)
2nyE

zE(t−b)

zE

1

 (2)

so that thez values are retained for us to decide on occlusion. Though this is not exactly perspective transformation,
we are only changing the value ofz which is anyway not important for the perspective transformation, but to
resolve occlusions.

But, there is a problem here too. One thing that is critical here is does linear interpolation ofZ in screen space
give us linear interpolation of points in the object space. Or in other words, is the following equation correct?

X0 + t(X1 −X0)
Z0 + t(Z1 − Z0)

= s0 + t(s1 − s0) (3)

(1− t)X0 + tX1

(1− t)Z0 + tZ1
= (1− t)s0 + ts1 (4)

=
(1− t)X0Z1 + tX1Z0

Z0Z1
(5)

(6)

wheres = xE
p , X = xE , andZ = zE . Clearly, this is not the same. In fact, if you plot the curve that the

interpolation ofZ in screen space would achieve in object space, instead of traversing the object, it would project
on a curved path as shown in Figure 4.

So, now that we know that interpolation ofZ won’t work, let us what kind of interpolation in screen space, if

6

E

s0

s1

(X0,Y0)

(X1,Y1)

If you linearly
interpolate z

Figure 4: Problem with interpolation ofz.

any, would give us correct depth values. For that let us find theu which would give the following

X0 + t(X1 −X0)
Z0 + t(Z1 − Z0)

= s0 + u(s1 − s0) (7)

(1− t)X0 + tX1

(1− t)Z0 + tZ1
=

X0

Z0
+ u

(
X1

Z1
− X0

Z0

)
(8)

(1−t)X0+tX1

(1−t)Z0+tZ1
− X0

Z0

X1−X0
Z1−Z0

= u (9)

Z1t

Z0(1− t) + tZ1
= u (10)

(11)

From this, we findt as,

1
u

=
Z0 + t(Z1 − Z0)

Z1t
(12)

=
Z0

Z1t
+

Z1 − Z0

Z1
(13)

1
u
− Z1 − Z0

Z1
=

Z0

Z1t
(14)

uZ0

Z1 − u(Z1 − Z0)
= t (15)

(16)

7

Let the depth of the point at parametert be denoted byZt.

Zt = Z0 + t(Z1 − Z0) (17)

= Z0 +
uZ0

Z1 − u(Z1 − Z0)
t(Z1 − Z0) (18)

=
Z0Z1

Z1 − u(Z1 − Z0)
(19)

=
1

1
Z0
− u(1

Z0
− 1

Z1
)

(20)

Therefore,

1
Zt

=
1
Z0

+ u(
1
Z1

− 1
Z0

) (21)

=
1
Z0

(1− u) + u
1
Z1

(22)

(23)

This shows that to find correct depth values we have to taken reciprocal of theZ ’s, interpolate using screen space
u and then again take its reciprocal. Thus, the interpolation needs to be done is1

Z space.
Hence, in Equation 2, instead ofzE , we would like to store1

zE so that we can interpolate them. Thus, what we
want is, 

xE
p

yE
p

zE
p

1

 =


2nxE

zE(r−l)
2nyE

zE(t−b)
1

zE

1

 (24)

Next, comes the same question of normalizing.1
zE can be between1n and 1

f which gives us unbounded volume

which is difficult for computers to handle. So, we would like to scale the depth of1
n to 1

f to−1 to 1. This can be
done by a very simple linear 1D transformation. These can be achieved by two steps.

1. Translate the center in the z-direction to origin. This is given by

−
1
n + 1

f

2
= −f + n

2nf

2. Scale it to match the length of−1 to +1. This can be achieved by a scaling of

2
1
f −

1
n

=
2nf

n− f

Hence, the whole transformation to1
zE is given by

zE
p =

(
1
zE

− f + n

2nf

)
2nf

n− f
(25)

=
(

2nf

(n− f)zE
+

f + n

f − n

)
(26)

=
2nf

(n−f) + f+n
f−nzE

zE
(27)

8

Now, the desired point we have is given by,


xE

p

yE
p

zE
p

1

 =


2nxE

zE(r−l)
2nyE

zE(t−b)
2nf

(n−f)
+ f+n

f−n
zE

zE

1

 =


2nxE

(r−l)
2nyE

(t−b)
2nf

(n−f) + f+n
f−nzE

zE

 (28)

Now, this transformation can be achieved by ourSc(2
r−l ,

2
t−b , 1) followed by another matrix calledD(n, f)

which is a function of only the near and far plane,n andf respectively.

D(n, f) =


n 0 0 0
0 n 0 0
0 0 f+n

f−n
2fn
f−n

0 0 1 0


So, theSc.M in Equation 1 is replaced byD.Sc to give us the desiredz. Thus the complete transformation is
given by, 

xE
p

yE
p

zE
p

1

 = D(n, f).Sc(
2

r − l
,

2
t− b

, 1).Sh(
r + l

2n
,
t + b

2n
).R(N,V).T (−E)


x
y
z
1


As we mentioned before, the transformation ofR(N,V).T (−E) is given withgluLookAt function call. The

transformationD(n, f).Sc(2
r−l ,

2
t−b , 1).Sh(r+l

2n , t+b
2n) depends only onr, l, t, b, n andf and is applied with a

function call
glFrustum(r,l,t,b,n,f)
The matrix generated by this call is given byD(n, f).Sc(2

r−l ,
2

t−b , 1).Sh(r+l
2n , t+b

2n) as
n 0 0 0
0 n 0 0
0 0 f+n

f−n
2fn
f−n

0 0 1 0




2
r−l 0 0 0
0 2

t−b 0 0
0 0 1 0
0 0 0 1




1 0 r+l
2n 0

0 0 t+b
2n 0

0 0 1 0
0 0 0 1

 =


2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 f+n
f−n

2fn
f−n

0 0 1 0



