Perspective Projection

There are four parameters involved.
1. Eye

2. View Direction

3. View Up Vector

4. Normal to the Image Plane

Case I: Eye is at(0, 0,0), View Direction and Normal to the Image Plane is coincident with:lais and View
Up vector is coincident withly axis.

3 (O'O’Zp) ‘ 3 1Y d <
(0,0,0)) " ‘
' a y
W e
E (0,0,z,) (0,0.2)
(0,0,0) 3 |

Figure 1: Left: 3D diagram for case I. Right: 2D version by projectioryemplane.

In this case, by similar triangles we get,

From this we get,

T Y

Ip=7%5 Y=7%

d d

This can be expressed in the form of matrix as,

Tp 1000 T
yp | [O 1 0 O Yy
z | [00 10 z
1 003%L0 1

(0,0,0)

(%v"Y;/izp)

v \4

(O%NZP) 009

(XV,yV7Zp)

Figure 2: Left: 3D diagram for case Il. Right: 2D version.

In other notation,
P, = M(d).P

Case II: Eye is at(0,0,0), Normal to the Image Plane is coincident with thexxis and View Up vector is
coincident withy axis, View Direction defined by, v, 2).

How to make(z,, yy, z,) coincident with(0, 0, z,,)?

A shear can do the job. Hence, we want to find the shear matrix that satisfies

0 1 0 a O Ty
ol (o010 Yo
z | 10010 Zp
1 0 0 0 1 1
From this we find,
a:_xv_ b:_yv
d’ d
This shear matrix is define as
1 0 =% 0
“n g
0 1
_ _ — d
Sh(xvda yvd) 0 0 1 0
00 O 1

So, the final projection equation is
P, = Sh™'.M(d).Sh.P

Case lll: The image plane is no longer perpendiculat tdhe plane’s direction is given by = (xy,, yn, 2n). V.
need not be orthogonal ¥ and need not coincide witi

V(X YnZn)

(0,0,,) (o,o%z) 002) (0,0;2)

(X0:Y0:20)

(KoY .
iy (XV’YV’ZV)

(0,0,0)

Figure 3: Left: 2D version of case Ill. Right: 2D version of case IV.

First we define a coordinate system at E so fiatoincides withz axis.

, N

=T IN

u;:mxulz
I
y =

Rotation required to coincid® with z axis is given by

/ /
Uy = U, X Uy,

Ug, Ugy Ugg
U (7 U
R(N, V) — Y1 Y2 Y3

Uzy Uzy Ugzg

0 0 0

o O O

Note that after this rotation, the case reduces to case Il. But we need to find where the view vector hits the plane at
distancg N | from the eye along direction. This point is achieved by

xl Ty
/

yq} — R y’U

[N | 2
1 1

So, the final projection matrix is given by,
P,= R '.Sh™'.M(|N|).Sh.R.P

Case IV: The most general case is where the Eye is nod Al, 0) but at(zo, yo, z0). The transformation then is
given by
P, = T(z0, Y0, 20). R .Sh™ . M(|N|).Sh.R.T(~x0, —yo, —20).P

Note that theP, thus given out of the above equation is in the world coordinates within which the eye, normal
etc are define. Now, when we are talking about image generation, we would like to defiRgitha coordinate

4

system, called the coordinate system of the eye, wheiethe origin, the view up vector is aligned with the

axis, the view direction is perpendicular to the image plane. Note that the md&trix. 7' (—zo, —yo, —z0) gives

this transformation which would bring the world coordinates to the coordinate system of the eye. The perspective
projection matrix) (| V) is applied after that which achieves the perspective projection in the coordinate system
of the eye. Then the matrik(zo, yo, 20).R~'.Sh~! is used to transform it back to the world coordinate system.

So, if we want to get the perspective transformation in the eye’s coordinate system, all we need to do is not take it
back to the world coordinate system by applying the inverse transformations. Thus the perspective plié)jéction

is the eye’s coordinate system is given by

PF = M(IN|).Sh.R.T(—x0, —yo, —20).P

Note thatR depends only on direction of the normal and direction of the view up vector. The length of the normal
|N| is only important for the matrix/.

In graphics, the rotation and translation is defined in the world coordinate system. This is given by a function
call
gluLookAt (Eye Coordinate: E, View Up Vector: V, Normal to the Image Plane: N)
Hence, with this command the matrix(N, V). T'(—FE) is applied to all objects to get them in eye’s coordinate
system. Note that now the image plane is perpendicular te tieés. The distance of the image plane from the
eye is given by N|. Let|N| = n. Note that the transformation mentioned above brings:tbéany point ton.
which is the image plane.

Note that ideally image plane is infinite. When generating an image in the eye, we do not have an infinite image
plane. So, we need to limit the plane somehow. This is done by defining a wifidbw, b) on the image plane
in the eye’s coordinate systeniThe definedr, [, ¢,b) says that the eye would get the image in the rectangular
window whose left, right, top and bottom ends are defined,lByt, andb respectively.

Note that indirectly, the center of this window now defines the view direction and is givé#ibyt2, n).
Thus, as before, the shear matrix required to bring the view dire¢ %, n) to be coincident wit0, 0, n)
is given bySh (%t tEby,

2n 7 2n
This says that the range GE andyf achieved by the transformatialf (n).Sh(5t, 52).R(N, V).T(-E)
will vary between[—“5, 7=] and [- 52, 58] respectively, and the will be n. The problem with this is we

cannot limit our framebuffer since it is dependent(er, ¢,b). So, what we would like to do is tmf andyf to
range betweep-1, 1] only. This means we would like
r—1
2

t—>b
— 1, wn y direction

— 1, in x direction

So, for this we need a scaling matrix defined$(-2;, 2;,1). Thus,

.:Ulg X
Yo | = 22y mm)sn(EEY pev vy ey | Y
zy SC(T—Z’t—b’)-M(n)-Sh(2n 7 2n)-R(N,V)-T(=E) z
1 1

This can be written in terms of the 3D coordinates in eye’s coordinate system as,

E E

IEP X
E E
U | Zge 2 2 sttt ROy 1
sz SC(T_lat_ba) (H)S (m) m) ZE ()
1 1

From this equation we get
E

2
zr zE?ffl)
y% 2ny®
pE = 2E (t—b)
“p n
1 1

However, there lies a problem in this, at least for the computers. To generate a scene in graphics, we take a
triangle representation of a model. While rendering, every vertex of the triangle is projected on the image plane
and the color within this projected triangle is filled up. This filling up is called rasterization. But, the problem
is, since thez always maps tm, from the projected point, you cannot know which on is in front of the other.
Note, every point in the image plane has the color from the closest object, everything behind is occluded. So, what
we would need to do is to take objects in back to front order and draw. But this does not work when objects are
intersecting each other. So, the only option left, is to take corresponding point that lies on the same ray from the
two objects, find where they hit the objects and find who is in front of whom. But, this is extremely inefficient,
especially when in real scene several such situations may arise.

A better way is if we can somehow encode this relationshipﬁrso that just by seeing th% present in the
framebuffer from raterization of previous triangle can be compared with the projection of the point that is being
rendered currently to decide whether that image coordinate should get the color from this point or not. To achieve
this we define a far plane beyond which we do not want to consider objects. Let this far plang. bécae the
(r,1,t,b,n, f) thus defines a view volume, objects within which are considered for rendering. So, now we may
say that we want a transformation which satisfies

2 E
xy B (-]
yE ony®
Bl =1 ZEt-b) (2
z LB
1 1

so that the: values are retained for us to decide on occlusion. Though this is not exactly perspective transformation,
we are only changing the value efwhich is anyway not important for the perspective transformation, but to
resolve occlusions.

But, there is a problem here too. One thing that is critical here is does linear interpolaffoin streen space
give us linear interpolation of points in the object space. Or in other words, is the following equation correct?

Xo + (X1 — Xo)
Zy +t(Z1 — Zy)
(1 — t)Xo +tX7
(1 — t)Z() +t7;

= SS9+ t(Sl — S(]) (3)

(1 —t)So +tsy (4)

. (1 - t)X()Zl + tX1Z0 (5)
N ZoZ1
(6)

wheres = xf, X = 2P, andZ = 2. Clearly, this is not the same. In fact, if you plot the curve that the
interpolation ofZ in screen space would achieve in object space, instead of traversing the object, it would project
on a curved path as shown in Figure 4.

So, now that we know that interpolation gfwon’t work, let us what kind of interpolation in screen space, if

(X0, Y)
So)
If you linearly
interpolate z
E
S1

(X, Y1)

Figure 4: Problem with interpolation af

any, would give us correct depth values. For that let us find:tiwbich would give the following

XO =+ t(Xl — Xo)
Z() + t(Zl — Zo)
)

= 50+ u(s1 — so)

(1 —1)Xo+tX1 Xo X1 Xy
= —_— u —_—

(1 — t)Z() + tZl ZO Z1 ZO

(1-H)Xo+tX1 Xo
(1-t)Zo+t 21 Zo
X1 —X, = u
Z1—Zo
Z1t

= u

Zo(1 —t) +tZ

From this, we find as,
l . Zy + t(Zl — Zo)
u - th
Z Z1— 7
_ L S
Zit Z1
1 Z1 — Zy _ A
U Al - Zt
uZy _
Z1 — U(Zl — Z[))

(7)
(8)

(9)

(10)
(11)

(12)
(13)
(14)

(15)
(16)

Let the depth of the point at parametdye denoted by;.

Zy = Zo+t(Z1 — Zy) (17)
= Zot 5 ulé(l’ — Zo)t(21 — Zp) (18)
o iozzll_ 7 (19)
1
BEREERED 0
Therefore,
— SO-utuy (22)

(23)

This shows that to find correct depth values we have to taken reciprocal gfgheterpolate using screen space
u and then again take its reciprocal. Thus, the interpolation needs to be d%mn’me.

Hence, in Equation 2, instead of , we would like to s.torezlT so that we can interpolate them. Thus, what we
want is,

onzF
zf zEr(lffl)
y% onyF
B | =] D (24)
1 2P
1

Next, comes the same question of normaliziijg.can be between and% which gives us unbounded volume

which is difficult for computers to handle. So, we would like to scale the dep%htof% to —1to 1. This can be
done by a very simple linear 1D transformation. These can be achieved by two steps.

1. Translate the center in the z-direction to origin. This is given by

1,1
_E+7:_f+n
2 2nf

2. Scale it to match the length efl to +1. This can be achieved by a scaling of

2 2nf
1 1 _
Fma S
Hence, the whole transformation ;@ is given by
g _ (1 [f+n) 2nf
T <ZE 2nf Jn—f (25)
B 2nf f+n
N (W—fﬂE+f—n> 29
2nf ftn E
— (n—f) + f_"Z (27)

~E

8
Now, the desired point we have is given by,

2nz®

2nz¥
E E
T 2 (r=1) —1
y% %:”yEb g;tybz
— t _ —
i ISR B B (28)
D (n—f) —x t —Z
E (n=f) ' f-n
1 z E
1 z

Now, this transformation can be achieved by 6l -2;, -2, 1) followed by another matrix called(n, f)
which is a function of only the near and far plameand f respectively.

0

~
+ O O

S

0
0
2fn
f—n
0

D(naf):

|
— |

3

o o o 3

n
0
0

So, theSc.M in Equation 1 is replaced b®.Sc to give us the desired. Thus the complete transformation is
given by,

1)5 X
E

Y, _ 2 2 r+i l t+b b _ Yy
1 1

As we mentioned before, the transformationR(tN, V).T(—FE) is given withgluLookAt function call. The
transformationD(n, f).Sc(-2;, 25, 1). Sh(’”;f, t;f’) depends only om, [, ¢, b, n and f and is applied with a
function call
glFrustum(r,l,t,b,n,f)

The matrix generated by this call is given Byn, f).Sc(-%;, 2. 1).Sh(5, &) as

—b? 2n 7 2n
n 0 0 0 2.0 00 10 % o 200
0n 0 0 0 2 00 00 L oo 0 2 = 0
0 0 f{tn 2fn t—b 2n — 2 ofm
e 2l 0 0 1 0 00 1 0 0 0 mo2
00 1 0 0 0 01 00 0 1 O 0 1 o0

