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Abstract

This paper presents a photometric invariant called reflectance ratio that can be
computed from a single brightness image of a scene. The brightness variation in an im-
age of a surface depends on several factors; the three-dimensional shape of the surface,
its reflectance properties, and the illumination conditions. Since neighboring points on a
smoothly curved surface have similar surface orientations, their brightness values can be
used to compute the ratio of their reflectance coefficients. Based on this observation, we
develop an algorithm that estimates a reflectance ratio for each region in the image with
respect to its background. The algorithm is computationally efficient as it computes ratios
for all image regions in just two raster scans. In the first scan, the image is segmented into
regions using a sequential labeling algorithm. During labeling, the reflectance ratio be-
tween adjacent pixels is used as a measure of connectivity. In the second scan, a reflectance
ratio is computed for each image region as an average of the ratios computed for all points
that lie on its boundary. The region reflectance ratio is also a photometric invariant; it
represents a physical property of the region and is invariant to the illumination conditions.
Several experimental results are included to demonstrate the invariance of reflectance ra-
tios to imaging and illumination parameters. We conclude with a brief discussion on the
application of reflectance ratios to the problems of object recognition and visual inspection.

Index Terms: Surface reflectance, reflectance ratio, photometric invariant, connec-
tivity, sequential labeling, region reflectance ratio, object recognition, inspection.



1 Introduction

The primary objective of early vision processing is to recover physical and geometrical
properties of scenes from their two-dimensional images. This is a challenging task since
the brightness distribution in an image depends on several factors; the illumination of the
scene, the shapes of objects in the scene, and their reflectance properties. Further, these
factors can vary from one scene point to the next. The recovery of scene properties is there-
fore an under-constrained problem. Machine vision research has focused primarily on the
problem of recovering three-dimensional shape information from two-dimensional images.
The shape recovery problem is typically constrained by making assumptions regarding the
reflectance properties of the scene and the illumination conditions. Little effort however has
been directed towards recovering and using other physical properties such as reflectance,
roughness, and material.

Here, we address the problem of computing the reflectance of regions in the scene
with respect to their backgrounds. The result is a physical property of each region that
is invariant to the brightness and direction of illumination. This photometric invariant,
referred to as the reflectance ratio, provides valuable information for machine vision appli-
cations such as object recognition and inspection. Traditionally, object recognition systems
have used only geometric (shape) information to represent objects of interest and to recog-
nize them [2, 5]. Recognizing a three-dimensional object in a two-dimensional brightness
image is more a problem of appearance matching rather than shape matching. Appearance
is related not only to shape but also reflectance and illumination. It is therefore clear that
recognition systems must use additional physical properties to both represent objects as
well as to recognize objects in images. The reflectance ratio invariant presented in this
paper is an example of a physical property that can be robustly and efficiently computed
from a single image.

The problem of computing the reflectance of regions in a scene was first addressed
by Land [10]. In general, image brightness is the product of surface reflectance and illumi-
nation. Hence, it is impossible to separate the contributions of reflectance and illumination
at a single image point if the point is treated in isolation. Land constructed a set of inge-
nious experiments to show that humans are able to perceive the reflectance of scene regions
even in the presence of non-uniform and unknown illumination. He developed the retinex
theory that suggests computational steps for recovering the reflectance of scene regions.
Though it is not possible to determine the absolute reflectance of scene regions, the rela-
tive reflectance (or “lightness”) of regions can be computed. The retinex theory is based on
the assumption that the scene is subjected to smoothly varying illumination and consists
of patches with constant reflectance. Under these assumptions, reflectance values change
abruptly at region boundaries while illumination variations are small. As a result, it is



possible to filter out the effects of illumination. Later, Land and McCann [11] proposed
a one-dimensional hardware implementation for computing lightness. Subsequently, Horn
[8] extended these ideas to two dimensions and proposed several analog methods for im-
plementing the lightness computation. Horn’s approach was later improved upon by Blake

3].

The main idea underlying Land’s lightness computation is global consistency. The
lightness value computed for any particular region must be consistent with those computed
elsewhere in the image. However, realistic images include shadows, occlusions, and noise.
Each one of these factors can cause a region boundary to go undetected or the computed
lightness of a region to be erroneous. Such errors can affect the lightness values computed
for all other regions in the image. For this reason, Land’s global method is not applicable to
most real images. In this paper, we develop an alternative scheme for computing the ratio
of the reflectance of a region to that of its background. The image is first segmented into
regions of constant reflectance. Next, a reflectance ratio is computed for each region and
its background using only points that lie close to the region’s boundary. In this approach,
the reflectance ratio computed for any particular region is not affected by those computed
for regions elsewhere in the image. Adopting another approach, Finlayson [6] recently
used ratios of neighboring pixels in three color channels to compute histograms for object
recognition.

In their analysis and experiments, Land and McCann [11] restricted themselves to
planar (two-dimensional) scenes with patches of constant reflectance. These scenes are sim-
ilar in appearance to the paintings of the Dutch artist Mondrian. In contrast, our derivation
of the reflectance ratio is based on the analysis of regions that lie on curved surfaces. In the
case of curved surfaces, image brightness variations result from both illumination variations
as well as surface normal changes. For curved surfaces, our reflectance ratio invariant is
valid when a region and its background have the same distribution (scattering) function
but different reflectance coefficients (albedo).

The paper is organized as follows. First, we derive the reflectance ratio for two
neighboring points on a curved surface and state the conditions under which it is invariant to
illumination and imaging parameters. Next, we introduce the notion of a region reflectance
ratio and present an algorithm for computing region ratios in digital images. The algorithm
is efficient in that it produces region ratios in just two raster scans of the image. We
have conducted several experiments to test the accuracy and robustness of the algorithm.
The computed ratios demonstrate remarkable invariance to illumination direction, sensor
direction, and the aperture of the imaging optics. We conclude this paper with a discussion
on the application of reflectance ratios to object recognition and inspection problems.



2 Reflectance Ratio

The reflectance of a surface depends on its roughness and material properties. In general,
incident light is scattered by a surface in different directions and this distribution of reflected
light can be described as a function of the angle of incidence, the angle of emittance, and
the wavelength of the incident light. Consider an infinitesimal surface patch with normal
n, illuminated with monochromatic light of wavelength A from the direction s, and viewed
from the direction v. The reflectance of the surface patch can be expressed as:

r(s,v,n,\) (1)

Now consider an image of the surface patch. If the spectral distribution of the incident
light is e(\) and the spectral response of the sensor is s(A), the image brightness value
produced by the sensor is:

[ = /S(A)e(x) r(s,v,n, \) d\ 2)

If we assume the surface patch to be illuminated by “white” light and the spectral response
of the sensor to be constant within the visible-light spectrum, then s(A) = s and e(\) = e.
We have:

I = sepR(s,v,n) (3)

where p R(s,v,n) is the integral of r(s,v,n, A\) over the visible-light spectrum. We have
decomposed the result into R(.) which represents the dependence of surface reflectance on
the geometry of illumination and sensing, and p which may be interpreted as the fraction
of the incident light that is reflected in all directions by the surface. Incident light that is
not reflected by the surface is absorbed or transmitted through the surface. Two surfaces
with the same distribution function R(.) can have different reflectance coefficients p.

As a result of the white-light assumption, the reflectance coefficient p is independent
of wavelength. This enables us to represent the coefficient reflectance of the surface element
with a single constant. The same can be achieved by using an alternative approach which
does not require making assumptions about the spectral distribution of the incident light
and the spectral response of the sensor. Consider a narrow-band filter with spectral response
f(A), placed in front of the sensor. Image brightness is then:

[ = /f()\)s()\)e()\) r(s,v,m, A) dA (4)

Since the filter is narrow-band, it essentially passes a single wavelength A of reflected light.
Its spectral response can therefore be expressed as:

f) = 6V =) (5)
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The image brightness measured with such a filter is:
I = s'ér(s,v,n\) (6)

where s = s(\') and ¢’ = e(X'). Once again, the reflectance function can be decomposed
into a distribution function and a reflectance coefficient:

I = s'€ep R'(s,v,n) (7)

In this case R'(.) represents the distribution of incident light for a particular wavelength
of incident light. On the other hand, for white-light illumination, R(.) represents the
distribution computed as an average over the entire visible-light spectrum. However, the
individual terms in both (3) and (7) represent similar effects. Since we have used the white-
light illumination assumption in our experiments, we will use the following expression for
image brightness in our discussion:

I = kpR(s,v,n) (8)

The constant k = s.e accounts for the brightness of the light source and the response gain
of the sensor. The exact functional form of R(s,v,n) is determined to a great extent by
microscopic structure of the surface; generally R(-) includes a diffuse component and a
specular component [13]. Once again, the reflection coefficient p is the fraction of incident
light that is reflected by the surface. It represents the reflective power of the surface and
is sometimes referred to as surface albedo.

Consider two neighboring points on a surface (Figure 1). For a continuous surface,
the two points may be assumed to have the same surface normal vectors. Further, the two
points have the same source and sensor directions. Hence, the brightness values, I and 15,
of the two points may be written as:

I, = klel(s7V7n) (9)
I, = kaRQ(S,V,H) (10)

The main assumption made in computing the reflectance ratio is that the two points have
the same reflectance functions (R; = Ry = R) but their reflectance coefficient p; and p,
may differ. An example is that of two neighboring Lambertian points that have different
albedo values because they lie in regions that have different shades or colors. Then, the
image brightness values produced by the two points are:

I, = kp,R(s,v,n) (11)
I, = kp,R(s,v,n)



Figure 1: Neighboring points on a surface.

The ratio of the reflectance coefficients of the two points is:

p= ]1/]2 = P1/P2 (12)

Note that p is independent of the reflectance function, illumination direction and brightness,
and the surface normal of the two points. It is a photometric invariant that is easy to
compute and does not vary with the position and orientation of the surface with respect
to the sensor and the source.

We have assumed that the scene is illuminated by a single light source. Now consider
the same scene illuminated by several light sources. The brightness of any point can be

written as:

I =plkiR(s1,v,n)+ kyR(sy,v,n) + ...+ k, R(s,, v,n)] (13)
where s1,8,,...,s, are the directions of the n sources that are visible to the surface point
under consideration and kq, ks, ..., k, are proportional to the brightness of the n sources.

Since the reflectance ratio is computed using neighboring points, it can be assumed that
both points are illuminated by the same set of sources. Then, from (12) and (13) we see
that the reflectance ratio p is unaffected by the presence of multiple light sources.

Note that by definition p is unbounded; if the second surface point is black, I = 0,
then p = oo. From a computational perspective, this poses implementation problems.
Hence, we use a different definition for p to make it a well-behaved function of the reflectance
coefficients p; and p,:

p=(L—1L)/(Ii + L) = (p, — pa)/(p1 + p2) (14)

Now, we have —1 < p < 1. We will use this definition of the reflectance ratio in the
following sections.



3 Reflectance Ratio of a Region

To this point, we have focused on two neighboring points. We now consider a surface region
S that has constant reflectance coefficient p; and is surrounded by a background region
with constant reflectance coefficient p,. We are interested in computing the reflectance ratio
P(S) of the region S with respect to its background. The brightness of the entire region
cannot be assumed constant for two reasons. First, the surface may be curved and hence
the surface normal can vary substantially over the region. Second, while the illumination
may be assumed to be locally constant, it may vary over the region. These factors can cause
brightness variations, or shading, over the region and its background as well. However, the
reflectance ratio can be accurately estimated using neighboring (or nearby) points that lie
on either side of the boundary between the region and the background. The reflectance
ratio for a region can then be determined as an average of the reflectance ratios computed
along the boundary of the region. The computed ratio is also a photometric invariant; it
is independent of the shape of the surface and the illumination conditions. It is computed
using a single image of the scene and provides important information regarding the physical
properties of surface regions in the scene.

Before proceeding any further, it is worthwhile to compare our approach with Land’s
retinex theory [10]. Our objective is similar to that of Land’s, that is, to compute the
reflectance of regions in a scene by computing variations in image brightness across region
boundaries. Land’s analysis of brightness variations does not however include the problem
of curved surfaces. The scene is assumed to be planar with matte patches of constant
reflectance. In our development of the reflectance ratio we have studied the effects of
surface orientation on image brightness. Our method for computing the reflectance ratio
of a region is also different from that proposed by the Land. The retinex theory uses
global consistency to compute the reflectance of regions in the scene. In this approach,
if the reflectance ratio between two regions is inaccurately estimated or if the boundary
between two regions is not detected, the reflectance values computed for all other regions
are inaccurate. Real images often include shadows, occlusion effects, and noise. These
effects can cause a region to be merged with another, or region boundaries to be detected
where none exist. Hence, Land’s global consistency approach is generally not applicable to
real-world scenes.

We adopt a more local approach. First, the scene is segmented into regions that are
assumed to have different reflectance coefficients. Due to shadows, occlusions, and image
noise, some regions may be missed and others erroneously created. However, these errors
do not affect the reflectance ratios computed for other valid regions in the scene. The
extension of the reflectance ratio analysis to curved surfaces and the local approach to the
computation of region reflectance ratios are the two key differences between Land’s lightness
computation and our approach. We will see that these differences result in substantial
improvements in the robustness of computed reflectance ratios.



4 Computing Reflectance Ratios of Regions

We present an algorithm that computes reflectance ratios for scene regions. The algorithm
can be divided in two parts. First, a sequential labeling algorithm is used to segment the
image into connected regions. The second phase involves the computation of a reflectance
ratio for each of the segmented image regions. The algorithm is computationally efficient
as reflectance ratios of all scene regions are computed in just two raster scans of the image.

4.1 Sequential Labeling Algorithm

Sequential labeling is a well-known technique for efficient segmentation of images [9]. It
has been widely used in the context of binary images [12, 7] where it is straightforward to
determine if two image pixels are “connected.” Algorithms have also been proposed that
use near equal brightness values to determine the similarity between pixels in gray-scale
images [1]. We use the reflectance ratio as a measure of similarity between two neighboring
pixels. Let p(A, B) denote the reflectance ratio (p4 — pg)/(ps + pg) of two neighboring
pixels A and B. The pixels A and B are considered to be connected if |p(A, B)| < T,
where T' is a threshold value close to zero. A non-zero threshold is selected to account
for brightness variations that result from image noise and surface shading effects. The
connectivity between two pixels is defined as:

A, B) = 1 if |p(A,B)|<T (15)

0 otherwise

The sequential labeling algorithm proceeds as follows. The image is examined in a raster
scan fashion (left to right and top to bottom). The label of pixel A is determined by the
labels of three of its neighbors; pixel B to its left, pixel C' above it, and pixel D diagonal
to it.

D|C
B|A

Note that for a raster scan these three neighboring pixels have already been labeled. If
pixel A is connected to either B or C' (not both) then it is assigned the same label as the
pixel it is connected to. Else, if A is connected to both pixels B and C and pixels B and C
have equal labels, then A is assigned the same label. An interesting situation arises when
A is connected to both B and C and these two pixels have different labels. In this case,
we assign A the label of either B or ' and record the fact that the labels of B and C' are
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“equivalent.” If none of the above cases occur and we find that A is connected to D, then
we assign A the same label as D. Finally, it A is not connected to any of its neighbors, a
new label is created. This algorithm can be written is pseudo code as follows:

Algorithm: Sequential Labeling

if (c(A,B) = 1 and c(A,C) = 1) {
if (c(A,B) = 1 and c(A,C) = 1) then Label(A) = Label(B)

else if (c(A,B) = 0 and c(A,C) = 1) then Label(A) = Label(C)

else if (c(A,B) = 1 and c(A,C)
if (Label(B)
else {

Label(A) = Label(B)

Equiv(Label(B) ,Label(C))}}}
else if (c(A,D) = 1) then Label(A) = Label(D)
else Label(A) = New_Label

1 A
Label(C)) then Label(A) = Label(B)

Here Label(.) is the label of a pixel and Equiv (., .) records the equivalence of two labels.

Using this algorithm, the complete image can be segmented in a single raster scan.
Following the raster scan, the equivalences between different labels can be resolved such
that all equivalent labels are represented by a single label. This information can either be
stored as a table for future use or the image can be relabeled to account for the equivalences.
A minor addition can be made to the sequential labeling algorithm to also obtain the areas
and centroids of all the labeled regions.

4.2 Algorithm for Computing Reflectance Ratios

Sequential labeling provides a set of image regions that correspond to surface regions. Each
region is assumed to have a constant reflectance coefficient. The brightness of the region
may vary due to variations in surface normal and illumination. However, a completely
connected region is obtained since local brightness variations are small; neighboring pixels
have nearly equal surface normal vectors and illumination conditions. The following is an
example one-dimensional image of a region and the result of sequential labeling:

(a) 35 37 39 41 64 77 8 87 89 89 91 92 94 96
(by 1 1 1 1 2 3 4 4 4 4 4 4 4 A4

Here, label 4 corresponds to a region and label 1 represents its background. Though there
are smooth brightness variations within the region and the background, the labeling is
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robust. This is because the local brightness variations are small and reflectance ratios for
connected pixels are close to zero.

In digital images, the edges between a region and its background are blurred for two
reasons. First, the image has a finite resolution, causing the physical edge to lie within a
pixel. The brightness value of the pixel therefore is a weighted average of the brightness
values of the region and the background at the boundary [9]. Second, every optical system
is characterized by a blur function; due to imperfect imaging optics, each point in the scene
is projected onto a small patch (not a point) of the image sensor [4]. Thus, the pixels on
and around the edge end up with different labels from the region and the background.

One way of computing the reflectance ratio P(.5) of a region S is by using the average
brightness of the region and the average brightness of the background. Since, brightness
generally varies over both the region and the background, this will not yield an accurate
reflectance ratio. Instead, we can obtain an accurate estimate of the reflectance ratio by
using only points on the boundary of the region. Consider a pixel that lies in the region
S but on its boundary. An estimate of the reflectance ratio can be computed using this
pixel and the background pixel that is closest to it. Note that the surface normal and
illumination of the region boundary pixel and its closest background pixel can be assumed
to be equal. A robust estimate for the reflectance ratio of a region can be computed as an
average of the ratios computed using all its boundary pixels.

As mentioned earlier, the sequential labeling algorithm provides the area of each
labeled region. Small regions that result from points that lie on scene edges can be ignored
by using a threshold value. We focus only on larger regions that are referred to as valid
regions. The reflectance ratios for all valid regions can be computed in a single raster scan
of the image. During this final raster scan, attention is given only to those pixels that lie
in valid regions. If a pixel does lie in such a region, we first determine if it lies on the
boundary of the region. Consider the pixel X and its four neighbors A, B, (', and D.

K




It X lies inside a region, it and its four neighbors have the same label. If however X lies on
a region boundary, one or more of its neighbors must have different labels. Assume that
the neighbor A has a different label from that of X. We examine the pixel K that lies at a
distance, d, from X in the direction of A. K is used to compute a ratio estimate only if it lies
in a valid region, i.e. it does not belong to an edge region. If it does lie in a valid region, it is
assumed to lie on the background of the region that pixel X represents. The distance d used
to find the background pixel must be large enough to avoid edge pixels with unpredictable
intensities and at the same time small enough to satisfy the condition that pixels X and K
have near equal normals and illumination conditions. In our implementation, parameter d
is selected by the user and is usually between two and five pixels in length. If the above
conditions are satisfied, a reflectance ratio estimate is:

gi(Label(X)) = p(X, K) = (Ix — Ix)/(Ix + Ix) (16)

This is the 2th ratio estimate computed for the region that contains X. This process is
repeated for all neighbors of X whose labels differ from that of X. During the raster scan
of the image, a list of computed reflectance ratios is maintained for each valid region. The
algorithm is summarized below in pseudo code.

Algorithm: Region Reflectance Ratio

if (Label(X) is Valid) {
if (Label(X) '= Label(h)) {
if (Label(K) is Valid) {
q-i((Label(X)) = p(X,K)
i=1i+113}
if (Label(X) '= Label(B)) {
if (Label(L) is Valid) {
q-i((Label(X)) = p(X,L)
i=1i+113}
if (Label(X) '= Label(C)) {
if (Label(M) is Valid) {
q-i((Label(X)) = p(X,M)
i=1i+113}
if (Label(X) '= Label(D)) {
if (Label(N) is Valid) {
q-i((Label(X)) = p(X,N)
i=1+173}
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After all image pixels are examined, the reflectance ratio of a region S is computed as the
average of the ratios in its list:

P(S) = 1/N2q2-(5) (17)

where, N represented the total number of ratio estimates obtained for the region S.

Generally, N is not equal to the perimeter of the region for two reasons. First,
each boundary pixel may produce more than one ratio estimate since it has four neighbors.
Second, a boundary pixel may not produce any ratio estimates because it is surrounded
by edge pixels that belong to invalid regions. A confidence measure for the ratio P(S) of
a region is defined as:

(8) = N?/A(S) (18)

where A(S) is the area of the region S. This confidence may be used as a measure of the
accuracy of the reflectance ratio computed for the region. If v(.5) is small, few ratios have
contributed to the estimate and it may be unreliable.

In the above discussion, we started by selecting a region and its background. Note
that a reflectance ratio may be computed for the background as well, in which case, the
region and the background reverse roles; the region is the background and vice versa. We
also assumed that a region and its background have constant reflectance coefficients. In
practice this assumption can be relaxed; a region of constant reflectance may be surrounded
by several regions with different reflectance coefficients. The reflectance ratio computed for
the region is again an average of the ratios computed along its entire boundary. In this
case, however, the ratio can vary with the viewing direction since the fraction of the region
boundary shared with any particular background region can vary with viewing direction.

5 Experiments

We have conducted several experiments to demonstrate the invariance of reflectance ratios
to illumination and imaging parameters. Figure 2 illustrates the experimental set-up.
Objects are illuminated using incandescent light sources and are imaged using a Nikon
50mm lens and a CCD camera. The illumination and viewing directions are varied by
moving the light source and the sensor in a plane that passes through the object. The
source direction is represented by the angle §; and the viewing direction of the sensor by 8,.
Images are digitized using a Matrox frame-grabber and processed on a Sun Sparcstation 2.
The experiments were conducted on man-made objects with letters and pictures printed on
them. The printed regions have reflectance coefficients that depend on the shade or color of
the paint used to print them. Generally, all regions on any given object are painted using
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source

sensor

Figure 2: Experimental set-up.

paints of same material but different pigments. Therefore the reflectance functions of the
different regions are similar though their reflectance coefficients differ.

Figure 3 shows an object with several regions that have different reflectance coefhi-
cients from their backgrounds. The image in Figure 3a was obtained under ambient lighting
conditions. Figure 3b shows different connected regions extracted using the sequential la-
beling algorithm. A reflectance ratio threshold of 7' = 0.05 (see expression (15) ) was used
to determine connectivity between neighboring pixels. The connected regions are displayed
using different gray levels. This image shows only valid object regions, i.e. regions with
areas that are neither too small nor too large. Regions with small areas generally corre-
spond to edge regions that lie just outside a region boundary. Such regions include pixels
with unreliable brightness values and their reflectance ratios are not accurate or useful. A
large region could be the background of the imaged scene or the main body of an object
in the scene. In either case, the reflectance ratio would depend on the configuration and
reflectance of several objects contained in the scene. Hence, a valid region is large enough
not to be an edge region, and small enough to be a region whose background lies on the
same object.

Figure 3¢ shows the reflectance ratios of the labeled regions computed using the
algorithm presented in this paper. Ratio values between -1.0 and 1.0 are offset and scaled
to lie between 0 and 255 image brightness levels. Though the image of the object includes
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brightness variations due to illumination and surface normal changes, the region reflectance
ratios are found to be consistent with the reflectance coefficients of the object regions. Note
that all letters in the word “KRYLON” have similar ratio values. In the case of the circular
regions, each region is surrounded by more than one background region. Hence, the ratio
of each circular region is computed as a weighted average of the ratios with respect to all
the background regions. Figure 3d shows the centroids of the object regions. If a region is
near planar, its image centroid is invariant to the viewing direction under orthographic or
near-perspective image projections.

Figure 4 shows the invariance of reflectance ratios to the aperture size of the imaging
optics. The object is illuminated from the direction #; = 0 degrees. The aperture setting
was varied from 5.6 (large) to 16 (small). The reflectance ratios computed for region “K”
and one of the circular regions is plotted with respect to aperture setting. To help identity
these regions, their centroids are shown in the images. The reflectance ratio for region “K”
is approximately 0.29 and that for the circular region is approximately 0.05. Figure 5 shows
the robustness of computed reflectance ratios to object illumination using multiple light
sources. The reflectance ratios for the region “K” and its oval-shaped background region
are computed for source 1 in the direction §; = 40 degrees, source 2 in the direction §; =
70 degrees, and illumination by both sources, simultaneously. The sensitivity of computed
ratios to source direction is illustrated in Figure 6. The direction of a single light source
is varied from 6; = -70 degrees to 6; = 20 degrees in increments of 10 degrees. As seen
from the figure, the reflectance ratio for region “K” demonstrates remarkable invariance to
illumination direction.

The effects of varying the sensor direction are shown in Figure 7. As the viewing
direction is varied, the projected area and shape of an object region changes. As a result,
the boundary of the region also varies. Figure 7 shows the reflectance ratios of region “K”
computed for different sensor directions starting from 6, = -70 degrees to 6, = 20 degrees.
Though the shape and size of the region varies with the sensor direction, the ratio estimate
remains nearly constant. In this case, the region is surrounded by a background region
with constant reflectance. If on the other hand, a region is surrounded by several regions
with different reflectance coefficients, the boundary between the region and any one of the
background regions will vary with viewing directions. Hence, for regions with more than
one background region, the computed ratio is, in general, not invariant to viewing direction.

The above experiments were conducted on a single object. Figure 8a shows an
image of a scene that includes several objects. Each object has several regions of constant
reflectance. The scene includes shadows and occlusion effects. The labeled image is shown
in Figure 8b and the region reflectance ratios in Figure 8c. Though some of the objects
are curved and the illumination varied over the scene the computed ratios are consistent
with the reflectance of the object region. These results indicate that the reflectance ratio
invariant can serve as a valuable tool for visual perception.
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(c) Reflectance ratios of object regions. (d) Centroids of object regions.

Figure 3: Reflectance ratios and region centroids computed for a sample object.
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(a) Aperture setting: 5.6 (b) Aperture setting: 16
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(c) Reflectance ratio vs. aperture setting.

Figure 4: Invariance of reflectance ratios to aperture size.
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(& llumination by source 1. (b) Mumination by source 2.
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(d) Reflectance Ratio vs. source number.

Figure 5: Invariance of reflectance ratios to multiple light source illumination.
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(8) Source direction: -70 degrees. (b) Source direction: 20 degrees.
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(c) Reflectance ratio vs. source direction.

Figure 6: Invariance of reflectance ratios to the direction of illumination.
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(8) Sensor direction: 0 degrees. (b) Sensor direction: 70 degrees.

Reflectance Ratio
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(c) Reflectance ratio vs. sensor direction.

Figure 7: Invariance of reflectance ratios to viewing direction. In general, this invariance
holds only for regions that have a single background region.
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(a) Brightnessimage. (b) Labeled image.

(c) Reflectance ratios of scene regions.

Figure 8: Reflectance ratios computed for regions in a cluttered scene with shadows and
occlusions.
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6 Discussion

We conclude with a brief discussion on how the computed reflectance ratios can be applied
to machine vision problems. Consider the problem of recognizing three-dimensional objects
in a two-dimensional image (see Figure 8 for example). In the past, object recognition
systems have relied solely on geometric models of the objects of interest. However, the
complete geometry of the scene cannot generally be recovered from a single image. Hence,
it is evident that recognition systems would benefit from the use of additional physical
properties for object representation and identification. Reflectance, roughness, and material
type are examples of physical properties that could be effectively used by a recognition
system. Needless to say, just like geometry, these properties are also difficult to compute
from a single brightness image. However, the reflectance ratio introduced in this paper is
an example of a physical property that can be computed efficiently and accurately from a
single image.

The algorithm presented in this paper is currently being incorporated in a system
that uses reflectance ratios to recognize objects that have surface patches with different
reflectance coefficients. Many man-made objects with printed pictures or text fall in this
category (Figure 8). Scenes that include such objects produce images with many regions
that can confuse object recognition algorithms that use only geometric information. Re-
flectance ratios of image regions can be used to hypothesize the existence of an object in
the image. Then the geometric arrangement of the computed ratios is used to hypothesize
the pose of the object in scene. Finally, the hypothesis is verified by using reflectance ratios
and positions of other regions on the object.

Reflectance ratios can also be used for the visual inspection of printed characters or
pictures. A typical inspection problem involves the verification of the position and clarity of
printed characters. The sequential labeling algorithm provides the centroids of all the image
regions. If a region is only partially visible or if it is incorrectly positioned, its centroid will
capture these discrepancies. The reflectance ratio of the region can be used to determine
if it has the correct reflectance or color with respect to its background. The advantage
of using reflectance ratios here is that it is unaffected by the brightness and direction of
the light source used to illuminate the objects. The simultaneous use of geometric and
reflectance information outlined in this section is a powerful approach to solving a variety
of machine vision problems.

20



References

[1]
2]

3]

D. H. Ballard and C. M. Brown, Computer Vision, Prentice Hall, 1982.

P. J. Besl and R. C. Jain, “Three-Dimensional Object Recognition,” ACM Computing
Surveys, Vol. 17, No. 1, pp. 75-145, 1985.

A. Blake, “Boundary conditions for lightness computation in Mondrian world,” Central
and Peripheral Mechanisms of Color Vision, eds. D. Ottoson and S. Zeki, Macmillan:
New York, 1985.

M. Born and E. Wolf, Principles of Optics, London: Pergamon, 1965.

R. T. Chin and C. R. Dyer “Model-Based Recognition in Robot Vision,” ACM Com-
puting Surveys, Vol. 18, No. 1, March 1986.

G. D. Finlayson, “Colour Object Recognition,” M.S. thesis, Simon Fraser University,
1992.

S. B. Gray, “Local Properties of Binary Images in Two Dimensions,” IEEFE Trans. on
Computers, Vol. 20, No. 5, pp. 551-561, May 1971.

B. K. P. Horn, “Determining Lightness from an Image,” Computer Graphics and Image
Processing, Vol. 3, No. 1, pp. 277-299, December 1974.

B. K. P. Horn, Robot Vision, MIT Press, 1986.

E. H. Land, “The Retinex,” American Scientist, Vol. 52, No. 2, pp. 247-264, June
1964.

E. H. Land and J. J. McCann, “Lightness and Retinex Theory,” Journal of Optical
Society of America, Vol. 61, No. 1, pp. 1-11, January 1971.

G. Nagy, “Feature Extraction on Binary Patterns,” IEFEE Trans. on Systems, Science,
and Cybernetics, Vol. 5, No. 4, pp. 273-278, October 1969.

S. K. Nayar, K. Ikeuchi, T. Kanade, ”Surface Reflection: Physical and Geometrical
Perspectives,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13,
No. 7, pp. 611-634, July 1991.

A. Rosenfeld, “Connectivity in Digital Pictures,” Journal of the ACM, Vol. 17, No. 1,
pp- 146-160, January 1970.

21



