

A Comprehensive Framework for Modeling and Correcting Color Variations in Multi Projector Displays

Aditi Majumder

Slide 1

Historical Perspective

- A dream computer in 1980 (Bill Joy and others)
 - Megabytes of memory
 - Megahertz of speed
 - Mega pixels
- Today
 - Gigabytes of memory
 - Gigahertz of speed
 - And still Mega pixels !! (1000 x 1000 monitor)

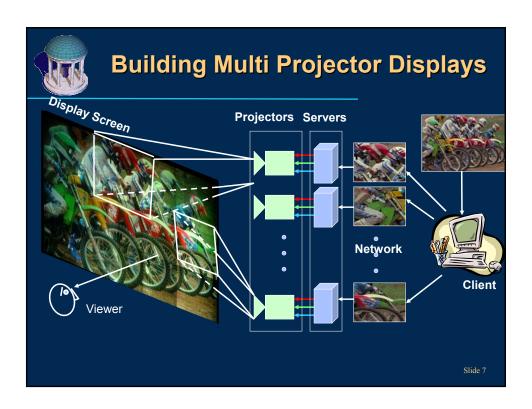
Large Area Displays

	We have today in common use	We would like to have
Size	19 inch diagonal	15 feet x 10 feet
Resolution	60 pixels/inch	100 – 300 pixels/inch
Field of View	20 – 30 degrees	120 – 140 degrees
# of pixels	1 million	100 – 140 million

Multi Projector Displays

Tile projectors

Slide:



Multi Projector Displays

- Tile projectors
- 15 projectors
 - -3x5 array
 - 10 feet x 8 feet
 - -50 pixels/inch
 - 12 million pixels

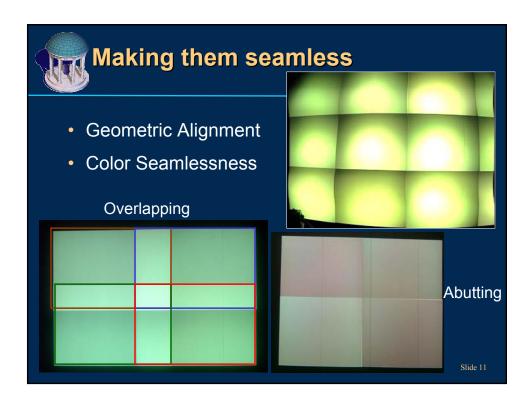
At ANL

Making them seamless

Geometric Alignment

Making them seamless

Geometric Alignment


Slide 9

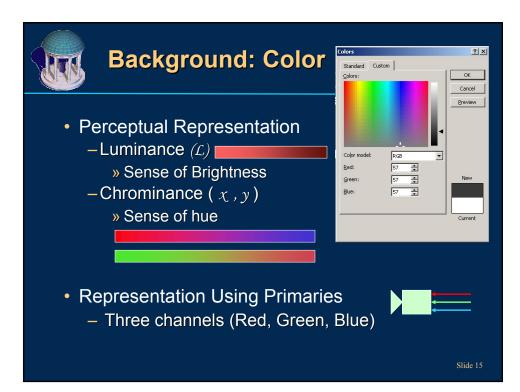
Making them seamless

Geometric Alignment

The Problem

Even with perfect geometric alignment, color variation breaks the illusion of a single seamless display

At ANL


The Goal of Color Seamlessness

Slide 13

The Goal of Color Seamlessness

Color Seamlessness

- Luminance Seamlessness (Brightness)
- Chrominance Seamlessness (Hue)

Why Is It Difficult?

- No comprehensive model of color variation
- No formal definition of color seamlessness
- The problem is inherently five dimensional
 - Color (3D 1D luminance and 2D chrominance)
 - Display surface (2D)
- Humans are more sensitive spatial variations than to temporal variations in color

Slide 17

Innovations

- Emineoptic function: Models the luminance and chrominance variation in multi projector displays
 - 'emineoptic' signifies 'viewing projected light'
- A definition for color seamlessness
 - Optimization Problem
- An algorithm to address luminance variation (photometric seamlessness)
 - Same model projectors differ significantly in luminance
 - Humans are more sensitive to luminance than chrominance

Thesis Statement

- The color variation in multi-projector displays can be modeled by the emineoptic function.
- Achieving color seamlessness is an optimization problem that can be defined using the emineoptic function.
- Perceptually uniform high quality displays can be achieved by realizing a desired emineoptic function that differs minimally from the original function and has imperceptible color variation.

Slide 19

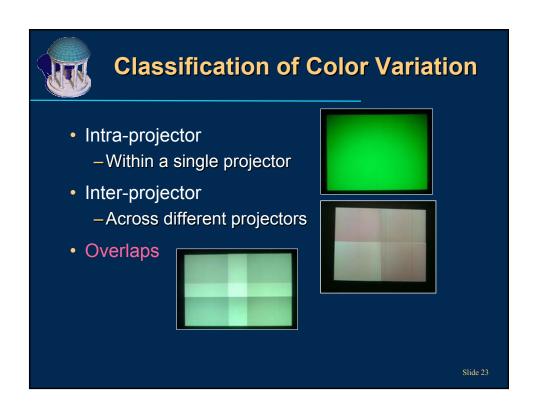
Organization

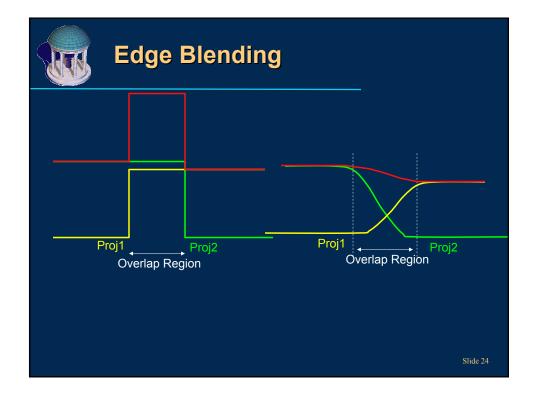
- Previous Work
- The Emineoptic Function
- Definition of Color Seamlessness
- Achieving Photometric Seamlessness
- Results

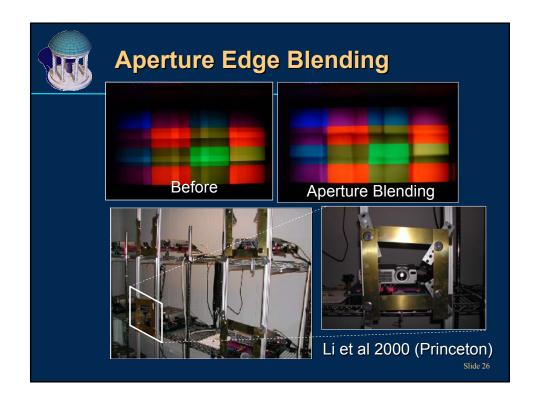
Organization

- Previous Work
- The Emineoptic Function
- Definition of Color Seamlessness
- Achieving Photometric Seamlessness
- Results

Slide 21

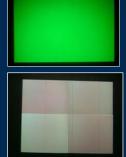

Classification of Color Variation


- Intra-projector
 - -Within a single projector
- Inter-projector
 - –Across different projectors
- Overlaps



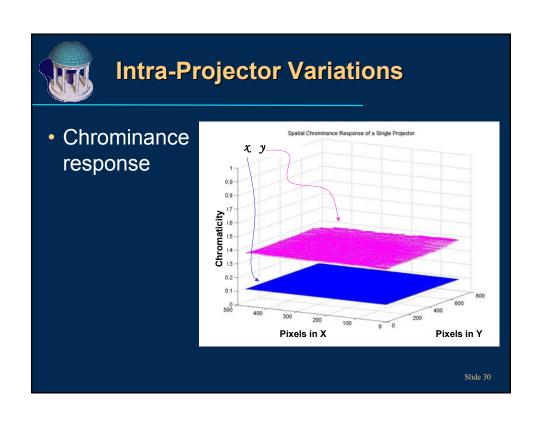
Software Edge Blending

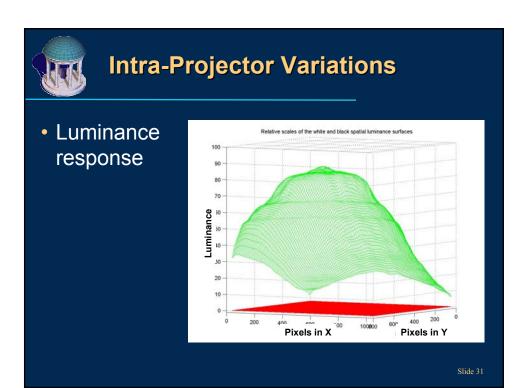
Raskar et al 1998 (UNC) Yang et al 2001 (UNC)



Classification of Color Variation

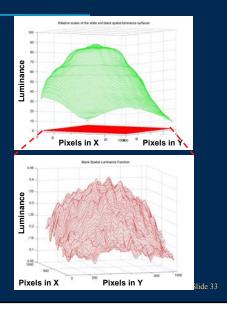
- Intra-projector
 - -Within a single projector
- Inter-projector
 - Across different projectors
- Overlaps


Slide 27



Previous Work

- Projector Controls
- Using the same bulb
 - -Pailthorpe et al 2001 (NSCA San Diego)
- Inter-projector response matching
 - -Stone et al 2000, 2001 (Stanford)
 - -Chen et al 2002 (Princeton)



Intra-Projector Variations

- Luminance response
- Black offset
 - Always present

Limitations of Previous Methods

- No algorithm addresses intra projector variation
- No algorithm addresses more than one class of problems
- Each class of problems treated as a special case
- · Strict uniformity mindset
 - Identical color response at every display coordinate

Desiderata

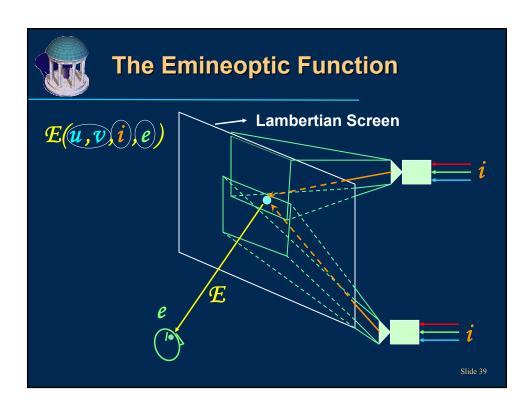
- Comprehensive and general framework
 - -Addresses intra, inter and overlap variations
 - –Design general solutions
 - » No special cases
 - » Automated
 - » Scalable
 - –Explain and compare existing methods

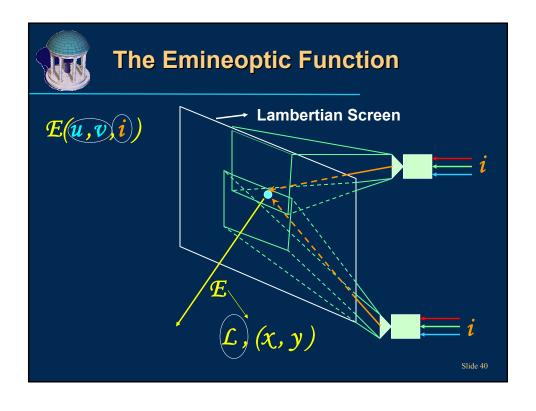
Slide 35

Organization

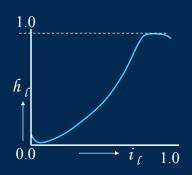
- Previous Work
- The Emineoptic Function
- Definition of Color Seamlessness
- Achieving Photometric Seamlessness
- Results

Achieving Color Seamlessness


- To correct, first capture
- Complexity of capture
 - -Input color space : 24 bit color
 - –Need 2²⁴ images
- Reduce complexity by modeling projector color variations
 Emineoptic Function


Slide 37

Thesis Statement


- The color variation in multi-projector displays can be modeled by the emineoptic function.
- Achieving color seamlessness is an optimization problem that can be defined using the emineoptic function.
- Perceptually uniform high quality displays can be achieved by realizing a desired emineoptic function that differs minimally from the original function and has imperceptible color variation.

Single Pixel, Single Channel Input

- Maximum channel luminance (\mathcal{M}_{ℓ})
- Variation in luminance with channel input

» Channel transfer function
$$(h_f(i_f))$$

$$C_{\ell}(i_{\ell}) = h_{\ell}(i_{\ell}) \mathcal{M}_{\ell}$$

Slide 41

Single Pixel, Three Channel Input

At one pixel for one channel:

$$C_{\ell}(i_{\ell}) = h_{\ell}(i_{\ell}) \mathcal{M}_{\ell}$$

For any input $i = (i_r, i_g, i_b)$:

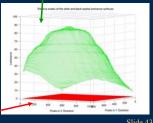
$$\mathcal{P}(i) = C_r(i_r) + C_g(i_g) + C_b(i_b)$$

With black Offset 6:

$$\begin{split} \mathcal{P}(i) = & C_r(i_r) \\ & + C_g(i_g) \\ & + C_6(i_b) \\ & + \mathcal{B} \end{split}$$

Single Projector Display

At one pixel for one channel:


$$C_{\ell}(i_{\ell}, u, v) = h_{\ell}(i_{\ell}, u, v) \mathcal{M}_{\ell}(u, v)$$

For any input $i = (i_r, i_g, i_b)$:

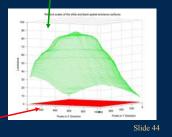
$$P(i, u, v) = C_r(i_r, u, v) + C_g(i_g, u, v) + C_b(i_b, u, v)$$

With black Offset 6:

$$\begin{split} \mathcal{P}(i,u,v) &= C_r(i_r,u,v) \\ &+ C_g(i_g,u,v) \\ &+ C_b(i_b,u,v) \\ &+ \boxed{\mathcal{B}(u,v)} \end{split}$$

Single Projector Display

At one pixel for one channel:


$$C_{\ell}(i_{\ell}, u, v) = \frac{h_{\ell}(i_{\ell})}{\mathcal{M}_{\ell}(u, v)}$$

For any input $i = (i_r, i_g, i_b)$:

$$P(i, u, v) = C_r(i_r, u, v) + C_g(i_g, u, v) + C_b(i_b, u, v)$$

With black Offset 6:

$$\begin{split} \mathcal{P}(i,u,v) &= C_{\tau}(i_{\tau},u,v) \\ &+ C_{g}(i_{g},u,v) \\ &+ C_{\delta}(i_{\delta},u,v) \\ &+ \boxed{\mathcal{B}(u,v)} \end{split}$$

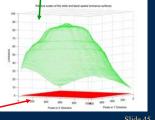
Single Projector Display

At one pixel for one channel:

$$C_{\ell}(i_{\ell}, u, v) = \frac{h_{\ell}(i_{\ell})}{\mathcal{M}_{\ell}(u, v)}$$

For any input $i = (i_r, i_g, i_b)$:

$$P(i, u, v) = C_r(i_r, u, v) + C_g(i_g, u, v) + C_b(i_b, u, v)$$


With black Offset 6:

$$P(i, u, v) = h_r(i_r) \mathcal{M}_r(u, v)$$

$$+ h_g(i_g) \mathcal{M}_g(u, v)$$

$$+ h_6(i_6) \mathcal{M}_6(u, v)$$

$$+ \mathcal{B}(u, v)$$

Single Projector Display

$$P(i, u, v) = h_r(i_r) \mathcal{M}_r(u, v) + h_g(i_g) \mathcal{M}_g(u, v) + h_b(i_b) \mathcal{M}_g(u, v) + \mathcal{B}(u, v)$$

Transfer Functions

Luminance Functions

Black Offset

Multi-Projector Display

N =1	2	N =1
$ \mathcal{N} = 2$	4	\mathcal{N} = 2
N =1	2	N =1

$$\mathcal{E}(u, v, i) = \sum \mathcal{P}_{j}(u, v, i)$$
$$j \in \mathcal{N}(u, v)$$

$$\begin{split} \mathbf{E}\left(i,u,v\right) &= \sum h_{r}(i_{r}) \mathcal{M}_{r}\left(u,v\right) \\ &+ \sum h_{g}(i_{g}) \mathcal{M}_{g}\left(u,v\right) \\ &+ \sum h_{b}(i_{b}) \mathcal{M}_{b}\left(u,v\right) \\ &+ \sum \mathbf{B}\left(u,v\right) \\ j \in \mathcal{N}\left(u,v\right) \end{split}$$

Multi-Projector Display

- Intra projector luminance variation
 - $-\mathcal{M}_{\ell}(u,v)$ and $\mathcal{B}(u,v)$ are not flat
- Inter projector luminance variation
 - $-h_{\ell}(i_{\ell})$ is different
 - $-\mathcal{M}_{\ell}(u,v)$ and $\mathcal{B}(u,v)$ have different shapes
- Overlap luminance variation

$$-\!\mathcal{N}$$
 is different

$$\begin{split} \boldsymbol{\mathcal{E}}\left(\boldsymbol{i},\boldsymbol{u},\boldsymbol{v}\right) &= \sum h_{r}(\boldsymbol{i}_{r}) \boldsymbol{\mathcal{M}}_{r}\left(\boldsymbol{u},\boldsymbol{v}\right) \\ &+ \sum h_{g}(\boldsymbol{i}_{g}) \boldsymbol{\mathcal{M}}_{g}(\boldsymbol{u},\boldsymbol{v}) \\ &+ \sum h_{6}(\boldsymbol{i}_{6}) \boldsymbol{\mathcal{M}}_{6}(\boldsymbol{u},\boldsymbol{v}) \\ &+ \sum \boldsymbol{\mathcal{B}}\left(\boldsymbol{u},\boldsymbol{v}\right) \\ \boldsymbol{j} \in \boldsymbol{\mathcal{N}}(\boldsymbol{u},\boldsymbol{v}) \end{split}$$

Including Chrominance

$$\begin{split} \boldsymbol{E}(\boldsymbol{i},\boldsymbol{u},\boldsymbol{v}) &= \sum h_{\tau}(\boldsymbol{i}_{\tau}) \mathcal{M}_{\tau}(\boldsymbol{u},\boldsymbol{v}) \\ &+ \sum h_{g}(\boldsymbol{i}_{g}) \mathcal{M}_{g}(\boldsymbol{u},\boldsymbol{v}) \\ &+ \sum h_{b}(\boldsymbol{i}_{b}) \mathcal{M}_{b}(\boldsymbol{u},\boldsymbol{v}) \\ &+ \sum \boldsymbol{B}(\boldsymbol{u},\boldsymbol{v}) \\ \boldsymbol{j} \in \mathcal{N}(\boldsymbol{u},\boldsymbol{v}) \end{split}$$

Slide 49

Including Chrominance

$$\begin{split} \boldsymbol{\mathcal{E}}(\boldsymbol{i},\boldsymbol{u},\boldsymbol{v}) &= \sum h_{r}(\boldsymbol{i}_{r})(\boldsymbol{\mathcal{M}}_{r}(\boldsymbol{u},\boldsymbol{v}),\boldsymbol{c}_{r}(\boldsymbol{u},\boldsymbol{v})) \\ &+ \sum h_{g}(\boldsymbol{i}_{g})(\boldsymbol{\mathcal{M}}_{g}(\boldsymbol{u},\boldsymbol{v}),\boldsymbol{c}_{g}(\boldsymbol{u},\boldsymbol{v})) \\ &+ \sum h_{b}(\boldsymbol{i}_{b})(\boldsymbol{\mathcal{M}}_{b}(\boldsymbol{u},\boldsymbol{v}),\boldsymbol{c}_{b}(\boldsymbol{u},\boldsymbol{v})) \\ &+ \sum (\boldsymbol{\mathcal{B}}(\boldsymbol{u},\boldsymbol{v}),\boldsymbol{c}_{g}(\boldsymbol{u},\boldsymbol{v})) \\ &j \in \boldsymbol{\mathcal{N}}(\boldsymbol{u},\boldsymbol{v}) \end{split}$$

Including Chrominance

$$\begin{split} \boldsymbol{\mathcal{E}}\left(\boldsymbol{i},\boldsymbol{u},\boldsymbol{v}\right) &= \sum h_{r}(\boldsymbol{i}_{r}) \bigotimes \left(\mathcal{M}_{r}\left(\boldsymbol{u},\boldsymbol{v}\right),\boldsymbol{c}_{r}(\boldsymbol{u},\boldsymbol{v})\right) \\ &+ \sum h_{g}\left(\boldsymbol{i}_{g}\right) \bigotimes \left(\mathcal{M}_{g}\left(\boldsymbol{u},\boldsymbol{v}\right),\boldsymbol{c}_{g}\left(\boldsymbol{u},\boldsymbol{v}\right)\right) \\ &+ \sum h_{b}\left(\boldsymbol{i}_{b}\right) \bigotimes \left(\mathcal{M}_{b}(\boldsymbol{u},\boldsymbol{v}),\boldsymbol{c}_{b}\left(\boldsymbol{u},\boldsymbol{v}\right)\right) \\ &+ \sum \left(\mathcal{B}\left(\boldsymbol{u},\boldsymbol{v}\right),\boldsymbol{c}_{g}\left(\boldsymbol{u},\boldsymbol{v}\right)\right) \\ &j \in \mathcal{N}\left(\boldsymbol{u},\boldsymbol{v}\right) \end{split}$$

$$\boldsymbol{\mathcal{E}}\left(\boldsymbol{\mathcal{L}}_{1},\boldsymbol{c}_{1}\right) = \left(\boldsymbol{\mathcal{K}}\boldsymbol{\mathcal{L}}_{1},\boldsymbol{c}_{1}\right) \end{split}$$
 Luminance Scaling

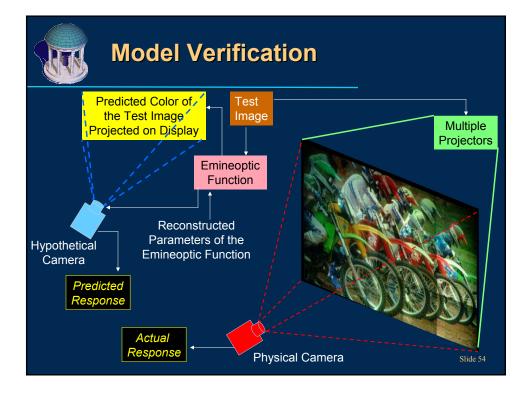
Slide 51

Including Chrominance

$$\begin{split} \mathbf{\mathcal{E}}(i,u,v) &= \bigoplus h_{r}(i_{r}) \bigotimes \left(\mathcal{M}_{r}(u,v),c_{r}(u,v)\right) \\ &\bigoplus h_{g}(i_{g}) \bigotimes \left(\mathcal{M}_{g}(u,v),c_{g}(u,v)\right) \\ &\bigoplus h_{b}(i_{b}) \bigotimes \left(\mathcal{M}_{b}(u,v),c_{b}(u,v)\right) \\ &\bigoplus \bigoplus \left(\mathbf{\mathcal{B}}(u,v),c_{g}(u,v)\right) \\ &j \in \mathcal{N}(u,v) \end{split}$$

$$\mathbf{\mathcal{K}} \bigotimes \left(\mathcal{L}_{1},c_{1}\right) = \left(\mathcal{K}\mathcal{L}_{1},c_{1}\right) \qquad \text{Luminance Scaling}$$

$$\left(\mathcal{L}_{1},c_{1}\right) \bigoplus \left(\mathcal{L}_{2},c_{2}\right) = \left(\mathcal{L}_{1}+\mathcal{L}_{2},\frac{c_{1}\mathcal{L}_{1}}{\mathcal{L}_{1}+\mathcal{L}_{2}}+\frac{c_{2}\mathcal{L}_{2}}{\mathcal{L}_{1}+\mathcal{L}_{2}}\right) \end{split}$$


Optical Superposition

Including Chrominance

$$\begin{split} \boldsymbol{\mathcal{E}}(\boldsymbol{i},\boldsymbol{u},\boldsymbol{v}) = & \bigoplus \boldsymbol{h}_{r}(\boldsymbol{i}_{r}) \boldsymbol{\bigotimes} \left(\mathcal{M}_{r}\left(\boldsymbol{u},\boldsymbol{v}\right),\boldsymbol{c}_{r}(\boldsymbol{u},\boldsymbol{v}) \right) \\ & \bigoplus \boldsymbol{h}_{g}(\boldsymbol{i}_{g}) \boldsymbol{\bigotimes} \left(\mathcal{M}_{g}(\boldsymbol{u},\boldsymbol{v}),\boldsymbol{c}_{g}(\boldsymbol{u},\boldsymbol{v}) \right) \\ & \bigoplus \boldsymbol{h}_{6}(\boldsymbol{i}_{6}) \boldsymbol{\bigotimes} \left(\mathcal{M}_{6}(\boldsymbol{u},\boldsymbol{v}),\boldsymbol{c}_{6}(\boldsymbol{u},\boldsymbol{v}) \right) \\ & \bigoplus \boldsymbol{\bigoplus} \boldsymbol{(\boldsymbol{u},\boldsymbol{v})},\boldsymbol{c}_{\mathfrak{g}}(\boldsymbol{u},\boldsymbol{v}) \\ & j \in \mathcal{N}\left(\boldsymbol{u},\boldsymbol{v}\right) \end{split}$$

- Intra projector chrominance variation
 - $-c_{\ell}(u,v)$ and $c_{\mathfrak{g}}(u,v)$ are not flat
 - $-\mathcal{M}_r$, \mathcal{M}_{a} , and \mathcal{M}_{b} differ in shape
- Inter projector and overlap chrominance variation
 - $-c_f$ and c_a differ
 - The relative proportions of $max(\mathcal{M}_{f}(u, v))$ across channels

Actual Response

Organization

- Previous Work
- The Emineoptic Function
- Definition of Color Seamlessness
- Achieving Photometric Seamlessness
- Results

Thesis Statement

- The color variation in multi-projector displays can be modeled by the emineoptic function.
- Achieving color seamlessness is an optimization problem that can be defined using the emineoptic function.
- Perceptually uniform high quality displays can be achieved by realizing a desired emineoptic function that differs minimally from the original function and has imperceptible color variation.

Slide 57

Properties of Color Variation

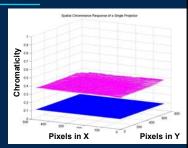
Based on extensive empirical analysis of real projectors

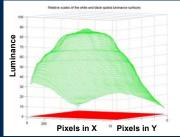
- Intra-projector
 - -Within a single projector
- Inter-projector
 - Across different projectors
- Overlaps

Properties of Color Variation

Based on extensive empirical analysis of real projectors

- Intra-projector
 - -Within a single projector
- Inter-projector
 - Across different projectors
- Overlaps

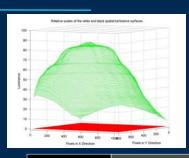

Slide 59



Intra-Projector Variations

- Chrominance is almost constant
- Luminance is not

Luminance variation is more significant than chrominance variation



Intra-Projector Variations

- Chrominance is constant
- Luminance is not

$$E(i, u, v) = \bigoplus h_{\tau}(i_{\tau}) \bigotimes (\mathcal{M}_{\tau}(u, v), c_{\tau}(u, v))$$

$$\bigoplus \bigoplus h_{g}(i_{g}) \bigotimes (\mathcal{M}_{g}(u, v), c_{g}(u, v))$$

$$\bigoplus \bigoplus h_{\delta}(i_{\delta}) \bigotimes (\mathcal{M}_{\delta}(u, v), c_{\delta}(u, v))$$

$$\bigoplus \bigoplus B(u, v), c_{g}(u, v)$$

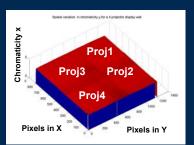
$$j \in \mathcal{N}(u, v)$$

Slide 61

Properties of Color Variation

Based on extensive empirical analysis of real projectors

- Intra-projector
 - -Within a single projector
- Inter-projector
 - -Across different projectors
- Overlaps



Inter-Projector Variations

- Projectors of same model
 - Chrominance variation is negligible
 - -Luminance variation is significant
- · Projectors of different models
 - Chrominance variation is relatively very small
 - Luminance variation is significant

Chrominance (χ) of a four projector display

Luminance variation is more significant than chrominance variation

Slide 63

Inter-Projector Variations

$$\begin{split} \boldsymbol{\mathcal{E}}(i,u,v) = &\bigoplus_{\boldsymbol{h}_{\tau}(i_{\tau})} \boldsymbol{\mathcal{K}}(\boldsymbol{\mathcal{M}}_{\tau}(u,v),\boldsymbol{c}_{\tau}(u,v)) \\ &\bigoplus_{\boldsymbol{h}_{g}(i_{g})} \boldsymbol{\mathcal{K}}(\boldsymbol{\mathcal{M}}_{g}(u,v),\boldsymbol{c}_{g}(u,v)) \\ &\bigoplus_{\boldsymbol{h}_{b}(i_{b})} \boldsymbol{\mathcal{K}}(\boldsymbol{\mathcal{M}}_{b}(u,v),\boldsymbol{c}_{b}(u,v)) \\ &\bigoplus_{\boldsymbol{j} \in \boldsymbol{\mathcal{N}}(u,v)} \boldsymbol{\mathcal{C}}_{\boldsymbol{g}}(u,v) \end{split}$$

Properties of Color Variation

Based on extensive empirical analysis of real projectors

- Intra-projector
 - -Within a single projector
- Inter-projector
 - Across different projectors
- Overlaps

Slide 65

Overlaps

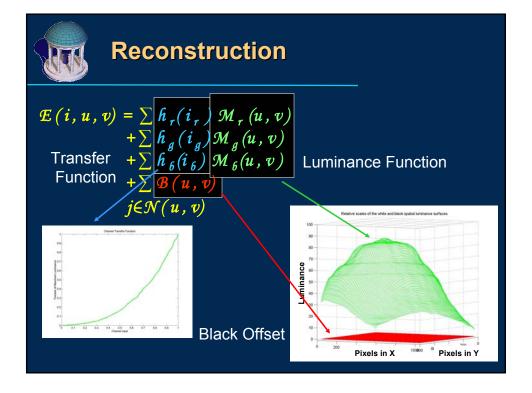
- For displays made of same model projectors, at overlap regions
 - -Chrominance remains almost constant
 - Luminance almost gets multiplied by the number of overlapping projectors

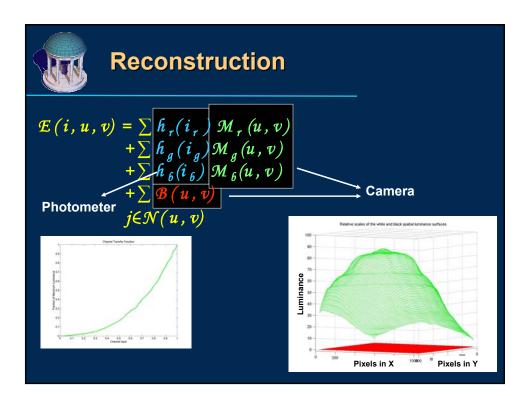
Luminance variation is more significant than chrominance variation

Addresses only Luminance

- Most display walls made of same model projectors
 - Spatial variation in chrominance is insignificant compared to luminance
- Humans are more sensitive to spatial luminance variation than to spatial chrominance variation

Slide 67


Achieving Photometric Seamlessness


- Reconstruction
 - Reconstruct **E**
- Modification
 - Modify £ to £'
- Reprojection
 - Reproject £'

Achieving Photometric Seamlessness

- Reconstruction
 - Reconstruct **E**
- Modification
 - Modify 𝒯 to 𝒯¹
- Reprojection
 - Reproject E'

Achieving Photometric Seamlessness

- Reconstruction
 - Reconstruct <u>E</u>
- Modification
 - Modify ${\mathcal E}$ to ${\mathcal E}'$
- Reprojection
 - − Reproject E'

Modification 1

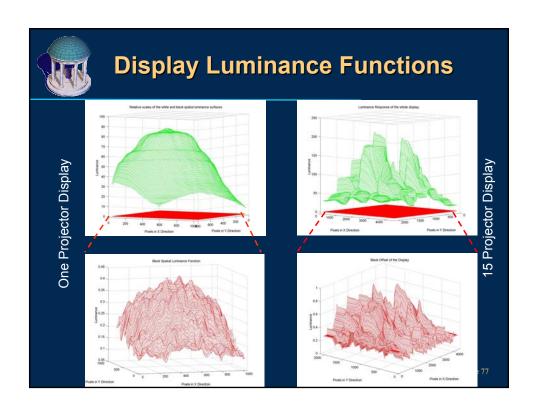
$$\begin{split} \boldsymbol{\mathcal{P}}(i,u,v) &= \ h_r(i_r) \ \mathcal{M}_r(u,v) \\ &+ h_g(i_g) \ \mathcal{M}_g(u,v) \\ &+ h_b(i_b) \ \mathcal{M}_b(u,v) \\ &+ \mathcal{B}(u,v) \end{split} \qquad \text{Single Projector} \\ &+ h_b(i_b) \ \mathcal{M}_b(u,v) \\ &+ \mathcal{B}(u,v) \end{split}$$

$$\boldsymbol{\mathcal{E}}(i,u,v) &= \sum h_r(i_r) \mathcal{M}_r(u,v) \\ &+ \sum h_g(i_g) \mathcal{M}_g(u,v) \\ &+ \sum h_b(i_b) \mathcal{M}_b(u,v) \\ &+ \sum \mathcal{B}(u,v) \\ &j \in \mathcal{N}(u,v) \end{split} \qquad \text{Multi Projector}$$

Modification 1

$$\begin{split} \mathcal{P}(i,u,v) &= \ h_r(i_r) \ \mathcal{M}_r\left(u,v\right) \\ &+ h_g\left(i_g\right) \mathcal{M}_g\left(u,v\right) \\ &+ h_b(i_b) \ \mathcal{M}_b\left(u,v\right) \\ &+ \mathcal{B}\left(u,v\right) \end{split} \text{Single Projector} \\ &+ h_b(i_b) \ \mathcal{M}_b\left(u,v\right) \\ &+ \mathcal{B}\left(u,v\right) \end{split}$$

$$\begin{split} \mathcal{E}(i,u,v) &= \sum \mathcal{H}_r(i_r) \mathcal{M}_r\left(u,v\right) \\ &+ \sum \mathcal{H}_g\left(i_g\right) \mathcal{M}_g\left(u,v\right) \\ &+ \sum \mathcal{H}_b(i_b) \mathcal{M}_b\left(u,v\right) \\ &+ \sum \mathcal{B}\left(u,v\right) \\ &j \in \mathcal{N}\left(u,v\right) \end{split} \text{ Multi Projector} \\ \text{Match } h_l\left(i_l\right) \text{ of projectors} \end{split}$$

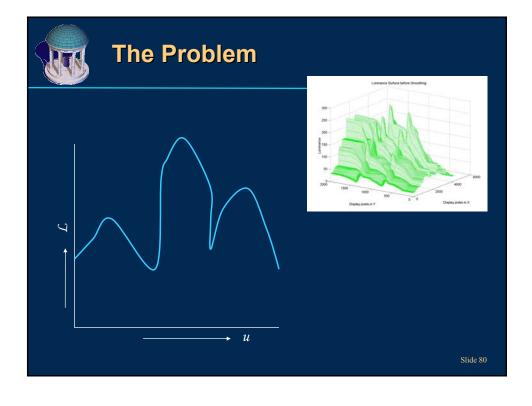


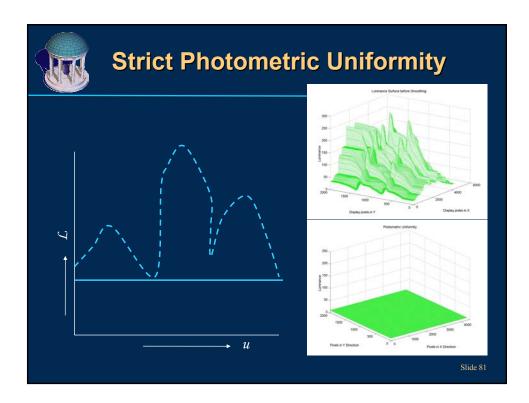
Modification 1

$$\begin{split} \mathcal{P}(i,u,v) &= \ h_r(i_r) \ \mathcal{M}_r(u,v) \\ &+ h_g(i_g) \ \mathcal{M}_g(u,v) \\ &+ h_b(i_b) \ \mathcal{M}_b(u,v) \\ &+ \mathcal{B}(u,v) \end{split} \qquad \text{Single Projector} \\ &+ \mathcal{H}_b(i_b) \ \mathcal{M}_b(u,v) \\ &+ \mathcal{H}_g(i_g) \ \mathcal{M}_g(u,v) \\ &+ \mathcal{H}_g(i_g) \ \mathcal{M}_g(u,v) \\ &+ \mathcal{H}_b(i_b) \ \mathcal{M}_b(u,v) \\ &+ \mathcal{H}_b(i_b) \ \mathcal{M}_b(u,v) \\ &+ \mathcal{H}_b(i_l) \ \text{of projectors} \end{split}$$

Modification 1

$$\begin{split} \mathcal{P}(i,u,v) &= \begin{array}{c} h_r(i_r) & \mathcal{M}_r\left(u,v\right) \\ + h_g\left(i_g\right) & \mathcal{M}_g\left(u,v\right) \\ \end{array} \\ \text{Transfer} \\ \text{Function of one Projector} \\ \mathcal{E}(i,u,v) &= \begin{array}{c} \mathcal{H}_r(i_r) & \mathcal{M}_r\left(u,v\right) \\ + \mathcal{B}\left(u,v\right) & \text{Black Offset of one Projector} \\ \end{array} \\ \mathcal{E}(i,u,v) &= \begin{array}{c} \mathcal{H}_r(i_r) & \mathcal{M}_r\left(u,v\right) \\ + \mathcal{H}_g\left(i_g\right) & \mathcal{M}_g\left(u,v\right) \\ + \mathcal{H}_g\left(i_g\right) & \mathcal{M}_g\left(u,v\right) \\ \end{array} \\ \mathcal{M}_g\left(u,v\right) & \text{Luminance Functions of the whole Display} \\ \mathcal{H}_g\left(i_g\right) & \mathcal{M}_g\left(u,v\right) \\ + \mathcal{H}_g\left(i_g\right) & \mathcal{M}_g\left(u,v\right) \\ \end{array} \\ \mathcal{M}_g\left(u,v\right) & \text{Display is like a single large projector} \\ \end{split}$$

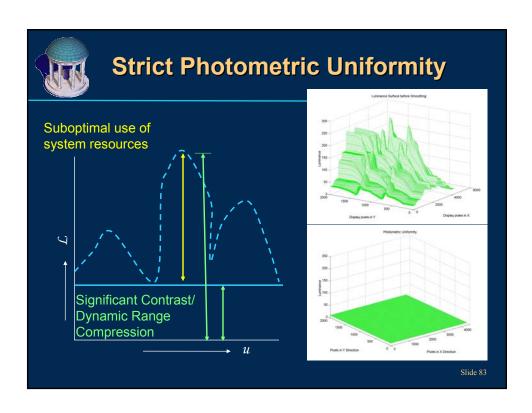




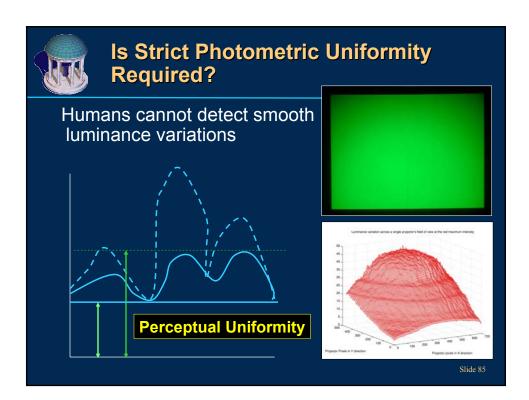
Modification 2

- Sharp discontinuities are the cause of photometric seams
- Remove the sharp discontinuities

Strict Photometric Uniformity

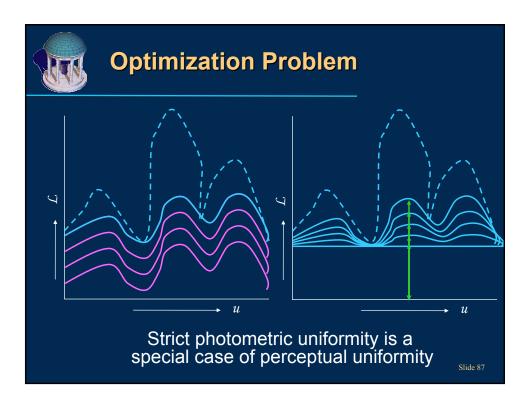

$$| lum(E'(u_1, v_1, i, e)) - lum(E'(u_2, v_2, i, e)) | = 0$$

The luminance of the light reaching the viewer from any two coordinates is identical


Strict Color Uniformity

$$| \mathcal{E}'(u_1, v_1, i, e) - \mathcal{E}'(u_2, v_2, i, e) | = 0$$

The color of the light reaching the viewer from any two coordinates is identical



Achieving Photometric Seamlessness

- Optimization Problem
 - -Perceptual Uniformity
 - » Creates the *perception* of uniformity
 - -Display Quality
 - » Maintains *high* display quality

Photometric Seamlessness

Perceptual Uniformity

$$|\operatorname{lum}\left(\operatorname{E}'(u_1,v_1,i,e)\right) - \operatorname{lum}\left(\operatorname{E}'(u_2,v_2,i,e)\right)| \leq \Delta$$

Display Quality
 Minimize

Distance (lum
$$(E(u, v, i, e))$$
, lum $(E'(u, v, i, e))$)

Color Seamlessness

Perceptual Uniformity

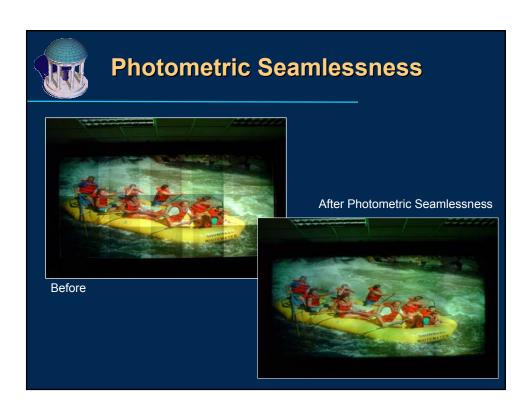
$$| \mathcal{E}'(u_1, v_1, i, e) - \mathcal{E}'(u_2, v_2, i, e) | \leq \Delta$$

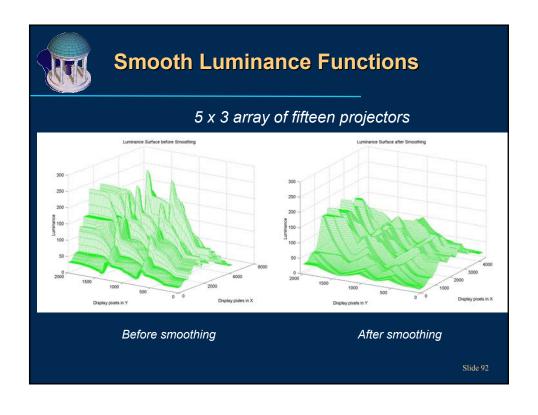
 Display Quality Minimize

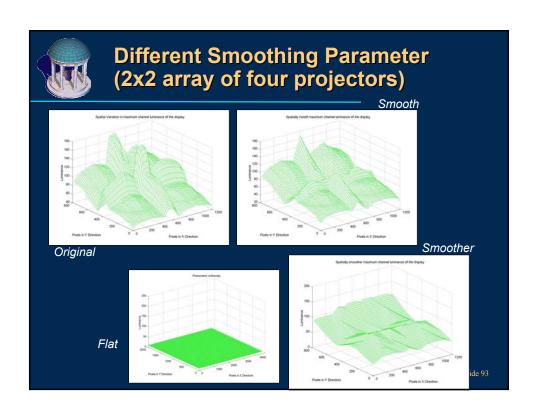
Distance (
$$E(u, v, i, e), E'(u, v, i, e)$$
)

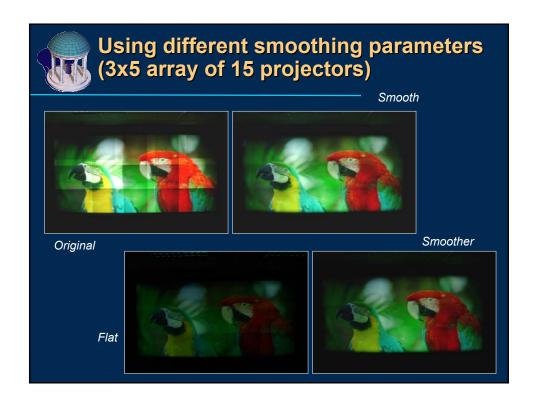
Perceptually uniform high quality displays can be achieved by realizing a desired emineoptic function that differs minimally from the original function and has imperceptible color variation.

Slide 89

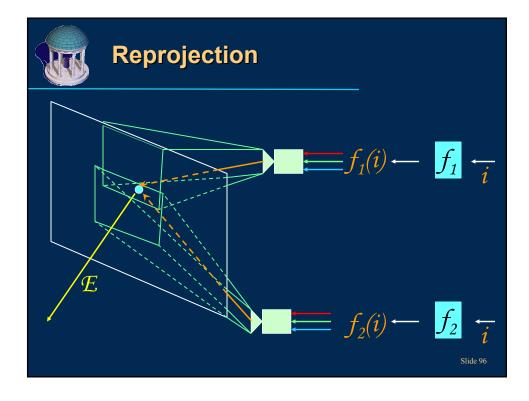



Strict Photometric Uniformity



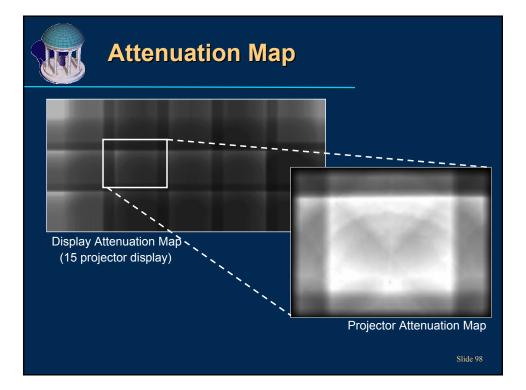

Before

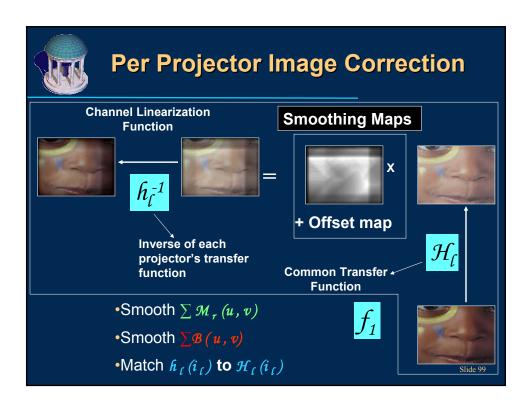
After Strict Photometric Uniformity

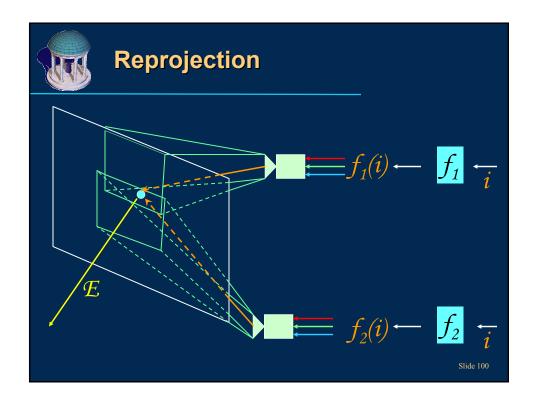


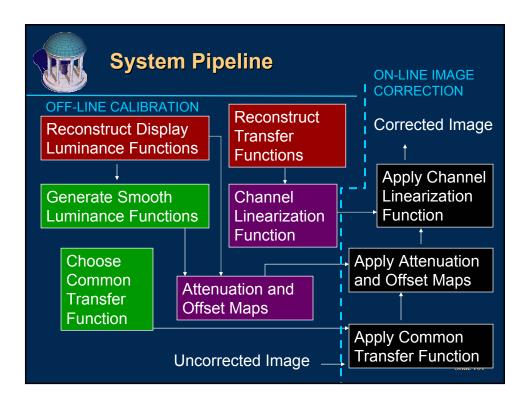
Achieving Photometric Seamlessness

- Reconstruction
 - Reconstruct **£**
- Modification
 - Modify 𝔁 to 𝔁¹
- Reprojection
 - Reproject E'


Slide 9.






Smoothing Maps

- Attenuation Map
 - Per pixel luminance attenuation to achieve the desired luminance function
- Offset Map
 - Per pixel luminance offset to achieve the desired black offset

Issues

- Camera
 - Linearity
 - Dynamic Range
 - Sampling Frequency
- Scalability

Organization

- Previous Work
- The Emineoptic Function
- Definition of Color Seamlessness
- Achieving Photometric Seamlessness
- Results

Slide 103

Results (After)

Results (Before)

6 Projector Display

Results (After)

Results (Before)

15 Projector Display

Slide 107

Chrominance

- Chrominance and luminance are not independent parameters
- 5D nonlinear optimization problem
- No definite perceptual objective metric
- Insights from emineoptic function
 - Luminance variations can be perceived as chrominance variations
- How far can we go with just luminance?

The Comprehensive Framework

- Validity of the Emineoptic Function
 - Model verification
- Generality
 - Can be used to model color variations of other devices
 - -Also a camera
- Unifying Parametric Space
 - -Explain and compare different algorithms
 - » Parameters addressed
 - » Formal color correction goal they strive to achieve
 - » Success they can achieve
 - -Design new algorithms

Slide 109

Evaluation Metric

- Comparing the quality of display
 - Brightness
 - Contrast
 - Seamlessness

Summary

- Modeling color variation comprehensively
- Color Seamlessness
 - Optimization Problem
- Achieving Photometric Seamlessness

Slide 111

Future Work (Handling Chrominance)

Before

Future Work (Handling Chrominance)

Future Work

- Real time Calibration
- Different kinds of sensors
- Perceptual Image Quality Metric

