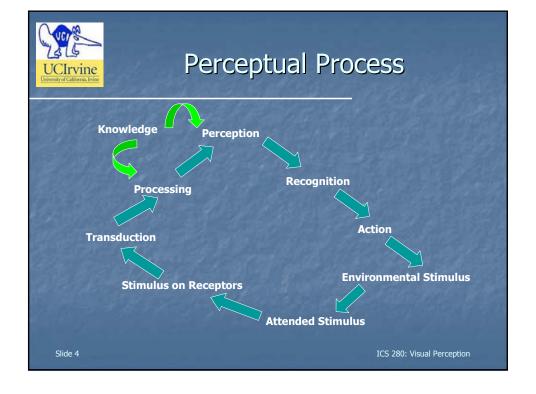


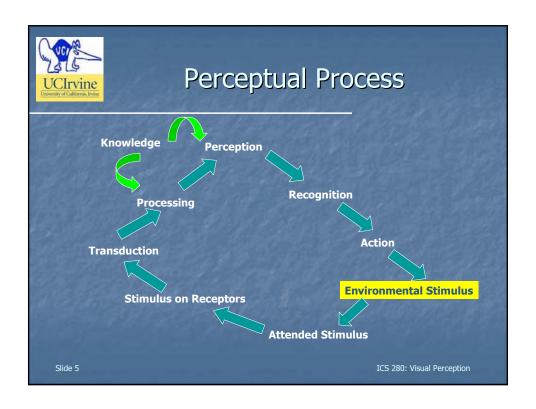
Introduction

ICS 280: Visual Perception Aditi Majumder

Perception is taken for granted!

Slide 2

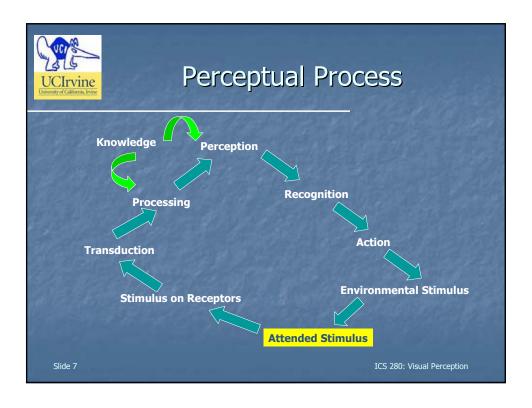


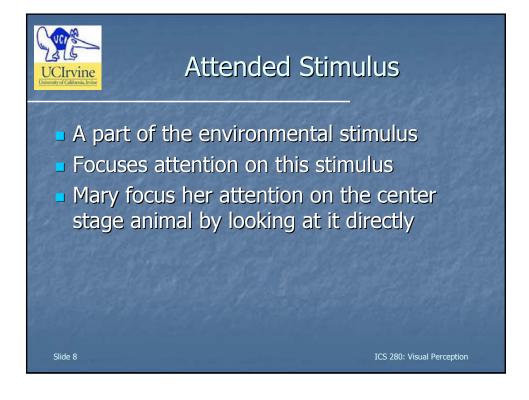

Perception is very complex

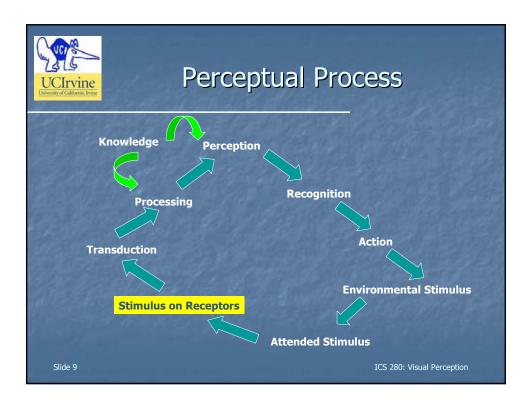
- Perceive
- Locate
- Identify/Recognize
 - Different objects
 - Their relationship with each other
 - Qualitative and Quantitative
- Act based on these information.

It is a miracle that we do not cause accidents/mistakes every now and then

Slide 3 ICS 280: Visual Perception

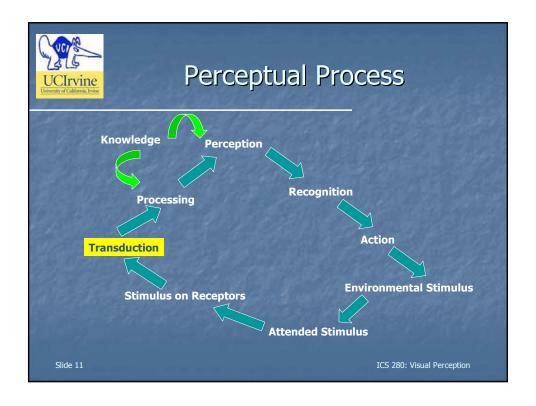


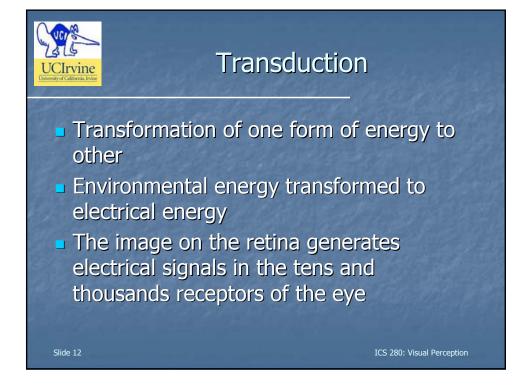


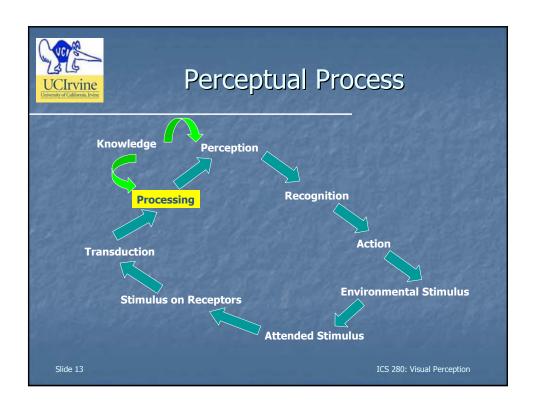

Environmental Stimulus

- Anything in our environment that we can perceive
- Can be anything we can sense
 - See, hear, touch, smell
- Mary goes to circus
 - Takes seats, observes animal in center stage, trapeze on the ceiling, band on the right, clowns in the side
 - Constitutes the environmental stimulus

Slide 6

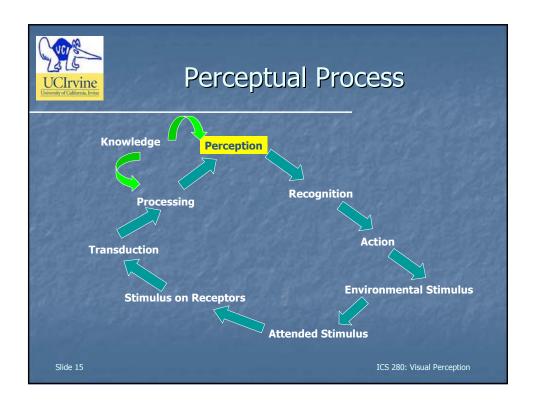


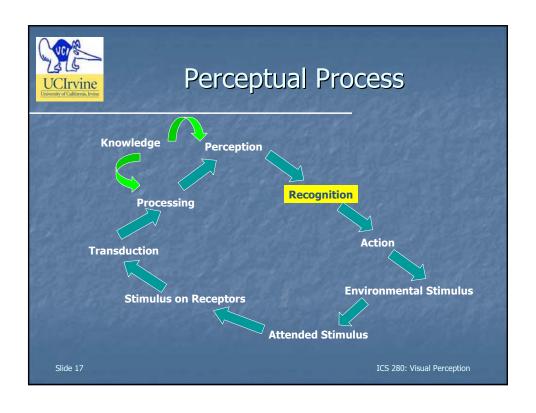



Stimulus on Receptors

- The attended stimuli excites the receptors
- For example
 - Visual stimulus forms a image on the retina
 - Sound changes pressure to affect the ear drum
- Note
 - We do not `perceive' the image on the retina
 - It is just one of the initial steps of the process

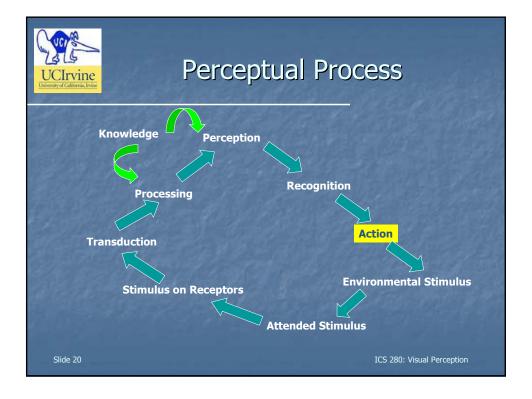
Slide 10




Neural Processing

- Neurons are elements of nervous system
- Interconnected together
- Processing of the electrical energy by the neurons while they travel through them
 - This changes the electrical energy in various ways

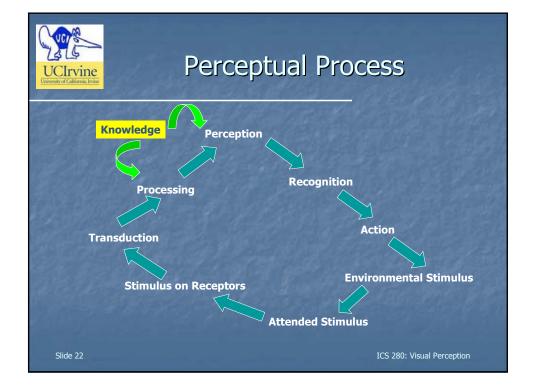
Slide 14



Visual form of agnosia

- Dr. P found he cannot recognize students but can tell their name from their voices
- Started conversation with parking meters or expected furniture to talk to him
- Was he blind?
 - Eye examination showed no problem
- Inability to recognize objects due to a tumor in brain
- When show a gloves, he told
 - a continuous surface, unfolded by itself, with five outpouchings
 - Maybe a container or a purse to keep coins to different sizes
- He can perceive an object, identify parts of it, but cannot assemble the parts perceptually to recognize it

Slide 19 ICS 280: Visual Perception

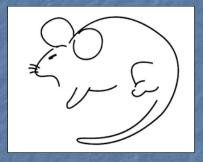


Action

- Goal of perception is to create action
 - Evolutionary reason for development of perception
- Motor activities
- Response to perception and recognition
- Leads to
 - New attended stimulus
 - Whole cycle repeats

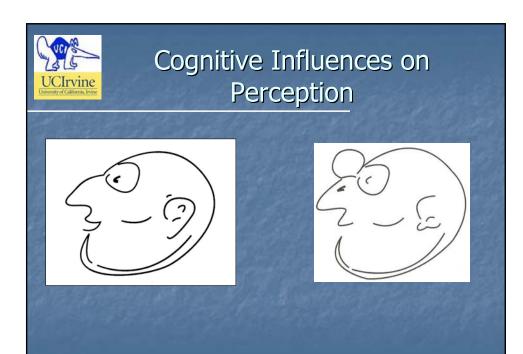
Slide 21

Knowledge


- Affects
 - Processing, Perception, Recognition
- Identification from memory
 - Old knowledge
 - Recent knowledge
- Mary's example
 - Compare the image of tiger with the 'conception' of tiger in her memory
 - Retrieve the name 'tiger' that goes with it

Slide 23

ICS 280: Visual Perception



Cognitive Influences on Perception

Slide 24

Slide 25

Visual Perception

- Vision plays preeminent role for humans
- Evolutionary history
 - Vision was developed to aid survival and successful reproduction
 - Used to get nourishing food, safe shelter and strong mates

Slide 26

ICS 280: Visual Perception

Why Vision is so Important?

- Vision is preeminent
- Only sense that provides accurate spatial information from a distance
 - Smell and hearing provides information from a distance but not accurate
 - Touch and taste provide very accurate information but only on contact
- Vision helps us most to keep away from danger
- Vision is a veridical perception
 - What you see is what you get

Slide 27

ICS 280: Visual Perception

Studying Perceptual Process

- Levels of Analysis (At different scales)
- Bottom Up
 - Starting from the stimulus towards perception
- Top Down
 - Starting from knowledge
- We will study both and cross refer

Slide 28

Studying Perceptual Process

- Psychophysical
 - Relationship between stimulus and perception
 - What?
- Physiological
 - Relationship between the processes within a person and perception
 - How?

Slide 29

ICS 280: Visual Perception

Psychophysical Approach

- Description
- Recognition
- Detection
- Magnitude
- Search

Slide 30

Psychophysical Approach

- Description
- Recognition
 - Qualitative
 - Used by doctors
- Detection
- Magnitude
- Search
 - Ouantitative
 - More important for study and research

Slide 31

ICS 280: Visual Perception

Detection

- Absolute threshold
 - Smallest amount of stimulus required to generate detectable perception
- Difference threshold
 - Smallest difference between two stimulus that a person can detect
- Sensitivity = 1/threshold

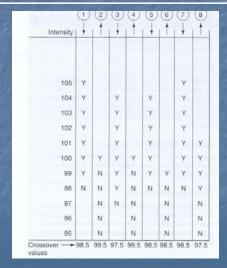
Slide 32

Absolute threshold

- Is absolute threshold possible?
 - Probably not
- Measured by
 - Method of limits
 - Method of adjustment
 - Method of constant stimuli

Slide 33

ICS 280: Visual Perception


Absolute threshold

- Measured by
 - Method of limits
 - Presents stimuli in ascending or descending order
 - Method of adjustment
 - Method of constant stimuli

Slide 34

Method of Limits

Results of using method of limits

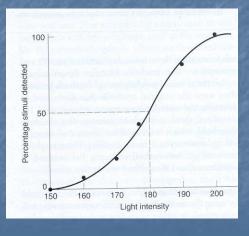
ICS 280: Visual Perception

Absolute threshold

- Measured by
 - Method of limits
 - Presents stimuli in ascending or descending order
 - Method of adjustment
 - Subject controls the strength of stimulus
 - Method of constant stimuli

Slide 36

Absolute threshold


- Measured by
 - Method of limits
 - Presents stimuli in ascending or descending order
 - Method of adjustment
 - Subject controls the strength of stimulus
 - Method of constant stimuli
 - Presents stimuli of random strength in random order

Slide 37

ICS 280: Visual Perception

Method of Constant Stimuli

Slide 38

Measuring Absolute Threshold

- Method of limits and adjustment
 - Errors due to anticipation
 - Fast
- Methods of constant stimuli
 - Most reliable
 - Slow
- Is it bias free?
 - How do we eliminate it?

Slide 39

ICS 280: Visual Perception

Difference Threshold

- 'Standard weight' compared with 'comparison weight'
- The `comparison weight' is increased from `standard weight' unless the change is detected
- The detectable change is a function of the `standard weight'

Slide 40

Weber Law

Difference Threshold

Standard Weight

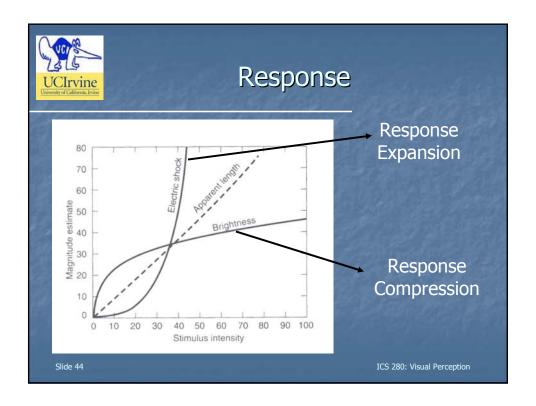
Weber fraction

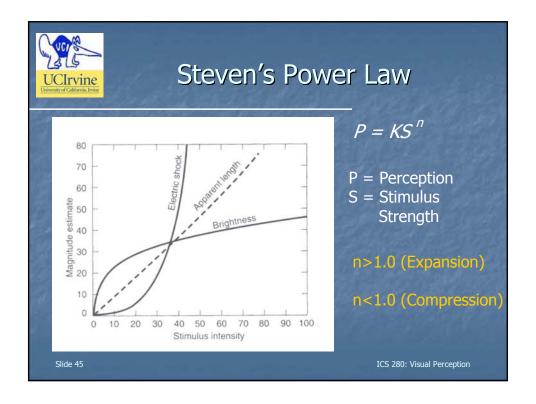
Slide 41

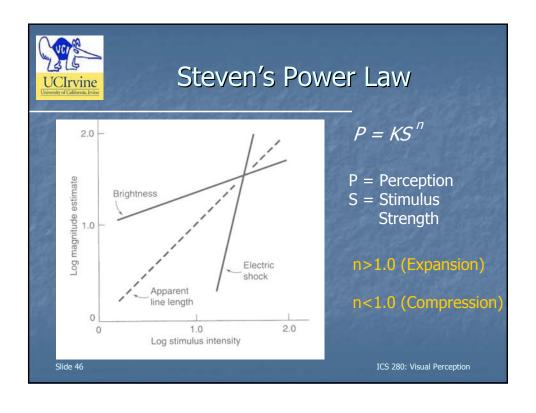
ICS 280: Visual Perception

Psychophysical Approach

- Description
- Recognition
 - Qualitative
 - Used by doctors
- Detection
- Magnitude
- Search
 - Quantitative
 - More important for study and research


Slide 42




Magnitude

- Threshold measures detectable changes
- How to measure what happens once we are past the threshold?
- Magnitude Estimation
 - Present subjects with different strength of stimuli at random
 - Ask them to number the strength of perception
 - Plot these to estimate the magnitude

Slide 43

Adapted to Functions of Organisms

- Bright sunlight would not appear very bright since n=0.6
- If n>1.0
 - Brightness of outdoor scenes would not allow us to see anything inside
 - May even impair our ability to see

Slide 47

ICS 280: Visual Perception

Adapted to Functions of Organisms

- For electric shock, small changes cause large perception of pain
- Acts as a warning mechanism
- So that we can react before much damage is done

Slide 48

Physiological Approach

- Sensors have receptors that transduce environmental energy to electrical energy
- Nerves carry these signals to the brain
- Processing in brain leads to the experience of perception

Slide 49

ICS 280: Visual Perception

Intrigued people for a long time

- Anatomical structures used for operation of mind
 - 384-322 B.C. Aristotle told that the heart and not the brain is the seat of mind and soul
 - Not many repeated his mistake
- Brain is the seat of mind and soul
- Theories proposed were limited by the technology of the day

Slide 50

Intrigued people for a long time

- 130-200 A.D.: By Greek physician Galen
 - Like aqueducts and sewer system of brain
 - Human health, emotions and thoughts are determined by four fluids flowing from the center of the brain
 - This theory was popular for next 1500 years

Slide 51

ICS 280: Visual Perception

Intrigued people for a long time

- In early 1600s
 - By Rene Descartes
 - Human body operated like a machine popular in that era
 - By Johannes Kepler
 - Eye operated like an optical instrument projecting light on to the retina
 - Partially true but did not explain the physiological processes that followed

Slide 52

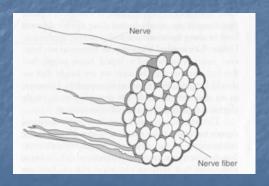
Intrigued people for a long time

- End of 19th century
 - Showed that electrical energy flows down the nerve
 - Can measure electrical signals in brain to assure brain activity

Slide 53

ICS 280: Visual Perception

Neurons


- Nerves are made of neurons
- Three parts of a neuron
 - Cell Body: Has the elements to keep it alive
 - Dendrites: Branches out from cell body to receive signals from other neurons
 - Axon: Tube filled with fluid that conducts the electrical signals

Slide 54

Nerve

The nerve is formed by a bunch of axons

Slide 55

ICS 280: Visual Perception

Perception

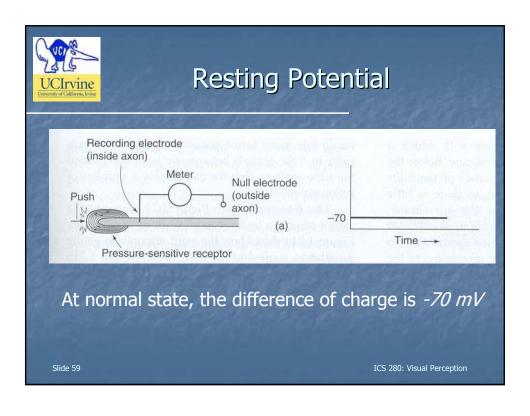
- Recording of electrical signal in receptors
- Transmission of signals to the brain
 - Some low level processing occurs at this time
- Processing in brain

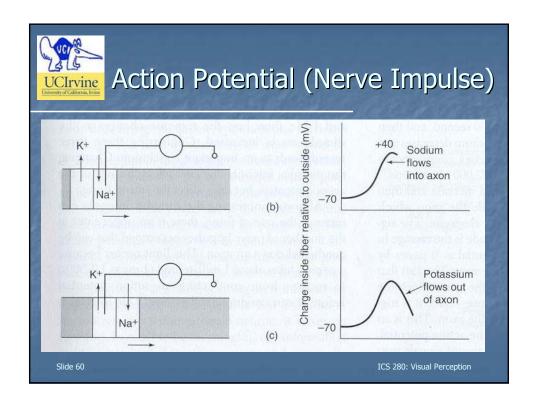
Slide 56

Receptor Neuron

- This is a special type of a neuron present in sensors
- Have a receptor (transducer) in place of a cell body

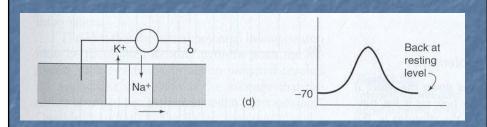
Slide 57


ICS 280: Visual Perception



Recording the Electrical Signal

- At the receptor
- Electricity is not carried in the nerves as electricity is carried to our home
- Neurons are immersed in solutions rich in ions (molecules carrying electrical charge)
- The solution outside the axon is rich is Na⁺
- **The solution outside the axon is rich is** K^+


Slide 58

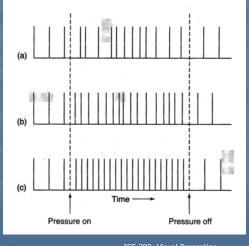
Back to Resting Potential

Sodium and potassium ion concentration goes back to normal by a process called sodium-potassium pump

Slide 61

ICS 280: Visual Perception

How is it caused?


- Change in the permeability of the axon membrane
- Before stimulus, the permeability to sodium and potassium is low
- The receptor when excited triggers a process which increases this permeability
- Everything happens in 1ms
- Propagated response: This action potential travels through the axon

Slide 62

Strength of Signal

- Action potential magnitude is always same
- How is strength of stimulus denoted?
 - Rate of firing

Slide 63

ICS 280: Visual Perception

Rate of Firing

- After every firing there is a refractory period of 1ms
- This limits the maximum firing rate to a maximum of 800 pulses per second
- In the normal state, there is some firing called spontaneous activity

Slide 64

Transmission of Electrical Signals

- From one neuron to another
 - End of axon of one neuron to dendrite of another
- No physical contact between neurons
- Synapse: Small space between neurons
 - Discovered by Spanish anatomist Santiago Ramon Cajal
 - Won Noble Prize for this in 1906

Slide 65

ICS 280: Visual Perception

Synapse

- Electrical signal triggers a chemical process in the synapse that is instrumental in transmitting the signals
- Presynaptic Neuron: From whom the signal is transmitted
- Postsynaptic Neuron: The one who is receiving the signal

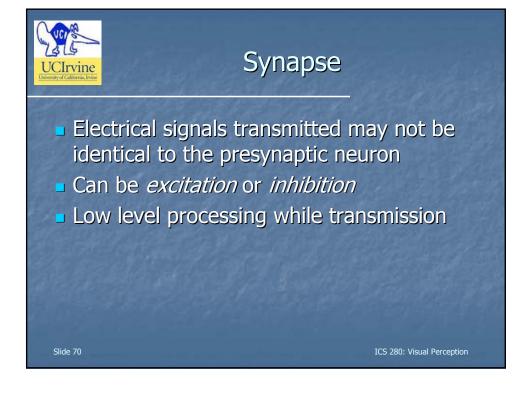
Slide 66

Synapse

- Axons of neurons have synaptic vesicles that can release neurotransmitters
 - Neurotransmitters can be of different shapes
- Dendrites of neurons have receptor sites
 - Receptor sites can be of different shapes too

Slide 67

ICS 280: Visual Perception



Synapse

- When electrical energy reaches the end of presynaptic neuron
 - Releases the neurotransmitters
- If the shape matches the receptor site in postsynaptic neuron
 - Generates electric energy again
- Transmission is controlled by the type of neurotransmitters generated

Slide 68

Brain

- Cerebral Cortex
 - 2mm thick layer that covers the surface of the brain
 - Used for perception, language, memory and thinking
- Modular organization

Slide 71

ICS 280: Visual Perception

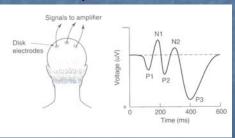
Brain

- Primary Receiving Areas
 - First areas in Cerebral Cortex to receive the signals
 - Occipetal lobe: For eye
 - Temporal lobe: For ear
 - Parietal lobe:For skin
- Advanced processing
 - Involves other areas of the brain too

Slide 72

Studying Brain Activity

- Neuropsychology
 - Studying the effects of brain damage on behaviorU
- Microelectrodes on cats and monkeys
 - Intrusive


Slide 73

ICS 280: Visual Perception

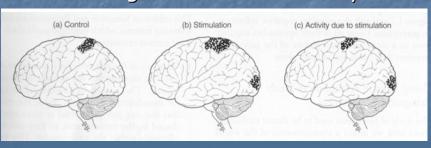
Studying Brain Activity

- Now can study on humans by less intrusive disk electrodes
 - Can study evoked potentials
 - Record activity of thousands of neurons

Slide 74

Neuroimaging

- Using positron emission tomography (PET)
- Person is injected with low activity radioactive tracer (not harmful)
- This tracer indicates volume of blood flow
- Basic concept:
 - Activity in brain is accompanies with changes in the volume of blood flow
 - Monitoring blood flow


Slide 75

ICS 280: Visual Perception

Subtraction technique

- Find state before stimulus
- Find state after stimulus
- Difference gives what was cause by stimulus

Slide 76

Functional Magnetic Resonance Imaging (fMRI)

- Hemoglobin has iron
- If presented with magnetic field, they line up like tiny magnets to indicate volume of blood flow
- Especially, with activity hemoglobin loses some of it oxygen making it more magnetic
- Popularly called Brain Scan

Slide 77