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Camera Calibration
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Figure 1: A camera.

Figure 1 shows a camera with center of projectionO and the principal axis parallel toZ axis. Image plane is at
focus and hence focal lengthf away fromO. A 3D pointP = (X, Y, Z) is imaged on the camera’s image plane
at coordinatePc = (u, v). We will first find the camera calibration matrixC which maps 3DP to 2D Pc. As we
have seen before, we can findPc using similar triangles as

f

Z
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u

X
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v
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which gives us

u =
fX

Z

v =
fY

Z

Using homogeneous coordinates forPc, we can write this as u
v
w

 =

 f 0 0
0 f 0
0 0 1

  X
Y
Z

 (1)

You can verify that this indeed generates the pointPc = (u, v, w) = (fX
Z , fY

Z , 1). Note thatP is still not in
homogeneous coordinates.

Next, if the origin of the 2D image coordinate system does not coincide with where theZ axis intersects the
image plane, we need to translatePc to the desired origin. Let this translation be defined by(tu, tv). Hence, now
(u, v) is

u =
fX

Z
+ tu

v =
fY

Z
+ tv
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This can be expressed in a similar form as Equation 1 as u
v
w

 =

 f 0 tu
0 f tv
0 0 1

  X
Y
Z

 (2)

Now, in Equation 2,Pc is expressed in inches. Since this is a camera image, we need to express it in inches.
For this we will need to know the resolution of the camera in pixels/inch. If the pixels are square the resolution
will be identical in bothu andv directions of the camera image coordinates. However, for a more general case,
we assume rectangle pixels with resolutionmu andmv pixels/inch inu andv direction respectively. Therefore, to
measurePc in pixels, itsu andv coordinates should be multiplied bymu andmv respectively. Thus

u = mu
fX

Z
+ mutu

v = mv
fY

Z
+ mvtv

This can be expressed in matrix form as u
v
w

 =

 muf 0 mutu
0 mvf mvtv
0 0 1

  X
Y
Z

 =

 αx 0 uo

0 αy vo

0 0 1

 P = KP (3)

Note thatK only depends on the intrinsic camera parameters like its focal length, principal axis and thus defines
the intrinsic parameters of the camera. SometimesK also has a skew parameters, given by

K =

 αx s uo

0 αy vo

0 0 1


This usually comes in if the image coordinate axesu andv are not orthogonal to each other. Note thatK is an
upper triangular3× 3 matrix andP is still not in homogeneous coordinates.

Now if the camera does not have its center of projection at(0, 0, 0) and is oriented in an arbitrary fashion
(not necessarilyz perpendicular to the image plane), then we need a rotation and translation to make the camera
coordinate system coincide with the configuration in Figure 1. Let the camera translation to origin of the XYZ
coordinate be given by−(Tx, Ty, Tz) denoted by−T whereT = (Tx, Ty, Tz). Let the the rotation applied to
coincide the principal axis withZ axis be given by a3 × 3 rotation matrixR. Then the matrix formed by first
applying the translation followed by the rotation is given by the4× 4 matrix(

R −RT
0 1

)
Thus now, to express the complete transformation, we need to expressP in homogeneous coordinates giving

Pc = K

(
R −RT
0 1

)
P = KR

(
1 −T
0 1

)
P = KR[ I − T ]P = CP

where[ I − T ] is a4 × 4 matrix made of the3 × 3 identity matrixI and4 × 1 vector whereT expressed in
homogeneous coordinates. Note that the matrixR[ I − T ] is a3× 4 matrix that depends solely on the camera’s
position and orientation. Hence, this defines the extrinsic parameters of the camera. The matrixC obtained by
multiplying K with the camera’s intrinsic and extrinsic parameters both in a single3× 4 matrix.
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Camera Calibration

To fully calibrate a camera, we not only need to knowC, but also the breakdown ofC to the intrinsic parameters
defined byK and the extrinsic parameters defined byR andT . In this section, we will see how to findC and then
how to break it up to get the intrinsic and extrinsic parameters. ThoughC has12 entries, the entry in the3rd row
and4th column is1. Hence, in effectC has11 unknown parameters.

GivenC, we know that
C = [ KR −KRT ]

Let KR = M . Therefore, the left3× 3 sub matrix ofC definesM . WE can useRQ decomposition to breakM
into two 3 × 3 one of which is a lower triangular matrix. This lower triangular matrix corresponds toK and the
other corresponds toR. The last column ofC denoted byc4 is equivalent to

−KRT = c4 (4)

−MT = c4 (5)

T = −M−1c4 (6)

(7)

Thus, givenC, we can find the intrinsic and extrinsic parameters through this process.
The next step is to see how we can findC for any general camera. For this, we need to findcorrespondances

between3D points and their images on the camera image. If we know a3D pointP1 corresponding toPc1 on the
camera image coordinate, then

Pc1 = CP1

Or,  u1

v1

w1

 = C


X1

Y1

Z1

1


Note that findingC means we have find all the11 entries ofC. Thus, we are trying to solve for11 unknowns. Let
the rows ofC be given byri, i = 1, 2, 3. Thus

C =

 r1

r2

r3


Since we know the correspondenceP1 andPc1 , we know

u1 =
r1.P1

r3.P1

v1 =
r2.P1

r3.P1

which gives us two linear equations
u1(r3.P1)− r1.P1 = 0

v1(r3.P1)− r2.P1 = 0

Note that in these two equations, only the elements ofr1,r2 andr3 are the unknowns. So, we find that each3D to
2D correspondence generates two linear equations. To solve for12 unknowns, we will need at least6 such cor-
respondences. Usually for better accuracy, much more than6 correspondences are used and the over-determined



4

system of linear equations thus formed is solved using singular value decomposition methods to generate the12
entries ofC. The correspondences are determined using feducial based image processing methods.

3D Depth Estimation

Now we will see how given thePc andC, we can findP i.e. using images of 3D world oncalibrated cameras,
how can we estimate the exact location ofP . Let us assume that we have a3D point P1 whose image on a
camera defined by the matrixC1 is given byPc1 . Let the pointP be represented in homogeneous coordinates as
(X, Y, Z, W ).

So, we know

Pc1 =

 u1

v1

w1

 = C1


X
Y
Z
W

 (8)

The rows of the calibration matrixC1 are given byrC1
i , i = 1, 2, 3. So, from Equation 8, we get two linear

equations as

u1(rC1
3 .P )− rC1

1 .P = 0

v1(rC1
3 .P )− rC1

2 .P = 0

So, from each camera we can generate two linear equations. We have4 unknowns to be solved given by
X, Y, Z,W . Thus, we need at least two camera (with different calibration matrices) and we need to find the
point Pc2 on this camera’s image that corresponds to the same3D point P . Finding the image of the same3D
points on two different cameras images is a hard problem. This is the reason that humans need two eyes to resolve
depth. Also, note that this mathematics only takes into account the binocular cues like disparity. The reason we
humans can still resolve depth to a certain extent with one eye, is because we use several oculomotor and monoc-
ular cues. These are not present for a camera and hence depth estimation is not possible with a single camera. Of
course, for greater accuracy often more than two cameras are used (called stereo rigs) and singular value decom-
position is used to solve the over-determined linear equations that result.

Homography

If two cameras see points lying on a plane, a relationship between them can be easily found without going
through explicit camera calibration. This relationship that relates the two cameras is called thehomography.

Figure 2 illustrates the situation. Let us assume a pointPπ that lies on the planeπ. Let the plane be defined by
the vectorπ = (a

d
b
d

c
d 1). Let N = (a

d
b
d

c
d) be the1× 3 row vector defining the normal to the planeπ. Thus the

plane equation is given by

( N 1 ).P = 0 (9)

whereP is any point in the3D world.
Let the two cameras be defined by calibration matrices byC1 andC2. Let the image ofPπ on cameraC1 and

C2 beP 1
π andP 2

π respectively. From this, we know that

P 1
π =

 u1

v1

w1

 = C1.Pπ
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Figure 2: Homography between two cameras seeing a scene.

This means that in3D, the pointPπ lies on the ray(u1, v1, w1, 0)T . However, the scale factor is unknown. Let
this unknown scale factor be denoted byτ . Then we get

Pπ =


u1

v1

w1

τ


Next, sincePπ satisfies the plane equation, we get from Equation 9,

τ = −N.P 1
π

Now, letC2 = ( A2 a2 ), whereA2 is the3× 3 matrix anda2 is a3× 1 vector. Then,

P 2
π = C2.Pπ (10)

= ( A2 a2 )
(

P 1
π

−NP 1
π

)
(11)

= ( A2 a2 )
(

1
−N

)
P 1

π (12)

= (A2 − a2N)P 1
π (13)

= H P 1
π (14)

(15)

Note thata2 is a3 × 1 matrix andN is a1 × 3 matrix. Thus,a2N would generate a3 × 3 matrix that can be
subtracted from3 × 3 matrix A2 to generateH. Thus,H is a3 × 3 matrix that relates one camera image with
another and defines the homography. Using this matrix, the image from one camera can be warped to the view of
another camera.

H has9 parameters. As withC, in H also the element in 3rd row and 3rd column is 1. Hence, in effectH has
eight parameters. In order to reconstructH, we have to see a plane with two cameras. We have to find the image
of same point on the plane as seen by two cameras. So, basically we need to know the corresponding pointsP 1

π

andP 2
π in the two cameras. From each correspondence, using Equation 14, we can generate two linear equations.
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To find the8 unknowns inH, we need just4 correspondences. So, now instead of going through a full camera
calibration (finding 11 parameters for two cameras leading to 22 parameters), with these8 homography parameters
we can relate one camera with another.


