Assignment 4

- 1. One reason that homogeneous coordinates are attractive is that the 3D points at infinity in cartesian coordinates can be explicitly represented by homogeneous coordinates. How can this be done? [2]
- 2. In 3D, show $R_z(\theta_1).R_z(\theta_2)=R_z(\theta_2).R_z(\theta_1)$. What does this tell about the properties of rotation around coordinate axes? Show that $R_z(\theta_1+\theta_2)=R_z(\theta_1).R_z(\theta_2)$. Using this property show that rotation about any arbitrary axis denoted by R also follows the property, $R(\theta_1).R(\theta_2)=R(\theta_2).R(\theta_1)=R(\theta_1+\theta_2)$. [10]
- 3. Derive the scaling matrix for scaling an object by a scale factor 3 along an arbitrary direction given by vector u = (1, 2, 1) rooted at (5, 5, 5). [8]
- 4. A viewer is defined by the following. (a) Eye position: (0,0,0), (b) View Up Vector: (0,2,0), (c) Direction of the View Vector: (0,1,2), (d) Equation of the image plane: x+y+z=6. Find the perspective projection matrix for this viewer. Find what would be projected coordinates of a point P=(10,4,6) for this viewer. [10]
 - *Hint*: The direction of the normal of a plane with equation ux + vy + wz = t is given by (u, v, w).
- 5. We want to find the rotation matrix R for rotation about an arbitrary axis rooted at origin but with direction $u = (u_x, u_y, u_z)$. We learnt in class that R found by defining a coordinate axis with u as the z-axis is equivalent to two rotations, R_x followed by R_y around x and y axis respectively. Prove this.[10]