
Graphics 
Rendering 
Pipeline II

CS 211A



Clipping
• OpenGL does image space clipping
• Culling

–Usually refers to object space
–Done by the application programmer



Image Space Clipping

• Accept AB
• Reject (Cull) CD
• Clip EF 

–One endpoint 
outside the window

• Clip GH
–Both endpoints 

outside the window

G

H

A

B
E

F

C

D
I

J



Efficiency 
• How fast you 

can accept and 
reject?

• Do intersection 
computations 
minimally

G

H

A

B
E

F

C

D
I

J



Clipping
• Removing the part of the polygon outside the view 

frustum
• If the polygon spans inside and outside the view 

frustum
– introduce new vertices on the boundary 

5



Vertex Interpolation of 
Attributes

• For the new vertices introduced
–compute all the attributes 
–Using interpolation of the attributes of all the original 
vertices

6



Clipping
• Every triangle needs to go through the process of 

clipping
• Fast acceptance or rejection test for primitives 

completely inside or outside the window is critical
• Such test achieved in multiple ways

– Using Bounding Boxes (Cohen Sutherland)
– Using Logic Operations (Cohen Sutherland)
– Using Integer Operations (Liang-Barsky)
– Using Pipelining (Sutherland Hodgeman)

7



Spatial Subdivision
• Can be used for both image space 

and object space culling
• Based on bounding boxes or volumes



Using Bounding Boxes
• Compute axis aligned bounding box of each triangle
• See if it is inside or outside
• Testing achieved easily 

9



Using Logic Operations
• Divide the 2D image plane into regions 
• Assign binary codes to the regions 
• Have four bits, b1b2b3b4 associated with each 

projected vertex (x, y) such that
– b1 = y<tw

– b2 =y>bw

– b3 =x>rw

– b4 =x<lw

10



Using Integer Operations
• Intersection of the primitives that are not trivially 

accepted/rejected with the window boundaries have to 
be computed 
– first find the window boundary that intersects the 

primitive 
– find the exact intersection 

11



Using Pipelining
• Four stages of clipping against left, top, right and 

bottom edges of the window 

12



Using Pipelining
• Sutherland-Hodgeman method 
• 1. If first vertex is IN output the same, or else nothing

2. Loop through the rest of the vertices testing transitions. 

– (a) If IN-TO-OUT, output intersection with edge

– (b) If IN-TO-IN, output the vertex

– (c) If OUT-TO-IN, output intersection with edge and the 

vertex

– (d) If OUT-TO-OUT, output nothing

13



Sutherland-Hodgeman 
method 

14



Scan Conversion

(20,100,200)

(100,80,10)

•Which pixels to color?
•What color to put for each pixel?



Scan Conversion

•Which pixels to color?
•What color to put for each pixel?



Which pixels
• Efficient Data Structures
• Integer Operations are preferred
• Hardware adaptability
• Line

–Bresenham’s
• Polygon

–Using an edge table and active edge 
table data structure



How to color them?
• Linear interpolation
• Find the coefficients from the marked 

pixels
–Screen space interpolation

• Use these linear coefficients to find a 
weighted combination of color

• Is screen space interpolation correct?
–Not really, but we are not sensitive to it



Rasterization
• Process of generating pixels in the scan (horizontal) 

line order (top to bottom, left to right). 
–Which pixels are in the polygon

19

left rightright left

Scan Line



Pixel Interpolation of 
Attributes

• Interpolate the colors and other attributes at pixels 
from the attributes of the left and right extent of the 
scan line on the polygon edge.

• Also in scan line order

20

left rightright left

Scan Line



Hidden Surface Removal
• Z buffer (size of the framebuffer)
• Initialize
• Store z when projecting vertices
• During scan conversion

– Interpolate 1/z
– If depth is smaller than existing value

• Set new depth
• Color pixel



Final Drawing
Transform all vertices;

Clear frame buffer;

Clear depth buffer;

for i=1:n triangles

for all pixels (xs,ys) in the triangle 

pixelz = 1/z interpolated from vertex;

if (pixelz < depthbuffer[xs][ys])

framebuffer[xs][ys]= color interpolated 
from vertex attributes;

endif;

endfor;

endfor;



Two Efficiency Measures
• Spatial Subdivision
• Hidden Surface Removal



Bounding Boxes and 
Volumes

• Polygon clipping is 
overkill if entire 
polygon outside the 
window

• Maintain a bounding 
box
– Axis-aligned

• Can be a big savings
• Can be easily extended 

to 3D
– For volumes in 

object-space



Hierarchical Spatial 
Subdivision (2D)

• Quadtree
–Each node corresponds 

to a BB
– It holds the indices of 

all primitives in that 
box

–Divide each box into 
four equal sized box
• Four children per node
• Can be computed from 

BB of parent
• BB stored only at root



Hierarchical Spatial 
Subdivision (2D)

• Tree building
• Culling the Model 

– Depth first traversal of 
nodes

– If BB inside the view 
frustum
• Draw all triangles

– If BB outside the view 
frustum
• Draw nothing

– If BB intersects the view 
frustum
• Go through the children 

recursively
– Creates tree cuts



Extending to 3D
• Cubes instead of boxes
• Octree

– Eight children
– Divide in three directions

• Note that may not be optimal
– Boxes may not be the tightest fit
– Can have another tree with smaller depth

• Very efficient
– Since child BB computation is trivial



Back Face Culling

• Do not want to render 
back facing polygons

• If the normal is pointed 
towards the viewer
– -90 ≤ θ ≤ 90
– Cos (θ) ≥ 0
– n.v ≥ 0

• Viewing in -z 
– Culled if normal has 

negative z

v

n

θ


