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Clipping
• OpenGL does image space clipping
• Culling

–Usually refers to object space
–Done by the application programmer



Image Space Clipping

• Accept AB
• Reject (Cull) CD
• Clip EF 

–One endpoint 
outside the window

• Clip GH
–Both endpoints 

outside the window
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Efficiency 
• How fast you 

can accept and 
reject?

• Do intersection 
computations 
minimally
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Clipping
• Removing the part of the polygon outside the view 

frustum
• If the polygon spans inside and outside the view 

frustum
– introduce new vertices on the boundary 
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Vertex Interpolation of 
Attributes

• For the new vertices introduced
–compute all the attributes 
–Using interpolation of the attributes of all the original 
vertices
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Clipping
• Every triangle needs to go through the process of 

clipping
• Fast acceptance or rejection test for primitives 

completely inside or outside the window is critical
• Such test achieved in multiple ways

– Using Bounding Boxes (Cohen Sutherland)
– Using Logic Operations (Cohen Sutherland)
– Using Integer Operations (Liang-Barsky)
– Using Pipelining (Sutherland Hodgeman)
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Spatial Subdivision
• Can be used for both image space 

and object space culling
• Based on bounding boxes or volumes



Using Bounding Boxes
• Compute axis aligned bounding box of each triangle
• See if it is inside or outside
• Testing achieved easily 
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Using Logic Operations
• Divide the 2D image plane into regions 
• Assign binary codes to the regions 
• Have four bits, b1b2b3b4 associated with each 

projected vertex (x, y) such that
– b1 = y<tw

– b2 =y>bw

– b3 =x>rw

– b4 =x<lw
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Using Integer Operations
• Intersection of the primitives that are not trivially 

accepted/rejected with the window boundaries have to 
be computed 
– first find the window boundary that intersects the 

primitive 
– find the exact intersection 
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Using Pipelining
• Four stages of clipping against left, top, right and 

bottom edges of the window 
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Using Pipelining
• Sutherland-Hodgeman method 
• 1. If first vertex is IN output the same, or else nothing

2. Loop through the rest of the vertices testing transitions. 

– (a) If IN-TO-OUT, output intersection with edge

– (b) If IN-TO-IN, output the vertex

– (c) If OUT-TO-IN, output intersection with edge and the 

vertex

– (d) If OUT-TO-OUT, output nothing
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Sutherland-Hodgeman 
method 
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Scan Conversion

(20,100,200)

(100,80,10)

•Which pixels to color?
•What color to put for each pixel?



Scan Conversion

•Which pixels to color?
•What color to put for each pixel?



Which pixels
• Efficient Data Structures
• Integer Operations are preferred
• Hardware adaptability
• Line

–Bresenham’s
• Polygon

–Using an edge table and active edge 
table data structure



How to color them?
• Linear interpolation
• Find the coefficients from the marked 

pixels
–Screen space interpolation

• Use these linear coefficients to find a 
weighted combination of color

• Is screen space interpolation correct?
–Not really, but we are not sensitive to it



Rasterization
• Process of generating pixels in the scan (horizontal) 

line order (top to bottom, left to right). 
–Which pixels are in the polygon
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Pixel Interpolation of 
Attributes

• Interpolate the colors and other attributes at pixels 
from the attributes of the left and right extent of the 
scan line on the polygon edge.

• Also in scan line order
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Hidden Surface Removal
• Z buffer (size of the framebuffer)
• Initialize
• Store z when projecting vertices
• During scan conversion

– Interpolate 1/z
– If depth is smaller than existing value

• Set new depth
• Color pixel



Final Drawing
Transform all vertices;

Clear frame buffer;

Clear depth buffer;

for i=1:n triangles

for all pixels (xs,ys) in the triangle 

pixelz = 1/z interpolated from vertex;

if (pixelz < depthbuffer[xs][ys])

framebuffer[xs][ys]= color interpolated 
from vertex attributes;

endif;

endfor;

endfor;



Two Efficiency Measures
• Spatial Subdivision
• Hidden Surface Removal



Bounding Boxes and 
Volumes

• Polygon clipping is 
overkill if entire 
polygon outside the 
window

• Maintain a bounding 
box
– Axis-aligned

• Can be a big savings
• Can be easily extended 

to 3D
– For volumes in 

object-space



Hierarchical Spatial 
Subdivision (2D)

• Quadtree
–Each node corresponds 

to a BB
– It holds the indices of 

all primitives in that 
box

–Divide each box into 
four equal sized box
• Four children per node
• Can be computed from 

BB of parent
• BB stored only at root



Hierarchical Spatial 
Subdivision (2D)

• Tree building
• Culling the Model 

– Depth first traversal of 
nodes

– If BB inside the view 
frustum
• Draw all triangles

– If BB outside the view 
frustum
• Draw nothing

– If BB intersects the view 
frustum
• Go through the children 

recursively
– Creates tree cuts



Extending to 3D
• Cubes instead of boxes
• Octree

– Eight children
– Divide in three directions

• Note that may not be optimal
– Boxes may not be the tightest fit
– Can have another tree with smaller depth

• Very efficient
– Since child BB computation is trivial



Back Face Culling

• Do not want to render 
back facing polygons

• If the normal is pointed 
towards the viewer
– -90 ≤ θ ≤ 90
– Cos (θ) ≥ 0
– n.v ≥ 0

• Viewing in -z 
– Culled if normal has 

negative z
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