What is Color?

• Selective emission/reflectance of different wavelengths

Color

- Left: illumination spectrum of a flouroscent (bold line) and tungsten lamp (dotted line) $I(\lambda)$
- Right: reflectance spectrum of a red apple $R(\lambda)$

Color Stimuli

$$C(\lambda) = I(\lambda) \times R(\lambda)$$

Illumination

Reflectance

Types of Color Stimuli

Perceived Color

- The response generated by a stimulus in the cones gives the perceived color
- Three responses

Computations on Color

- Very difficult using spectrums
- Can we have some sort of coordinate space to define color?

Tristimulus Values

Integration over wavelength

$$X = \int_{\lambda} C(\lambda)\bar{x}(\lambda)d\lambda = \sum_{\lambda=400}^{700} C(\lambda)\bar{x}(\lambda)$$

$$Y = \int_{\lambda} C(\lambda)\bar{y}(\lambda)d\lambda = \sum_{\lambda=400}^{700} C(\lambda)\bar{y}(\lambda)$$

$$Z = \int_{\lambda} C(\lambda)\bar{z}(\lambda)d\lambda = \sum_{\lambda=400}^{700} C(\lambda)\bar{z}(\lambda)$$

CIE XYZ Space

- Real colors span a sub-set of the XYZ space
- Two different stimuli can have same XYZ values
 - Metamerism

Perceptual Organization of CIE XYZ Space

- No physical feel as to how colors are arranged
- How do brightness change?
- How does hue change?

What are the perceived properties?

Intensity

- Sum of the spectrum
- Energy under the spectrum
- $\cdot I = X + Y + Z$

Hue

- Mean wavelength of the spectrum
- What wavelength sensation is dominant?

Saturation

- Standard deviation of the spectrum
- How much achromatic/gray component?

perceived properties

- Left: A and B have same intensity but different dominant wavelength and therefore different hues.
- Middle: A and B have the same hue but different intensities.
- Right: A and B have the same hue but different saturations.

Chrominance

- Chrominance Hue and saturation
- Chrominance (x,y) = (X/I, Y/I)
 - Chromaticity chart
 - Projection on a plane with normal (1,1,1)
 - Reduction of dimension
 - Similar to 3D to 2D in geometry

What does this mean?

- Scaling a vector (kX,kY,kZ)
 - (x,y) does not change
 - Each vector from (0,0,0) is an iso-chrominance line
 - Each vector map to a point in the chromaticity chart

Chromaticity Coordinates

- Shows all the visible colors
- Achromatic Colors are at (0.33,0.33)
 - Why?
 - Called white point
- The saturated colors at the boundary
 - Spectral Colors

Chromaticity Chart

- Exception is purples
 - Non-spectral region in the boundary
- All colors on straight line from white point to a boundary has the same spectral hue
 - Dominant wavelength

Chromaticity Chart

- What happens here?
 - Complimentary wavelength
 - When mixed generate achromatic color
- Purity (Saturation)
 - How far shifted towards the spectral color
 - Ratio of a/b
 - Purity =1 implies spectral color with maximum saturation

Luminance

- Perceived brightness
 - · Based on eye's response
- · Same brightness green looks brighter than blue or red
- This is proportional to Y

Perceptually Uniform Color Spaces

