

The Course

- Introductory Graphics, Vision and Image Processing course
- Prerequisite for Advanced Graphics and Vision courses
- Visual Computing concentration

Course Format

- Lecture Format
 - Text Book: Intro to Visual Computing by Majumder and Gopi
- 4 Programming Assignments (2 people group)
 - Image Proc, DFT, Vision, Graphics
- Midterm
 - 6 Nov, 7:30pm-8:50pm
- Final
 - 11 Dec, 7-9pm
- Schedule is online

Grading

- Do not worry about grades
- Learning is the priority
- Tentative Policy
 - Programming Assignment 30%
 - -Midterm 25%
 - -Final 40%
 - -Pop Quiz 5%
 - Every/Wednesday beginning of class

Support

- Instructor Office Hours
 - Wed 4: 30-5: 30pm
- Teaching Assistant: Ali Rostami
 - -Email: rostami1 @ uci.edu
 - Two office hours
 - -Will open a Piazza link and let you know

Course Motivation

- What is Visual Computing?
 - Use of computing to perform the functions of the human visual system
- Traverses within several traditional domains
 - Computer Vision
 - Computer Graphics
 - Image Processing
- Addresses converging domains

Course Organization

- Image-based visual computing
- Geometric visual computing
- Radiometric visual computing
- Visual content synthesis

Course Organization

- Image-based visual computing
 - Low level vision in eye
- Geometric visual computing
 - Higher level vision
 - -Combining information from two eyes
- Radiometric visual computing
 - Processing light and object interaction
- Visual content synthesis
 - Synthesize realistic 3D worlds

Image Based Visual Computing

- Detecting features
- Background removal
- Image Segmentation

Geometric Visual Computing

- Detecting shapes
 - Binocular cues
 - Shading cues
 - -Texture Cues
 - Motion Cues

Radiometric Visual Computing

High dynamic range imaging

Sky oversaturated

Ground undersaturated

HDR image

Perceiving reflectances

Visual Content Synthesis

- Can we reverse engineer?
 - -Fool the eye? (e.g. Perfect Storm)
- Effects
 - Geometry
 - Lighting
 - Material
 - Motion
 - Trade off between time and quality

Bump and Environment Map

With more time...

With more time...

Materials: Subsurface Scattering

Materials: Transluscency

Different levels of subsurface scattering (increasing from left to right) on Venus

Merge real and synthetic

Show Fiat Lux

Simulation

Non Photorealistic Rendering

Photorealistic

Illustrations

Painterly Rendering

Dithering

Pen and Ink

Engraving

Fur and Grass

This class

- We will NOT learn ALL of these
- Provide you with the fundamentals so that you can learn all of these