
Graphic Pipeline
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Rendering
• If we have a precise computer representation of the 3D 
world, how realistic are the 2D images we can generate?

• What are the best way to model 3D world?
• How to render them?
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Data Representation
• How do we define objects
Primitives (triangle, polygon, surfaces)

• Polygonal model
Each primitive is a planar polygon
Object is made of a mesh of polygons
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Triangular Model 
• Triangular model
Any surface passing through three vertices will be planar
Minimal planar primitives
No restrictions to be imposed during model building

• Piecewise Linear Representation
Easy to implement in hardware
Easy to interpolate attributes
Convex Linear Interpolation
Unique coefficients
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Most Common Format
• List of vertices and attributes
 3D coordinates, color, texture coordinates….
 Geometric information
 Positions, normals, curvature

• List of triangles
 Indices of triangles
 Topological information
 How are the triangles connected?
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Object Representation: Example
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Rendering Pipeline
• Input
Soup of 2D triangles in 3D space

• Output
2D image from a particular view

• Why pipeline?
Contains different stages
Each triangle is sent through it in a pipeline fashion
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Steps of Graphic Pipeline
1. Geometric Transformation of Vertices 

2. Clipping and Vertex Interpolation of Attributes 

3. Rasterization and Pixel Interpolation of Attributes 
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Geometric Transformation
1.Model Transformation

2.View Transformation

3.Perspective Projection

4.Window Coordinate Transformation
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Model Transformation
• World and Object Coordinates
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Model Transformation
• Transforming from the object to world coordinates
Placing the object in the desired position, scale and 
orientation

• Can be done by any kind of transformations
Graphics hardware/library support only linear 
transformations like translate, rotate, scale, and shear
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Advantages
• Allows separation of concerns
When designing objects do not worry about scene
Create a library of objects

• Allows multiple instantiation by just changing the location, 
orientation and size of the same object
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View Transformation
• Input
 Position and orientation of eye (9 parameters)
 View point  (COP)
 Normal to the image plane – N  
 View Up – U

• To align
 Eye with the origin
 Normal to the image plane with negative Z axis
 View Up vector with positive Y axis
 Can be achieved by rotation and translation
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Default View Setup
• E = (0,0,0)
• V = (0,1,0)
• N = (0,0,1) 
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Perspective Projection Transformation
• Define the “view frustum” (6 parameters)

 Assume origin is the view point
 Near and far planes (planes parallel to XY plane perpendicular 

to the negative Z axis) [2]
 Left, right, top, bottom rectangle defined on the near plane [4]

15



Default View Setup
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Projection Transformation
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Projection Transformation
• Transforming the view frustum (along with the objects 

inside it) into a 
 cuboid with unit square faces on the near and far planes
 the negative Z axis passes through the center of these two faces.
 Projecting the objects on the near plane 

• Consists of a shear, scale and perspective projection
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Perspective Projection
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Gaze Direction 
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Coincide this with N
• Shear Matrix

• Can be defined by the window 
extents
 l, r, t, b 

1   0   xv/n   0
0   1   yv/n   0
0   0      1      0
0   0      0      1

Sh(xv/n, yv/n) =

1   0   r+l/2n   0
0   1   t+b/2n   0

0   0      1      0
0   0      0      1

Sh((r+l)/2n, (t+b)/2n) =



Now normalize X and Y
• Map X and Y between -1 to +1
• Scale by 2/(r-l) and 2/(t-b)

• Looks like K
n is focal length
 r+l is change of center
 r-l is inversely proportional to number of pixels



Where is the lost dimension?
• Why 4x4?
• Z should map to n always, since depth of the image is same 
• But we need to resolve occlusion
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How do we use the z?
• Perspective projection is applied on the vertices of a triangle
• Can depth be resolved in the triangle level?
T1 is not infront of T2 and vice versa
Part of T1 is in front of T2 and vice versa
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How do we use the z?
• Occlusion has to be resolved in the pixel level
• How do we find z for a point inside the triangle
Not its vertex

• We do not want to apply 3D to 2D xform
 Too expensive

• Interpolate in 2D (screen space interpolation)
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Screen Space Interpolation
• Linear interpolation of z in screen space 
• Does not work
• Why?
 Perspective projection is inversely proportional to z
 Over-estimates
 Wrong occlusion resolution
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Correct Solution
• Interpolate 1/Z
 Reciprocal of Z
 Interpolate in screen space
 Take reciprocal again
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Transforming z to 1/z
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we would like to store 1/z  for 
interpolation purposes



Bounding Z
• Depth of field effect

• Define a far plane - f

• Leads to culling of distant objects
 Efficiency issues



Normalizing 1/z
• Map 1/n and 1/f to -1 and +1
Three steps only on z coordinates
Translate the center between -1/n and -1/f to 
origin
T(tz) where tz = (1/n+1/f)/2)

 Scale it to match -1 to +1
 S(sz) where sz = 2/(1/n-1/f))

• Whole z transform
 (1/z + tz)sz = 1/z(2nf/f-n) + (f+n)/(f-n)



Projection Transformation
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Final Matrix
• Defined only in terms of the planes of the view frustum


