Graphic Pipeline

Rendering

- If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate?
- What are the best way to model 3D world?
- How to render them?

Data Representation

- How do we define objects
 - Primitives (triangle, polygon, surfaces)
- Polygonal model
 - Each primitive is a planar polygon
 - Object is made of a mesh of polygons

Triangular Model

- Triangular model
 - Any surface passing through three vertices will be planar
 - Minimal planar primitives
 - No restrictions to be imposed during model building
- Piecewise Linear Representation
 - Easy to implement in hardware
 - Easy to interpolate attributes
 - Convex Linear Interpolation
 - Unique coefficients

Most Common Format

- List of vertices and attributes
 - 3D coordinates, color, texture coordinates....
 - Geometric information
 - Positions, normals, curvature
- List of triangles
 - Indices of triangles
 - Topological information
 - How are the triangles connected?

Object Representation: Example

Rendering Pipeline

- Input
 - Soup of 2D triangles in 3D space
- Output
 - 2D image from a particular view
- Why pipeline?
 - Contains different stages
 - Each triangle is sent through it in a pipeline fashion

Steps of Graphic Pipeline

- 1. Geometric Transformation of Vertices
- 2. Clipping and Vertex Interpolation of Attributes
- 3. Rasterization and Pixel Interpolation of Attributes

Geometric Transformation

- 1. Model Transformation
- 2. View Transformation
- 3. Perspective Projection
- 4. Window Coordinate Transformation

Model Transformation

World and Object Coordinates

Model Transformation

- Transforming from the object to world coordinates
 - Placing the object in the desired position, scale and orientation
- Can be done by any kind of transformations
 - Graphics hardware/library support only linear transformations like translate, rotate, scale, and shear

Advantages

- Allows separation of concerns
 - · When designing objects do not worry about scene
 - Create a library of objects
- Allows multiple instantiation by just changing the location, orientation and size of the same object

View Transformation

Input

- Position and orientation of eye (9 parameters)
 - View point (COP)
 - \cdot Normal to the image plane N
 - · View Up U

To align

- Eye with the origin
- Normal to the image plane with negative Z axis
- View Up vector with positive Y axis
- Can be achieved by rotation and translation

Default View Setup

- E = (0,0,0)
- V = (0,1,0)
- N = (0,0,1)

Perspective Projection Transformation

- Define the "view frustum" (6 parameters)
 - Assume origin is the view point
 - Near and far planes (planes parallel to XY plane perpendicular to the negative Z axis) [2]
 - Left, right, top, bottom rectangle defined on the near plane [4]

Default View Setup

Projection Transformation

Projection Transformation

- Transforming the view frustum (along with the objects inside it) into a
 - cuboid with unit square faces on the near and far planes
 - the negative Z axis passes through the center of these two faces.
 - Projecting the objects on the near plane
- Consists of a shear, scale and perspective projection

Perspective Projection

$$x_{p}/x = y_{p}/y = z_{p}/z$$

$$x_{p} = x \qquad y_{p} = y$$

$$z \qquad z$$

Gaze Direction

Coincide this with N

Shear Matrix

$$Sh(x_v/n, y_v/n) = \begin{bmatrix} 1 & 0 & x_v/n & 0 \\ 0 & 1 & y_v/n & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 Can be defined by the window extents

$$Sh((r+l)/2n, (t+b)/2n) = \begin{bmatrix} 1 & 0 & r+l/2n & \overline{0} \\ 0 & 1 & t+b/2n & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Now normalize X and Y

- Map X and Y between -1 to +1
- Scale by 2/(r-1) and 2/(t-b)
- Looks like K
 - n is focal length
 - r+l is change of center
 - •r-l is inversely proportional to number of pixels

$$\begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{f+n}{f-n} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Where is the lost dimension?

- Why 4x4?
- · Z should map to n always, since depth of the image is same
- But we need to resolve occlusion

How do we use the z?

- Perspective projection is applied on the vertices of a triangle
- Can depth be resolved in the triangle level?
 - T1 is not infront of T2 and vice versa
 - Part of T1 is in front of T2 and vice versa

How do we use the z?

- Occlusion has to be resolved in the pixel level
- How do we find z for a point inside the triangle
 - Not its vertex
- We do not want to apply 3D to 2D xform
 - Too expensive
- Interpolate in 2D (screen space interpolation)

Screen Space Interpolation

- Linear interpolation of z in screen space
- Does not work
- Why?

• Perspective projection is inversely proportional to $z_{A} = (X_0, Z_0)$

Over-estimates

Wrong occlusion resolution

Correct Solution

- Interpolate 1/Z
 - Reciprocal of Z
 - Interpolate in screen space

• Take reciprocal again

Transforming z to 1/z

Bounding Z

- Depth of field effect
- Define a far plane f
- Leads to culling of distant objects
 - Efficiency issues

Normalizing 1/z

- Map 1/n and 1/f to -1 and +1
 - Three steps only on z coordinates
 - Translate the center between -1/n and -1/f to origin
 - T(tz) where tz = (1/n+1/f)/2
 - Scale it to match -1 to +1
 - S(sz) where sz = 2/(1/n-1/f)
- Whole z transform
 - (1/z + tz)sz = 1/z(2nf/f-n) + (f+n)/(f-n)

Projection Transformation

Final Matrix

· Defined only in terms of the planes of the view frustum

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{f+n}{f-n} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{bmatrix}$$