
Graphic Pipeline

1



Rendering
• If we have a precise computer representation of the 3D 
world, how realistic are the 2D images we can generate?

• What are the best way to model 3D world?
• How to render them?

2



Data Representation
• How do we define objects
Primitives (triangle, polygon, surfaces)

• Polygonal model
Each primitive is a planar polygon
Object is made of a mesh of polygons

3



Triangular Model 
• Triangular model
Any surface passing through three vertices will be planar
Minimal planar primitives
No restrictions to be imposed during model building

• Piecewise Linear Representation
Easy to implement in hardware
Easy to interpolate attributes
Convex Linear Interpolation
Unique coefficients

4



Most Common Format
• List of vertices and attributes
 3D coordinates, color, texture coordinates….
 Geometric information
 Positions, normals, curvature

• List of triangles
 Indices of triangles
 Topological information
 How are the triangles connected?

5



Object Representation: Example

6



Rendering Pipeline
• Input
Soup of 2D triangles in 3D space

• Output
2D image from a particular view

• Why pipeline?
Contains different stages
Each triangle is sent through it in a pipeline fashion

7



Steps of Graphic Pipeline
1. Geometric Transformation of Vertices 

2. Clipping and Vertex Interpolation of Attributes 

3. Rasterization and Pixel Interpolation of Attributes 

8



Geometric Transformation
1.Model Transformation

2.View Transformation

3.Perspective Projection

4.Window Coordinate Transformation

9



Model Transformation
• World and Object Coordinates

10

XO

YO

ZO

XW

YW

ZW

XO

YO

ZO

XO

YO

ZO



Model Transformation
• Transforming from the object to world coordinates
Placing the object in the desired position, scale and 
orientation

• Can be done by any kind of transformations
Graphics hardware/library support only linear 
transformations like translate, rotate, scale, and shear

11



Advantages
• Allows separation of concerns
When designing objects do not worry about scene
Create a library of objects

• Allows multiple instantiation by just changing the location, 
orientation and size of the same object

12



View Transformation
• Input
 Position and orientation of eye (9 parameters)
 View point  (COP)
 Normal to the image plane – N  
 View Up – U

• To align
 Eye with the origin
 Normal to the image plane with negative Z axis
 View Up vector with positive Y axis
 Can be achieved by rotation and translation

13



Default View Setup
• E = (0,0,0)
• V = (0,1,0)
• N = (0,0,1) 

14



Perspective Projection Transformation
• Define the “view frustum” (6 parameters)

 Assume origin is the view point
 Near and far planes (planes parallel to XY plane perpendicular 

to the negative Z axis) [2]
 Left, right, top, bottom rectangle defined on the near plane [4]

15



Default View Setup

16



Projection Transformation

17

X

Y

Z



Projection Transformation
• Transforming the view frustum (along with the objects 

inside it) into a 
 cuboid with unit square faces on the near and far planes
 the negative Z axis passes through the center of these two faces.
 Projecting the objects on the near plane 

• Consists of a shear, scale and perspective projection

18



Perspective Projection

19

n

n

xp/x = yp/y = zp/z 

xp = x      yp = y
z z
n n



Gaze Direction 

20

Z

Y

(0,0,zp)

(xv,yv,zp)



Coincide this with N
• Shear Matrix

• Can be defined by the window 
extents
 l, r, t, b 

1   0   xv/n   0
0   1   yv/n   0
0   0      1      0
0   0      0      1

Sh(xv/n, yv/n) =

1   0   r+l/2n   0
0   1   t+b/2n   0

0   0      1      0
0   0      0      1

Sh((r+l)/2n, (t+b)/2n) =



Now normalize X and Y
• Map X and Y between -1 to +1
• Scale by 2/(r-l) and 2/(t-b)

• Looks like K
n is focal length
 r+l is change of center
 r-l is inversely proportional to number of pixels



Where is the lost dimension?
• Why 4x4?
• Z should map to n always, since depth of the image is same 
• But we need to resolve occlusion

23



How do we use the z?
• Perspective projection is applied on the vertices of a triangle
• Can depth be resolved in the triangle level?
T1 is not infront of T2 and vice versa
Part of T1 is in front of T2 and vice versa

24
View Direction

T1 T2



How do we use the z?
• Occlusion has to be resolved in the pixel level
• How do we find z for a point inside the triangle
Not its vertex

• We do not want to apply 3D to 2D xform
 Too expensive

• Interpolate in 2D (screen space interpolation)

25
View Direction

T1 T2



Screen Space Interpolation
• Linear interpolation of z in screen space 
• Does not work
• Why?
 Perspective projection is inversely proportional to z
 Over-estimates
 Wrong occlusion resolution

26



Correct Solution
• Interpolate 1/Z
 Reciprocal of Z
 Interpolate in screen space
 Take reciprocal again

27

1
Z0

(1-u) +
1
Zt

=
1
Z1

u



Transforming z to 1/z
x
y
z
1

xp
yp

-z
1

Instead of this …

x
y
z
1

xp
yp

-1/z
1

we would like to store 1/z  for 
interpolation purposes



Bounding Z
• Depth of field effect

• Define a far plane - f

• Leads to culling of distant objects
 Efficiency issues



Normalizing 1/z
• Map 1/n and 1/f to -1 and +1
Three steps only on z coordinates
Translate the center between -1/n and -1/f to 
origin
T(tz) where tz = (1/n+1/f)/2)

 Scale it to match -1 to +1
 S(sz) where sz = 2/(1/n-1/f))

• Whole z transform
 (1/z + tz)sz = 1/z(2nf/f-n) + (f+n)/(f-n)



Projection Transformation

X

Y

Z



Final Matrix
• Defined only in terms of the planes of the view frustum


