Fundamentals Data

Outline

- Visualization
- Discretization
 - Sampling
 - Quantization
- Representation
 - Continuous
 - Discrete
- Noise

Data

- Data: Function dependent on one or more variables.
- Example
 - Audio (1D) depends on time t A(t)
 - Image (2D) depends on spatial coordinates x and y I(x, y)
 - Video (3D) depends on spatial coordinate (x,y) and time t V(x,y,t)

Visualization

- Plot of dependent variable with respect to independent ones
 - 2D plot is a height field

Visualization

- Other kinds of visualizations
- Color image: three color channels: R(x, y), G(x, y) and B(x, y)

Discretization

- Data exists in nature as a continuous function.
- Convert to discrete function for digital representation
 - $\cdot Discretization$
- Two concepts
 - Sampling
 - Quantization

Sampling

- Set of values of continuous f(t) at specific values of t.
- Reduces continuous function f(t) to discrete form

Sampling

Uniform vs Non-uniform sampling

Reconstruction

• Get the continuous function from the discrete function

Reconstruction

Accurate reconstruction needs adequate samples

Aliasing

• Incorrect representation of some entity

A much lower frequency

Zero frequency

Nyquist Sampling Rate

• By sampling *at least* twice the frequency (2 samples per cycle), signal can be reconstructed correctly.

Quantization

- · A analog signal can have any value of infinite precision
- Digital signal can only have a limited set of value

An Alternative Representation

- frequency domain representation
 - · A signal is a linear combination of sine or cosine waves

Representation

• Explicit Representation

$$y = mx + c$$

• Implicit Representation

$$ax + by + c = 0$$

- ${\bf \cdot } Parametric\ Equation$
 - Using one or more parameters
 - Example: point p on a line segment between two points P and Q

$$p = P + t(Q - P), \qquad 0 \le t \le 1$$

Discrete Representation

- A 3D cube defined by a set of quadrilaterals or triangles
 - This is called *Mesh*
- The entities that make up the mesh (e.g. lines, triangles or quadrilaterals) are called the *primitives*.

Properties

- Geometric Properties:
 - Position
 - Normal
 - Curvature
- *Topological Properties:* remains invariant to changes in geometric properties
 - Connectivity or Adjacency
 - Dimension
 - Manifold / non-manifold
 - Euler characteristic/Genus

Manifold Definitions

Manifold

• Every edge has exactly two incident triangles.

Manifolds with boundaries

• Every edge has either one or two incident triangles.

Euler Characteristic

- e = V-E+F (V: Vertices, E: Edges, F: Faces).
- Cube has 8 vertices, 12 edges, 6 faces
 - $\cdot e = V-E+F = 8-12+6 = 2$
- Changing geometric properties keeps Euler characteristic invariant
 - Such as adding edges, vertices

Genus

- (Naïve) Number of "handles".
- Relationship between e and g: e=2-2g
 - Sphere, cube g=0
 - torus, coffee cup g=1
- Going from coffee cup to torus
 - Changing only geometric properties

Noise

- · Addition of random values at random locations in the data.
 - · Random noise

Noise

- · Outlier Noise
- An example of such noise is salt and pepper noise
- Can be solved by Median filter

Noise

- Some noise look random in spatial domain but can be isolated to a few frequencies in spectral domain.
- Can be removed by Notch filter.

Technqiues

- Interpolation
 - Linear Interpolation
 - Bilinear Interpolation
- Geometric Intersections

Interpolation

- Estimate function for values which it has not been measured.
- Linear interpolation:
 - · Assuming a line between samples.
 - Change abruptly at sample points
 - C^0 continuity

Interpolation

- Non-linear interpolation:
 - · A smooth curve passes through samples
 - First derivative continuous C^1 continuous
 - Second derivative continuous C² continuous

Linear Interpolation

• Point V on the line segment V_1V_2 is given by

$$V = \alpha V_1 + (1 - \alpha)V_2, \qquad 0 \le \alpha \le 1$$

• Example: Linear interpolation of color at point V

$$C(V) = C(\alpha V_1 + (1 - \alpha)V_2) = \alpha C(V_1) + (1 - \alpha)C(V_2)$$

Bilinear Interpolation

- 2D Data
- Interpolating in one direction followed by interpolating in the second direction.

$$F(Q) = (1 - \alpha)C + \alpha D$$

$$F(R) = (1 - \alpha)A + \alpha B$$

$$F(P) = F(Q)\beta + F(R)(1-\beta)$$

