
Bump and Bump and
Environment Environment

MappingMapping
CS 211ACS 211A

Bump MappingBump Mapping
• Simulate the effects of details in

geometry without adding geometry

Difference from Texture Difference from Texture
MappingMapping

• Texture mapping cannot simulate
rough surface details

• Rough surfaces show illumination
changes with the movement of the
light or object
–Textured objects cannot simulate that
–Since independent of illumination

parameters
• Basic Idea

–Perturb the normal and use the perturbed
normal for illumination computation

Normal Perturbation TheoryNormal Perturbation Theory

P(u,v)

u

v

Pu

Pv

N = Pu x Pv

P – Point on the surface
Pu – Tangent at P in u direction
Pv – Tangent at P in v direction
N – Normal at P

Modify the surface position
by adding a small
perturbation (called bump
function) in the direction of
the normal:

P’(u,v) = P(u,v) + B(u,v) n

B(u,v) is a scalar function

This is a vector addition

P’(u,v)

Normal Perturbation TheoryNormal Perturbation Theory
• P’(u,v) = P(u,v) + B(u,v) N
• P’u = Pu + BuN + BNu

• P’u≈ Pu + BuN
• P’v≈ Pv + BvN
• N’ = P’u x P’v

= Pu x Pv + Bv (Pu x N) + Bu (Pv x
N)

+ BuBv (NxN)
= N + Bv (Pu x N) + Bu (Pv x N)

ImplementationImplementation
• Start with a gray scale texture –

B(u,v)

ImplementationImplementation
• Find the image Bu(u,v) by subtracting

every pixel from its right neighbor

ImplementationImplementation
• Find the image Bv(u,v) by subtracting

every pixel from its bottom neighbor

ImplementationImplementation
• N’ = N + Bv (Pu x N) + Bu (Pv x N)

ImplementationImplementation
• N’ = N + Bv (Pu x N) + Bu (Pv x N)

(0, 0, 1) (0, 1, 0) (1, 0, 0)
• These vectors are orthogonal to each other
• Define a local coordinate system at a vertex

by normal and the tangent plane at this
vertex

• N’ = (Bu, Bv, 1) – Perturbed normal in the
local coordinate system of each triangle

Normal MapNormal Map

• N’ = (Bu, Bv, 1) - Stored as RGB value
• Since B is always 1, it is bluish in

appearance

Light and View VectorLight and View Vector
• Light and View vectors

– Defined in the global coordinate system

• Convert these to the local coordinate
system
–Standard coordinate transformation

RasterizationRasterization
• Using pixel shaders

– Interpolate light
vector

– Interpolate normal
– Find the perturbed

normal from the
normal map

–Do lighting
computation in the
local coordinate
system

ExamplesExamples

Interpolating Vectors?Interpolating Vectors?
• Yes, using pixel shaders you can do

it
• So, you can do Phong shading using

pixel shaders
• Standard openGL lighting does NOT

do phong shading

Environment MapEnvironment Map
• Simulating the effect of reflection of

environment on a shiny object

Environment MapEnvironment Map
• Generate the map of the

environment
–On a sphere, cube or paraboloid

• Use a view-dependent mapping on
the geometry

Generating the Map (Cube)Generating the Map (Cube)
• Render the

scene from one
point, six times
with six different
view frustums

• On six planes of
a cube

Cubic Environment MapCubic Environment Map

Generating the Map Generating the Map
(Sphere)(Sphere)

• Use a angle
parameterization

• Use ray tracing to
sample the angles
at uniform
intervals

• OpenGL provides
a spherical
mapping for this

Mapping the EnvironmentMapping the Environment

• Enclose the arbitrary
geometry in the sphere
or the cube

• Reflect the view vector
about the normal

• The environment in the
direction of R is getting
reflected about N and
reaching the viewer at
V

N
V

R

What does this remind you of?

Difference: For texture mapping,
the mapping dependent on
geometry (vertex and normals),
here it depends on the view

ResultsResults

It is an approximationIt is an approximation

• Ideally, we should get self reflections
• In this case, we would not get
• This is just an approximation
• To get accurate environment map, we

have to use ray tracing

