
83

3
Getting Started with

Web Applications

A web application is a dynamic extension of a web or application server. There
are two types of web applications:

• Presentation-oriented: A presentation-oriented web application generates
interactive web pages containing various types of markup language
(HTML, XML, and so on) and dynamic content in response to requests.
Chapters 11 through 22 cover how to develop presentation-oriented web
applications.

• Service-oriented: A service-oriented web application implements the end-
point of a web service. Presentation-oriented applications are often clients
of service-oriented web applications. Chapters 8 and 9 cover how to
develop service-oriented web applications.

In the Java 2 platform, web components provide the dynamic extension capabili-
ties for a web server. web components are either Java servlets, JSP pages, or web
service endpoints. The interaction between a web client and a web application is
illustrated in Figure 3–1. The client sends an HTTP request to the web server. A
web server that implements Java Servlet and JavaServer Pages technology con-
verts the request into an HTTPServletRequest object. This object is delivered to
a web component, which can interact with JavaBeans components or a database
to generate dynamic content. The web component can then generate an HTTPS-
ervletResponse or it can pass the request to another web component. Eventu-

84 GETTING STARTED WITH WEB APPLICATIONS

ally a web component generates a HTTPServletResponse object. The web
server converts this object to an HTTP response and returns it to the client.

Figure 3–1 Java Web Application Request Handling

Servlets are Java programming language classes that dynamically process
requests and construct responses. JSP pages are text-based documents that exe-
cute as servlets but allow a more natural approach to creating static content.
Although servlets and JSP pages can be used interchangeably, each has its own
strengths. Servlets are best suited for service-oriented applications (web service
endpoints are implemented as servlets) and the control functions of a presenta-
tion-oriented application, such as dispatching requests and handling nontextual
data. JSP pages are more appropriate for generating text-based markup such as
HTML, Scalable Vector Graphics (SVG), Wireless Markup Language (WML),
and XML.

Since the introduction of Java Servlet and JSP technology, additional Java tech-
nologies and frameworks for building interactive web applications have been

85

developed. These technologies and their relationships are illustrated in Figure 3–
2.

Figure 3–2 Java Web Application Technologies

Notice that Java Servlet technology is the foundation of all the web application
technologies, so you should familiarize yourself with the material in Chapter 11
even if you do not intend to write servlets. Each technology adds a level of
abstraction that makes web application prototyping and development faster and
the web applications themselves more maintainable, scalable, and robust.

Web components are supported by the services of a runtime platform called a
web container. A web container provides services such as request dispatching,
security, concurrency, and life-cycle management. It also gives web components
access to APIs such as naming, transactions, and email.

Certain aspects of web application behavior can be configured when the applica-
tion is installed, or deployed, to the web container. The configuration informa-
tion is maintained in a text file in XML format called a web application
deployment descriptor (DD). A DD must conform to the schema described in the
Java Servlet Specification.

Most web applications use the HTTP protocol, and support for HTTP is a major
aspect of web components. For a brief summary of HTTP protocol features see
Appendix C.

This chapter gives a brief overview of the activities involved in developing web
applications. First we summarize the web application life cycle. Then we
describe how to package and deploy very simple web applications on the Sun
Java System Application Server Platform Edition 8.1 2005Q1. We move on to
configuring web applications and discuss how to specify the most commonly
used configuration parameters. We then introduce an example—Duke’s Book-

http://java.sun.com/products/servlet/download.html#specs

86 GETTING STARTED WITH WEB APPLICATIONS

store—that we use to illustrate all the J2EE web-tier technologies and we
describe how to set up the shared components of this example. Finally we dis-
cuss how to access databases from web applications and set up the database
resources needed to run Duke’s Bookstore.

Web Application Life Cycle
A web application consists of web components, static resource files such as
images, and helper classes and libraries. The web container provides many sup-
porting services that enhance the capabilities of web components and make them
easier to develop. However, because a web application must take these services
into account, the process for creating and running a web application is different
from that of traditional stand-alone Java classes. The process for creating,
deploying, and executing a web application can be summarized as follows:

1. Develop the web component code.

2. Develop the web application deployment descriptor.

3. Compile the web application components and helper classes referenced by
the components.

4. Optionally package the application into a deployable unit.

5. Deploy the application into a web container.

6. Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2
through 4 are expanded on in the following sections and illustrated with a Hello,
World-style presentation-oriented application. This application allows a user to

WEB APPLICATION LIFE CYCLE 87

enter a name into an HTML form (Figure 3–3) and then displays a greeting after
the name is submitted (Figure 3–4).

Figure 3–3 Greeting Form

Figure 3–4 Response

88 GETTING STARTED WITH WEB APPLICATIONS

The Hello application contains two web components that generate the greeting
and the response. This chapter discusses two versions of the application: a JSP
version called hello1, in which the components are implemented by two JSP
pages (index.jsp and response.jsp) and a servlet version called hello2, in
which the components are implemented by two servlet classes (GreetingServ-
let.java and ResponseServlet.java). The two versions are used to illustrate
tasks involved in packaging, deploying, configuring, and running an application
that contains web components. The section About the Examples (page xxxvi)
explains how to get the code for these examples. After you install the tutorial
bundle, the source code for the examples is in <INSTALL>/j2eetutorial14/
examples/web/hello1/ and <INSTALL>/j2eetutorial14/examples/web/

hello2/.

Web Modules
In the J2EE architecture, web components and static web content files such as
images are called web resources. A web module is the smallest deployable and
usable unit of web resources. A J2EE web module corresponds to a web applica-
tion as defined in the Java Servlet specification.

In addition to web components and web resources, a web module can contain
other files:

• Server-side utility classes (database beans, shopping carts, and so on).
Often these classes conform to the JavaBeans component architecture.

• Client-side classes (applets and utility classes).

A web module has a specific structure. The top-level directory of a web module
is the document root of the application. The document root is where JSP pages,
client-side classes and archives, and static web resources, such as images, are
stored.

The document root contains a subdirectory named /WEB-INF/, which contains
the following files and directories:

• web.xml: The web application deployment descriptor

• Tag library descriptor files (see Tag Library Descriptors, page 602)

• classes: A directory that contains server-side classes: servlets, utility
classes, and JavaBeans components

• tags: A directory that contains tag files, which are implementations of tag
libraries (see Tag File Location, page 588)

../examples/web/hello1/web/index.txt
../examples/web/hello1/web/response.txt
../examples/web/hello2/src/servlets/GreetingServlet.java
../examples/web/hello2/src/servlets/GreetingServlet.java
../examples/web/hello2/src/servlets/ResponseServlet.java

WEB MODULES 89

• lib: A directory that contains JAR archives of libraries called by server-
side classes

You can also create application-specific subdirectories (that is, package directo-
ries) in either the document root or the /WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged
in a JAR file known as a web archive (WAR) file. Because the contents and use
of WAR files differ from those of JAR files, WAR file names use a .war exten-
sion. The web module just described is portable; you can deploy it into any web
container that conforms to the Java Servlet Specification.

To deploy a WAR on the Application Server, the file must also contain a runtime
deployment descriptor. The runtime deployment descriptor is an XML file that
contains information such as the context root of the web application and the
mapping of the portable names of an application’s resources to the Application
Server’s resources. The Application Server web application runtime DD is
named sun-web.xml and is located in /WEB-INF/ along with the web application
DD. The structure of a web module that can be deployed on the Application
Server is shown in Figure 3–5.

90 GETTING STARTED WITH WEB APPLICATIONS

Figure 3–5 Web Module Structure

Packaging Web Modules
A web module must be packaged into a WAR in certain deployment scenarios
and whenever you want to distribute the web module. You package a web mod-
ule into a WAR using the Application Server deploytool utility, by executing
the jar command in a directory laid out in the format of a web module, or by
using the asant utility. This tutorial allows you to use use either the first or the
third approach. To build the hello1 application, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/
web/hello1/.

2. Run asant build. This target will spawn any necessary compilations and
will copy files to the <INSTALL>/j2eetutorial14/examples/web/

hello1/build/ directory.

PACKAGING WEB MODULES 91

To package the application into a WAR named hello1.war using asant, use the
following command:

asant create-war

This command uses web.xml and sun-web.xml files in the <INSTALL>/
j2eetutorial14/examples/web/hello1 directory.

To learn how to configure this web application, package the application using
deploytool by following these steps:

1. Start deploytool.

2. Create a web application called hello1 by running the New Web Compo-
nent wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/hello1/hello1.war. The WAR Display Name field will show
hello1.

c. In the Context Root field, enter /hello1.

d. Click Edit Contents to add the content files.

e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/hello1/build/. Select duke.wav-
ing.gif, index.jsp, and response.jsp and click Add. Click OK.

f. Click Next.

g. Select the No Component radio button and click Next.

h. Click Finish.

4. Select File→Save.

A sample hello1.war is provided in <INSTALL>/j2eetutorial14/examples/
web/provided-wars/. To open this WAR with deploytool, follow these steps:

1. Select File→Open.

2. Navigate to the provided-wars directory.

3. Select the WAR.

4. Click Open Module.

92 GETTING STARTED WITH WEB APPLICATIONS

Deploying Web Modules
You can deploy a web module to the Application Server in several ways:

• By pointing the Application Server at an unpackaged web module direc-
tory structure using asadmin or the Admin Console.

• By packaging the web module and

• Copying the WAR into the <J2EE_HOME>/domains/domain1/autode-
ploy/ directory.

• Using the Admin Console, asadmin, asant, or deploytool to deploy
the WAR.

All these methods are described briefly in this chapter; however, throughout the
tutorial, we use deploytool or asant for packaging and deploying.

Setting the Context Root
A context root identifies a web application in a J2EE server. You specify the con-
text root when you deploy a web module. A context root must start with a for-
ward slash (/) and end with a string.

In a packaged web module for deployment on the Application Server, the con-
text root is stored in sun-web.xml. If you package the web application with
deploytool, then sun-web.xml is created automatically.

Deploying an Unpackaged Web Module
It is possible to deploy a web module without packaging it into a WAR. The
advantage of this approach is that you do not need to rebuild the package every
time you update a file contained in the web module. In addition, the Application
Server automatically detects updates to JSP pages, so you don’t even have to
redeploy the web module when they change.

However, to deploy an unpackaged web module, you must create the web mod-
ule directory structure and provide the web application deployment descriptor
web.xml. Because this tutorial uses deploytool for generating deployment

DEPLOYING WEB MODULES 93

descriptors, it does not document how to develop descriptors from scratch. You
can view the structure of deployment descriptors in three ways:

• In deploytool, select Tools→Descriptor Viewer→Descriptor Viewer to
view web.xml and Tools→Descriptor Viewer→Application Server
Descriptor to view sun-web.xml.

• Use a text editor to view the web.xml and sun-web.xml files in the exam-
ple directories.

• Unpackage one of the WARs in <INSTALL>/j2eetutorial14/examples/
web/provided-wars/ and extract the descriptors.

Since you explicitly specify the context root when you deploy an unpackaged
web module, usually it is not necessary to provide sun-web.xml.

Deploying with the Admin Console
1. Expand the Applications node.

2. Select the Web Applications node.

3. Click the Deploy button.

4. Select the No radio button next to Upload File.

5. Type the full path to the web module directory in the File or Directory
field. Although the GUI gives you the choice to browse to the directory,
this option applies only to deploying a packaged WAR.

6. Click Next.

7. Type the application name.

8. Type the context root.

9. Select the Enabled box.

10.Click the OK button.

Deploying with asadmin
To deploy an unpackaged web module with asadmin, open a terminal window or
command prompt and execute

asadmin deploydir full-path-to-web-module-directory

94 GETTING STARTED WITH WEB APPLICATIONS

The build task for the hello1 application creates a build directory (including
web.xml) in the structure of a web module. To deploy hello1 using asadmin
deploydir, execute:

asadmin deploydir --contextroot /hello1
<INSTALL>/j2eetutorial14/examples/web/hello1/build

After you deploy the hello1 application, you can run the web application by
pointing a browser at

http://localhost:8080/hello1

You should see the greeting form depicted earlier in Figure 3–3.

A web module is executed when a web browser references a URL that contains
the web module’s context root. Because no web component appears in http://
localhost:8080/hello1/, the web container executes the default component,
index.jsp. The section Mapping URLs to Web Components (page 99)
describes how to specify web components in a URL.

Deploying a Packaged Web Module
If you have deployed the hello1 application, before proceeding with this sec-
tion, undeploy the application by following one of the procedures described in
Undeploying Web Modules (page 98).

Deploying with deploytool
To deploy the hello1 web module with deploytool:

1. Select the hello1 WAR you created in Packaging Web Modules (page 90).

2. Select Tools→Deploy.

3. Click OK.

You can use one of the following methods to deploy the WAR you packaged
with deploytool, or one of the WARs contained in <INSTALL>/

j2eetutorial14/examples/web/provided-wars/.

Deploying with the Admin Console
1. Expand the Applications node.

2. Select the Web Applications node.

LISTING DEPLOYED WEB MODULES 95

3. Click the Deploy button.

4. Select the No radio button next to Upload File.

5. Type the full path to the WAR file (or click on Browse to find it), and then
click the OK button.

6. Click Next.

7. Type the application name.

8. Type the context root.

9. Select the Enabled box.

10.Click the OK button.

Deploying with asadmin
To deploy a WAR with asadmin, open a terminal window or command prompt
and execute

asadmin deploy full-path-to-war-file

Deploying with asant
To deploy a WAR with asant, open a terminal window or command prompt in
the directory where you built and packaged the WAR, and execute

asant deploy-war

Listing Deployed Web Modules
The Application Server provides three ways to view the deployed web modules:

• deploytool

a. Select localhost:4848 from the Servers list.

b. View the Deployed Objects list in the General tab.

• Admin Console

a. Open the URL http://localhost:4848/asadmin in a browser.

b. Expand the nodes Applications→Web Applications.

• asadmin

a. Execute

asadmin list-components

96 GETTING STARTED WITH WEB APPLICATIONS

Updating Web Modules
A typical iterative development cycle involves deploying a web module and then
making changes to the application components. To update a deployed web mod-
ule, you must do the following:

1. Recompile any modified classes.

2. If you have deployed a packaged web module, update any modified com-
ponents in the WAR.

3. Redeploy the module.

4. Reload the URL in the client.

Updating an Unpackaged Web Module
To update an unpackaged web module using either of the methods discussed in
Deploying an Unpackaged Web Module (page 92), reexecute the deploydir
operation. If you have changed only JSP pages in the web module directory, you
do not have to redeploy; simply reload the URL in the client.

Updating a Packaged Web Module
This section describes how to update the hello1 web module that you packaged
with deploytool.

First, change the greeting in the file <INSTALL>/j2eetutorial14/examples/
web/hello1/web/index.jsp to

<h2>Hi, my name is Duke. What's yours?</h2>

Run asant build to copy the modified JSP page into the build directory. To
update the web module using deploytool follow these steps:

1. Select the hello1 WAR.

2. Select Tools→Update Module Files. A popup dialog box will display the
modified file. Click OK.

3. Select Tools→Deploy. A popup dialog box will query whether you want
to redeploy. Click Yes.

4. Click OK.

To view the modified module, reload the URL in the browser.

UPDATING WEB MODULES 97

You should see the screen in Figure 3–6 in the browser.

Figure 3–6 New Greeting

Dynamic Reloading
If dynamic reloading is enabled, you do not have to redeploy an application or
module when you change its code or deployment descriptors. All you have to do
is copy the changed JSP or class files into the deployment directory for the appli-
cation or module. The deployment directory for a web module named
context_root is <J2EE_HOME>/domains/domain1/applications/j2ee-mod-
ules/context_root. The server checks for changes periodically and redeploys
the application, automatically and dynamically, with the changes.

This capability is useful in a development environment, because it allows code
changes to be tested quickly. Dynamic reloading is not recommended for a pro-
duction environment, however, because it may degrade performance. In addition,
whenever a reload is done, the sessions at that time become invalid and the client
must restart the session.

To enable dynamic reloading, use the Admin Console:

1. Select the Applications node.

2. Check the Reload Enabled box to enable dynamic reloading.

98 GETTING STARTED WITH WEB APPLICATIONS

3. Enter a number of seconds in the Reload Poll Interval field to set the inter-
val at which applications and modules are checked for code changes and
dynamically reloaded.

4. Click the Save button.

In addition, to load new servlet files or reload deployment descriptor changes,
you must do the following:

1. Create an empty file named .reload at the root of the module:
<J2EE_HOME>/domains/domain1/applications/j2ee-modules/
context_root/.reload

2. Explicitly update the .reload file’s time stamp each time you make these
changes. On UNIX, execute

touch .reload

For JSP pages, changes are reloaded automatically at a frequency set in the
Reload Pool Interval. To disable dynamic reloading of JSP pages, set the reload-
interval property to -1.

Undeploying Web Modules
You can undeploy web modules in four ways:

• deploytool

a. Select localhost:4848 from the Servers list.

b. Select the web module in the Deployed Objects list of the General tab.

c. Click the Undeploy button.

• Admin Console

a. Open the URL http://localhost:4848/asadmin in a browser.

b. Expand the Applications node.

c. Select Web Applications.

d. Click the checkbox next to the module you wish to undeploy.

e. Click the Undeploy button.

• asadmin

a. Execute
asadmin undeploy context_root

CONFIGURING WEB APPLICATIONS 99

• asant

a. In the directory where you built and packaged the WAR, execute
asant undeploy-war

Configuring Web Applications
Web applications are configured via elements contained in the web application
deployment descriptor. The deploytool utility generates the descriptor when
you create a WAR and adds elements when you create web components and
associated classes. You can modify the elements via the inspectors associated
with the WAR.

The following sections give a brief introduction to the web application features
you will usually want to configure. A number of security parameters can be
specified; these are covered in Web-Tier Security (page 1125).

In the following sections, examples demonstrate procedures for configuring the
Hello, World application. If Hello, World does not use a specific configuration
feature, the section gives references to other examples that illustrate how to spec-
ify the deployment descriptor element and describes generic procedures for
specifying the feature using deploytool. Extended examples that demonstrate
how to use deploytool appear in later tutorial chapters.

Mapping URLs to Web Components
When a request is received by the web container it must determine which web
component should handle the request. It does so by mapping the URL path con-
tained in the request to a web application and a web component. A URL path
contains the context root and an alias:

http://host:port/context_root/alias

Setting the Component Alias
The alias identifies the web component that should handle a request. The alias
path must start with a forward slash (/) and end with a string or a wildcard
expression with an extension (for example, *.jsp). Since web containers auto-
matically map an alias that ends with *.jsp, you do not have to specify an alias
for a JSP page unless you wish to refer to the page by a name other than its file

100 GETTING STARTED WITH WEB APPLICATIONS

name. To set up the mappings for the servlet version of the hello application
with deploytool, first package it, as described in the following steps.

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/
web/hello2/.

2. Run asant build. This target will compile the servlets to the <INSTALL>/
j2eetutorial14/examples/web/hello2/build/ directory.

3. Start deploytool.

4. Create a web application called hello2 by running the New Web Compo-
nent wizard. Select File→New→Web Component.

5. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/hello2/hello2.war. The WAR Display Name field will show
hello2.

c. In the Context Root field, enter /hello2.

d. Click Edit Contents to add the content files.

e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/hello2/build/. Select duke.wav-
ing.gif and the servlets package and click Add. Click OK.

f. Click Next.

g. Select the Servlet radio button and click Next.

h. Select GreetingServlet from the Servlet Class combo box.

i. Click Finish.

6. Select File→New→Web Component.

a. Click the Add to Existing WAR Module radio button and select hello2
from the combo box. Because the WAR contains all the servlet classes,
you do not have to add any more content.

b. Click Next.

c. Select the Servlet radio button and click Next.

d. Select ResponseServlet from the Servlet Class combo box and click
Finish.

Then, to set the aliases, follow these steps:

1. Select the GreetingServlet web component.

2. Select the Aliases tab.

DECLARING WELCOME FILES 101

3. Click Add to add a new mapping.

4. Type /greeting in the aliases list.

5. Select the ResponseServlet web component.

6. Click Add.

7. Type /response in the aliases list.

8. Select File→Save.

To run the application, first deploy the web module, and then open the URL
http://localhost:8080/hello2/greeting in a browser.

Declaring Welcome Files
The welcome files mechanism allows you to specify a list of files that the web
container will use for appending to a request for a URL (called a valid partial
request) that is not mapped to a web component.

For example, suppose you define a welcome file welcome.html. When a client
requests a URL such as host:port/webapp/directory, where directory is
not mapped to a servlet or JSP page, the file host:port/webapp/directory/
welcome.html is returned to the client.

If a web container receives a valid partial request, the web container examines
the welcome file list and appends to the partial request each welcome file in the
order specified and checks whether a static resource or servlet in the WAR is
mapped to that request URL. The web container then sends the request to the
first resource in the WAR that matches.

If no welcome file is specified, the Application Server will use a file named
index.XXX, where XXX can be html or jsp, as the default welcome file. If there is
no welcome file and no file named index.XXX, the Application Server returns a
directory listing.

To specify welcome files with deploytool, follow these steps:

1. Select the WAR.

2. Select the File Ref’s tab in the WAR inspector.

3. Click Add File in the Welcome Files pane.

4. Select the welcome file from the drop-down list.

The example discussed in Encapsulating Reusable Content Using Tag
Files (page 586) has a welcome file.

102 GETTING STARTED WITH WEB APPLICATIONS

Setting Initialization Parameters
The web components in a web module share an object that represents their appli-
cation context (see Accessing the Web Context, page 471). You can pass initial-
ization parameters to the context or to a web component.

To add a context parameter with deploytool, follow these steps:

1. Select the WAR.

2. Select the Context tab in the WAR inspector.

3. Click Add.

For a sample context parameter, see the example discussed in The Example JSP
Pages (page 484).

To add a web component initialization parameter with deploytool, follow these
steps:

1. Select the web component.

2. Select the Init. Parameters tab in the web component inspector.

3. Click Add.

Mapping Errors to Error Screens
When an error occurs during execution of a web application, you can have the
application display a specific error screen according to the type of error. In par-
ticular, you can specify a mapping between the status code returned in an HTTP
response or a Java programming language exception returned by any web com-
ponent (see Handling Errors, page 450) and any type of error screen. To set up
error mappings with deploytool:

1. Select the WAR.

2. Select the File Ref’s tab in the WAR inspector.

3. Click Add Error in the Error Mapping pane.

4. Enter the HTTP status code (see HTTP Responses, page 1400) or the fully
qualified class name of an exception in the Error/Exception field.

5. Enter the name of a web resource to be invoked when the status code or
exception is returned. The name should have a leading forward slash (/).

DECLARING RESOURCE REFERENCES 103

Note: You can also define error screens for a JSP page contained in a WAR. If error
screens are defined for both the WAR and a JSP page, the JSP page’s error page
takes precedence. See Handling Errors (page 493).

For a sample error page mapping, see the example discussed in The Example
Servlets (page 442).

Declaring Resource References
If your web component uses objects such as databases and enterprise beans, you
must declare the references in the web application deployment descriptor. For a
sample resource reference, see Specifying a Web Application’s Resource
Reference (page 106). For a sample enterprise bean reference, see Specifying the
Web Client’s Enterprise Bean Reference (page 892).

Duke’s Bookstore Examples
In Chapters 11 through 22 a common example—Duke’s Bookstore—is used to
illustrate the elements of Java Servlet technology, JavaServer Pages technology,
the JSP Standard Tag Library, and JavaServer Faces technology. The example
emulates a simple online shopping application. It provides a book catalog from
which users can select books and add them to a shopping cart. Users can view
and modify the shopping cart. When users are finished shopping, they can pur-
chase the books in the cart.

The Duke’s Bookstore examples share common classes and a database schema.
These files are located in the directory <INSTALL>/j2eetutorial14/examples/
web/bookstore/. The common classes are packaged into a JAR. To create the
bookstore library JAR, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/
web/bookstore/.

2. Run asant build to compile the bookstore files.

3. Run asant package-bookstore to create a library named bookstore.jar
in <INSTALL>/j2eetutorial14/examples/bookstore/dist/.

The next section describes how to create the bookstore database tables and
resources required to run the examples.

104 GETTING STARTED WITH WEB APPLICATIONS

Accessing Databases from Web
Applications

Data that is shared between web components and is persistent between invoca-
tions of a web application is usually maintained in a database. web applications
use the JDBC API to access relational databases. For information on this API,
see

http://java.sun.com/docs/books/tutorial/jdbc

In the JDBC API, databases are accessed via DataSource objects. A Data-
Source has a set of properties that identify and describe the real world data
source that it represents. These properties include information such as the loca-
tion of the database server, the name of the database, the network protocol to use
to communicate with the server, and so on.

Web applications access a data source using a connection, and a DataSource
object can be thought of as a factory for connections to the particular data source
that the DataSource instance represents. In a basic DataSource implementation,
a call to the getConnection method returns a connection object that is a physi-
cal connection to the data source. In the Application Server, a data source is
referred to as a JDBC resource. See DataSource Objects and Connection
Pools (page 1109) for further information about data sources in the Application
Server.

If a DataSource object is registered with a JNDI naming service, an application
can use the JNDI API to access that DataSource object, which can then be used
to connect to the data source it represents.

To maintain the catalog of books, the Duke’s Bookstore examples described in
Chapters 11 through 22 use the PointBase evaluation database included with the
Application Server.

This section describes how to

• Populate the database with bookstore data

• Create a data source in the Application Server

• Specify a web application’s resource reference

• Map the resource reference to the data source defined in the Application
Server

http://java.sun.com/docs/books/tutorial/jdbc

POPULATING THE EXAMPLE DATABASE 105

Populating the Example Database
To populate the database for the Duke’s Bookstore examples, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/
web/bookstore/.

2. Start the PointBase database server. For instructions, see Starting and Stop-
ping the PointBase Database Server (page 29).

3. Run asant create-db_common. This task runs a PointBase commander
tool command to read the file books.sql and execute the SQL commands
contained in the file.

4. At the end of the processing, you should see the following output:

...
[java] SQL> INSERT INTO books VALUES('207', 'Thrilled', 'Ben',
[java] 'The Green Project: Programming for Consumer Devices',
[java] 30.00, false, 1998, 'What a cool book', 20);
[java] 1 row(s) affected

[java] SQL> INSERT INTO books VALUES('208', 'Tru', 'Itzal',
[java] 'Duke: A Biography of the Java Evangelist',
[java] 45.00, true, 2001, 'What a cool book.', 20);
[java] 1 row(s) affected

Creating a Data Source in the
Application Server
Data sources in the Application Server implement connection pooling. To define
the Duke’s Bookstore data source, you use the installed PointBase connection
pool named PointBasePool.

You create the data source using the Application Server Admin Console, follow-
ing this procedure:

1. Expand the JDBC node.

2. Select the JDBC Resources node.

3. Click the New... button.

4. Type jdbc/BookDB in the JNDI Name field.

5. Choose PointBasePool for the Pool Name.

6. Click OK.

106 GETTING STARTED WITH WEB APPLICATIONS

Specifying a Web Application’s
Resource Reference
To access a database from a web application, you must declare a resource refer-
ence in the application’s web application deployment descriptor (see Declaring
Resource References, page 103). The resource reference specifies a JNDI name,
the type of the data resource, and the kind of authentication used when the
resource is accessed. To specify a resource reference for a Duke’s Bookstore
example using deploytool, follow these steps:

1. Select the WAR (created in Chapters 11 through 22).

2. Select the Resource Ref’s tab.

3. Click Add.

4. Type jdbc/BookDB in the Coded Name field.

5. Accept the default type javax.sql.DataSource.

6. Accept the default authorization Container.

7. Accept the default Sharable selected.

To create the connection to the database, the data access object data-
base.BookDBAO looks up the JNDI name of the bookstore data source object:

public BookDBAO () throws Exception {
try {

Context initCtx = new InitialContext();
Context envCtx = (Context)

initCtx.lookup("java:comp/env");
DataSource ds = (DataSource) envCtx.lookup("jdbc/BookDB");
con = ds.getConnection();
System.out.println("Created connection to database.");

} catch (Exception ex) {
System.out.println("Couldn't create connection." +

ex.getMessage());
throw new

Exception("Couldn't open connection to database: "
+ ex.getMessage());

}

MAPPING THE RESOURCE REFERENCE TO A DATA SOURCE 107

Mapping the Resource Reference to a
Data Source
Both the web application resource reference and the data source defined in the
Application Server have JNDI names. See JNDI Naming (page 1107) for a dis-
cussion of the benefits of using JNDI naming for resources.

To connect the resource reference to the data source, you must map the JNDI
name of the former to the latter. This mapping is stored in the web application
runtime deployment descriptor. To create this mapping using deploytool, fol-
low these steps:

1. Select localhost:4848 in the Servers list to retrieve the data sources defined
in the Application Server.

2. Select the WAR in the Web WARs list.

3. Select the Resource Ref’s tab.

4. Select the Resource Reference Name, jdbc/BookDB, defined in the previ-
ous section.

5. In the Sun-specific Settings frame, select jdbc/BookDB from the JNDI
Name drop-down list.

Further Information
For more information about web applications, refer to the following:

• Java Servlet specification:
http://java.sun.com/products/servlet/download.html#specs

• The Java Servlet web site:
http://java.sun.com/products/servlet

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

108 GETTING STARTED WITH WEB APPLICATIONS

