
855

23
Enterprise Beans

ENTERPRISE beans are the J2EE components that implement Enterprise Java-
Beans (EJB) technology. Enterprise beans run in the EJB container, a runtime
environment within the Sun Java System Application Server Platform Edition 8
(see Figure 1–5, page 10). Although transparent to the application developer, the
EJB container provides system-level services such as transactions and security to
its enterprise beans. These services enable you to quickly build and deploy enter-
prise beans, which form the core of transactional J2EE applications.

What Is an Enterprise Bean?
Written in the Java programming language, an enterprise bean is a server-side
component that encapsulates the business logic of an application. The business
logic is the code that fulfills the purpose of the application. In an inventory con-
trol application, for example, the enterprise beans might implement the business
logic in methods called checkInventoryLevel and orderProduct. By invoking
these methods, remote clients can access the inventory services provided by the
application.

Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distrib-
uted applications. First, because the EJB container provides system-level ser-
vices to enterprise beans, the bean developer can concentrate on solving business

856 ENTERPRISE BEANS

problems. The EJB container—and not the bean developer—is responsible for
system-level services such as transaction management and security authoriza-
tion.

Second, because the beans—and not the clients—contain the application’s busi-
ness logic, the client developer can focus on the presentation of the client. The
client developer does not have to code the routines that implement business rules
or access databases. As a result, the clients are thinner, a benefit that is particu-
larly important for clients that run on small devices.

Third, because enterprise beans are portable components, the application assem-
bler can build new applications from existing beans. These applications can run
on any compliant J2EE server provided that they use the standard APIs.

When to Use Enterprise Beans
You should consider using enterprise beans if your application has any of the fol-
lowing requirements:

• The application must be scalable. To accommodate a growing number of
users, you may need to distribute an application’s components across mul-
tiple machines. Not only can the enterprise beans of an application run on
different machines, but also their location will remain transparent to the
clients.

• Transactions must ensure data integrity. Enterprise beans support transac-
tions, the mechanisms that manage the concurrent access of shared objects.

• The application will have a variety of clients. With only a few lines of code,
remote clients can easily locate enterprise beans. These clients can be thin,
various, and numerous.

TYPES OF ENTERPRISE BEANS 857

Types of Enterprise Beans
Table 23–1 summarizes the three types of enterprise beans. The following sec-
tions discuss each type in more detail.

What Is a Session Bean?
A session bean represents a single client inside the Application Server. To access
an application that is deployed on the server, the client invokes the session bean’s
methods. The session bean performs work for its client, shielding the client from
complexity by executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A ses-
sion bean is not shared; it can have only one client, in the same way that an inter-
active session can have only one user. Like an interactive session, a session bean
is not persistent. (That is, its data is not saved to a database.) When the client ter-
minates, its session bean appears to terminate and is no longer associated with
the client.

For code samples, see Chapter 25.

State Management Modes
There are two types of session beans: stateless and stateful.

Table 23–1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; implements a web service

Entity Represents a business entity object that exists in persistent storage

Message-Driven
Acts as a listener for the Java Message Service API, processing
messages asynchronously

858 ENTERPRISE BEANS

Stateless Session Beans
A stateless session bean does not maintain a conversational state for the client.
When a client invokes the method of a stateless bean, the bean’s instance vari-
ables may contain a state, but only for the duration of the invocation. When the
method is finished, the state is no longer retained. Except during method invoca-
tion, all instances of a stateless bean are equivalent, allowing the EJB container
to assign an instance to any client.

Because stateless session beans can support multiple clients, they can offer better
scalability for applications that require large numbers of clients. Typically, an
application requires fewer stateless session beans than stateful session beans to
support the same number of clients.

At times, the EJB container may write a stateful session bean to secondary stor-
age. However, stateless session beans are never written to secondary storage.
Therefore, stateless beans may offer better performance than stateful beans.

A stateless session bean can implement a web service, but other types of enter-
prise beans cannot.

Stateful Session Beans
The state of an object consists of the values of its instance variables. In a stateful
session bean, the instance variables represent the state of a unique client-bean
session. Because the client interacts (“talks”) with its bean, this state is often
called the conversational state.

The state is retained for the duration of the client-bean session. If the client
removes the bean or terminates, the session ends and the state disappears. This
transient nature of the state is not a problem, however, because when the conver-
sation between the client and the bean ends there is no need to retain the state.

When to Use Session Beans
In general, you should use a session bean if the following circumstances hold:

• At any given time, only one client has access to the bean instance.

• The state of the bean is not persistent, existing only for a short period (per-
haps a few hours).

• The bean implements a web service.

WHAT IS AN ENTITY BEAN? 859

Stateful session beans are appropriate if any of the following conditions are true:

• The bean’s state represents the interaction between the bean and a specific
client.

• The bean needs to hold information about the client across method invoca-
tions.

• The bean mediates between the client and the other components of the
application, presenting a simplified view to the client.

• Behind the scenes, the bean manages the work flow of several enterprise
beans. For an example, see the AccountControllerBean session bean in
Chapter 36.

To improve performance, you might choose a stateless session bean if it has any
of these traits:

• The bean’s state has no data for a specific client.

• In a single method invocation, the bean performs a generic task for all cli-
ents. For example, you might use a stateless session bean to send an email
that confirms an online order.

• The bean fetches from a database a set of read-only data that is often used
by clients. Such a bean, for example, could retrieve the table rows that rep-
resent the products that are on sale this month.

What Is an Entity Bean?
An entity bean represents a business object in a persistent storage mechanism.
Some examples of business objects are customers, orders, and products. In the
Application Server, the persistent storage mechanism is a relational database.
Typically, each entity bean has an underlying table in a relational database, and
each instance of the bean corresponds to a row in that table. For code examples
of entity beans, please refer to Chapters 26 and 27.

What Makes Entity Beans Different from
Session Beans?
Entity beans differ from session beans in several ways. Entity beans are persis-
tent, allow shared access, have primary keys, and can participate in relationships
with other entity beans.

860 ENTERPRISE BEANS

Persistence
Because the state of an entity bean is saved in a storage mechanism, it is persis-
tent. Persistence means that the entity bean’s state exists beyond the lifetime of
the application or the Application Server process. If you’ve worked with data-
bases, you’re familiar with persistent data. The data in a database is persistent
because it still exists even after you shut down the database server or the applica-
tions it services.

There are two types of persistence for entity beans: bean-managed and container-
managed. With bean-managed persistence, the entity bean code that you write
contains the calls that access the database. If your bean has container-managed
persistence, the EJB container automatically generates the necessary database
access calls. The code that you write for the entity bean does not include these
calls. For additional information, see the section Container-Managed
Persistence (page 861).

Shared Access
Entity beans can be shared by multiple clients. Because the clients might want to
change the same data, it’s important that entity beans work within transactions.
Typically, the EJB container provides transaction management. In this case, you
specify the transaction attributes in the bean’s deployment descriptor. You do not
have to code the transaction boundaries in the bean; the container marks the
boundaries for you. See Chapter 30 for more information.

Primary Key
Each entity bean has a unique object identifier. A customer entity bean, for
example, might be identified by a customer number. The unique identifier, or
primary key, enables the client to locate a particular entity bean. For more infor-
mation, see the section Primary Keys for Bean-Managed Persistence (page 962).

Relationships
Like a table in a relational database, an entity bean may be related to other entity
beans. For example, in a college enrollment application, StudentBean and
CourseBean would be related because students enroll in classes.

You implement relationships differently for entity beans with bean-managed per-
sistence than those with container-managed persistence. With bean-managed

CONTAINER-MANAGED PERSISTENCE 861

persistence, the code that you write implements the relationships. But with con-
tainer-managed persistence, the EJB container takes care of the relationships for
you. For this reason, relationships in entity beans with container-managed persis-
tence are often referred to as container-managed relationships.

Container-Managed Persistence
The term container-managed persistence means that the EJB container handles
all database access required by the entity bean. The bean’s code contains no
database access (SQL) calls. As a result, the bean’s code is not tied to a specific
persistent storage mechanism (database). Because of this flexibility, even if you
redeploy the same entity bean on different J2EE servers that use different data-
bases, you won’t need to modify or recompile the bean’s code. In short, your
entity beans are more portable if you use container-managed persistence than if
they use bean-managed persistence.

To generate the data access calls, the container needs information that you pro-
vide in the entity bean’s abstract schema.

Abstract Schema
Part of an entity bean’s deployment descriptor, the abstract schema defines the
bean’s persistent fields and relationships. The term abstract distinguishes this
schema from the physical schema of the underlying data store. In a relational
database, for example, the physical schema is made up of structures such as
tables and columns.

You specify the name of an abstract schema in the deployment descriptor. This
name is referenced by queries written in the Enterprise JavaBeans Query Lan-
guage (EJB QL). For an entity bean with container-managed persistence, you
must define an EJB QL query for every finder method (except findByPrima-
ryKey). The EJB QL query determines the query that is executed by the EJB
container when the finder method is invoked. To learn more about EJB QL, see
Chapter 29.

862 ENTERPRISE BEANS

You’ll probably find it helpful to sketch the abstract schema before writing any
code. Figure 23–1 represents a simple abstract schema that describes the
relationships between three entity beans. These relationships are discussed
further in the sections that follow.

Figure 23–1 A High-Level View of an Abstract Schema

Persistent Fields
The persistent fields of an entity bean are stored in the underlying data store.
Collectively, these fields constitute the state of the bean. At runtime, the EJB
container automatically synchronizes this state with the database. During
deployment, the container typically maps the entity bean to a database table and
maps the persistent fields to the table’s columns.

A CustomerBean entity bean, for example, might have persistent fields such as
firstName, lastName, phone, and emailAddress. In container-managed persis-
tence, these fields are virtual. You declare them in the abstract schema, but you
do not code them as instance variables in the entity bean class. Instead, the per-
sistent fields are identified in the code by access methods (getters and setters).

CONTAINER-MANAGED PERSISTENCE 863

Relationship Fields
A relationship field is like a foreign key in a database table: it identifies a related
bean. Like a persistent field, a relationship field is virtual and is defined in the
enterprise bean class via access methods. But unlike a persistent field, a relation-
ship field does not represent the bean’s state. Relationship fields are discussed
further in Direction in Container-Managed Relationships (page 863).

Multiplicity in Container-Managed
Relationships
There are four types of multiplicities: one-to-one, one-to-many, many-to-one,
and many-to-many.

One-to-one: Each entity bean instance is related to a single instance of another
entity bean. For example, to model a physical warehouse in which each storage
bin contains a single widget, StorageBinBean and WidgetBean would have a
one-to-one relationship.

One-to-many: An entity bean instance can be related to multiple instances of the
other entity bean. A sales order, for example, can have multiple line items. In the
order application, OrderBean would have a one-to-many relationship with
LineItemBean.

Many-to-one: Multiple instances of an entity bean can be related to a single
instance of the other entity bean. This multiplicity is the opposite of a one-to-
many relationship. In the example just mentioned, from the perspective of
LineItemBean the relationship to OrderBean is many-to-one.

Many-to-many: The entity bean instances can be related to multiple instances of
each other. For example, in college each course has many students, and every
student may take several courses. Therefore, in an enrollment application,
CourseBean and StudentBean would have a many-to-many relationship.

Direction in Container-Managed
Relationships
The direction of a relationship can be either bidirectional or unidirectional. In a
bidirectional relationship, each entity bean has a relationship field that refers to
the other bean. Through the relationship field, an entity bean’s code can access
its related object. If an entity bean has a relative field, then we often say that it
“knows” about its related object. For example, if OrderBean knows what

864 ENTERPRISE BEANS

LineItemBean instances it has and if LineItemBean knows what OrderBean it
belongs to, then they have a bidirectional relationship.

In a unidirectional relationship, only one entity bean has a relationship field that
refers to the other. For example, LineItemBean would have a relationship field
that identifies ProductBean, but ProductBean would not have a relationship
field for LineItemBean. In other words, LineItemBean knows about Product-
Bean, but ProductBean doesn’t know which LineItemBean instances refer to it.

EJB QL queries often navigate across relationships. The direction of a relation-
ship determines whether a query can navigate from one bean to another. For
example, a query can navigate from LineItemBean to ProductBean but cannot
navigate in the opposite direction. For OrderBean and LineItemBean, a query
could navigate in both directions, because these two beans have a bidirectional
relationship.

When to Use Entity Beans
You should probably use an entity bean under the following conditions:

• The bean represents a business entity and not a procedure. For example,
CreditCardBean would be an entity bean, but CreditCardVerifierBean
would be a session bean.

• The bean’s state must be persistent. If the bean instance terminates or if the
Application Server is shut down, the bean’s state still exists in persistent
storage (a database).

What Is a Message-Driven Bean?
A message-driven bean is an enterprise bean that allows J2EE applications to
process messages asynchronously. It normally acts as a JMS message listener,
which is similar to an event listener except that it receives JMS messages instead
of events. The messages can be sent by any J2EE component—an application
client, another enterprise bean, or a web component—or by a JMS application or
system that does not use J2EE technology. Message-driven beans can process
either JMS messages or other kinds of messages.

For a simple code sample, see Chapter 28. For more information about using
message-driven beans, see Using the JMS API in a J2EE
Application (page 1250) and Chapter 34.

WHAT MAKES MESSAGE-DRIVEN BEANS DIFFERENT FROM SESSION AND ENTITY BEANS? 865

What Makes Message-Driven Beans
Different from Session and Entity Beans?
The most visible difference between message-driven beans and session and
entity beans is that clients do not access message-driven beans through inter-
faces. Interfaces are described in the section Defining Client Access with
Interfaces (page 866). Unlike a session or entity bean, a message-driven bean has
only a bean class.

In several respects, a message-driven bean resembles a stateless session bean.

• A message-driven bean’s instances retain no data or conversational state
for a specific client.

• All instances of a message-driven bean are equivalent, allowing the EJB
container to assign a message to any message-driven bean instance. The
container can pool these instances to allow streams of messages to be pro-
cessed concurrently.

• A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some
state across the handling of client messages—for example, a JMS API connec-
tion, an open database connection, or an object reference to an enterprise bean
object.

Client components do not locate message-driven beans and invoke methods
directly on them. Instead, a client accesses a message-driven bean through JMS
by sending messages to the message destination for which the message-driven
bean class is the MessageListener. You assign a message-driven bean’s destina-
tion during deployment by using Application Server resources.

Message-driven beans have the following characteristics:

• They execute upon receipt of a single client message.

• They are invoked asynchronously.

• They are relatively short-lived.

• They do not represent directly shared data in the database, but they can
access and update this data.

• They can be transaction-aware.

• They are stateless.

When a message arrives, the container calls the message-driven bean’s onMes-
sage method to process the message. The onMessage method normally casts the

866 ENTERPRISE BEANS

message to one of the five JMS message types and handles it in accordance with
the application’s business logic. The onMessage method can call helper methods,
or it can invoke a session or entity bean to process the information in the mes-
sage or to store it in a database.

A message can be delivered to a message-driven bean within a transaction con-
text, so all operations within the onMessage method are part of a single transac-
tion. If message processing is rolled back, the message will be redelivered. For
more information, see Chapter 28.

When to Use Message-Driven Beans
Session beans and entity beans allow you to send JMS messages and to receive
them synchronously, but not asynchronously. To avoid tying up server resources,
you may prefer not to use blocking synchronous receives in a server-side compo-
nent. To receive messages asynchronously, use a message-driven bean.

Defining Client Access with Interfaces
The material in this section applies only to session and entity beans and not to
message-driven beans. Because they have a different programming model, mes-
sage-driven beans do not have interfaces that define client access.

A client can access a session or an entity bean only through the methods defined
in the bean’s interfaces. These interfaces define the client’s view of a bean. All
other aspects of the bean—method implementations, deployment descriptor set-
tings, abstract schemas, and database access calls—are hidden from the client.

Well-designed interfaces simplify the development and maintenance of J2EE
applications. Not only do clean interfaces shield the clients from any complexi-
ties in the EJB tier, but they also allow the beans to change internally without
affecting the clients. For example, even if you change your entity beans from
bean-managed to container-managed persistence, you won’t have to alter the cli-
ent code. But if you were to change the method definitions in the interfaces, then
you might have to modify the client code as well. Therefore, to isolate your cli-
ents from possible changes in the beans, it is important that you design the inter-
faces carefully.

When you design a J2EE application, one of the first decisions you make is the
type of client access allowed by the enterprise beans: remote, local, or web ser-
vice.

REMOTE CLIENTS 867

Remote Clients
A remote client of an enterprise bean has the following traits:

• It can run on a different machine and a different Java virtual machine
(JVM) than the enterprise bean it accesses. (It is not required to run on a
different JVM.)

• It can be a web component, an application client, or another enterprise
bean.

• To a remote client, the location of the enterprise bean is transparent.

To create an enterprise bean that has remote access, you must code a remote
interface and a home interface. The remote interface defines the business meth-
ods that are specific to the bean. For example, the remote interface of a bean
named BankAccountBean might have business methods named deposit and
credit. The home interface defines the bean’s life-cycle methods: create and
remove. For entity beans, the home interface also defines finder methods and
home methods. Finder methods are used to locate entity beans. Home methods
are business methods that are invoked on all instances of an entity bean class.
Figure 23–2 shows how the interfaces control the client’s view of an enterprise
bean.

Figure 23–2 Interfaces for an Enterprise Bean with Remote Access

868 ENTERPRISE BEANS

Local Clients
A local client has these characteristics:

• It must run in the same JVM as the enterprise bean it accesses.

• It can be a web component or another enterprise bean.

• To the local client, the location of the enterprise bean it accesses is not
transparent.

• It is often an entity bean that has a container-managed relationship with
another entity bean.

To build an enterprise bean that allows local access, you must code the local
interface and the local home interface. The local interface defines the bean’s
business methods, and the local home interface defines its life-cycle and finder
methods.

Local Interfaces and Container-
Managed Relationships
If an entity bean is the target of a container-managed relationship, then it must
have local interfaces. The direction of the relationship determines whether or not
a bean is the target. In Figure 23–1, for example, ProductBean is the target of a
unidirectional relationship with LineItemBean. Because LineItemBean accesses
ProductBean locally, ProductBean must have the local interfaces. LineItem-
Bean also needs local interfaces, not because of its relationship with Product-
Bean, but because it is the target of a relationship with OrderBean. And because
the relationship between LineItemBean and OrderBean is bidirectional, both
beans must have local interfaces.

Because they require local access, entity beans that participate in a container-
managed relationship must reside in the same EJB JAR file. The primary benefit
of this locality is increased performance: local calls are usually faster than
remote calls.

DECIDING ON REMOTE OR LOCAL ACCESS 869

Deciding on Remote or Local Access
Whether to allow local or remote access depends on the following factors.

• Container-managed relationships: If an entity bean is the target of a con-
tainer-managed relationship, it must use local access.

• Tight or loose coupling of related beans: Tightly coupled beans depend on
one another. For example, a completed sales order must have one or more
line items, which cannot exist without the order to which they belong. The
OrderBean and LineItemBean entity beans that model this relationship are
tightly coupled. Tightly coupled beans are good candidates for local
access. Because they fit together as a logical unit, they probably call each
other often and would benefit from the increased performance that is pos-
sible with local access.

• Type of client: If an enterprise bean is accessed by application clients, then
it should allow remote access. In a production environment, these clients
almost always run on different machines than the Application Server does.
If an enterprise bean’s clients are web components or other enterprise
beans, then the type of access depends on how you want to distribute your
components.

• Component distribution: J2EE applications are scalable because their
server-side components can be distributed across multiple machines. In a
distributed application, for example, the web components may run on a
different server than do the enterprise beans they access. In this distributed
scenario, the enterprise beans should allow remote access.

• Performance: Because of factors such as network latency, remote calls
may be slower than local calls. On the other hand, if you distribute compo-
nents among different servers, you might improve the application’s overall
performance. Both of these statements are generalizations; actual perfor-
mance can vary in different operational environments. Nevertheless, you
should keep in mind how your application design might affect perfor-
mance.

If you aren’t sure which type of access an enterprise bean should have, then
choose remote access. This decision gives you more flexibility. In the future you
can distribute your components to accommodate growing demands on your
application.

Although it is uncommon, it is possible for an enterprise bean to allow both
remote and local access. Such a bean would require both remote and local inter-
faces.

870 ENTERPRISE BEANS

Web Service Clients
A web service client can access a J2EE application in two ways. First, the client
can access a web service created with JAX-RPC. (For more information on JAX-
RPC, see Chapter 8, Building Web Services with JAX-RPC, page 319.) Second,
a web service client can invoke the business methods of a stateless session bean.
Other types of enterprise beans cannot be accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web ser-
vice client can access a stateless session bean, whether or not the client is written
in the Java programming language. The client doesn’t even “know” what tech-
nology implements the service—stateless session bean, JAX-RPC, or some other
technology. In addition, enterprise beans and web components can be clients of
web services. This flexibility enables you to integrate J2EE applications with
web services.

A web service client accesses a stateless session bean through the bean’s web
service endpoint interface. Like a remote interface, a web service endpoint inter-
face defines the business methods of the bean. In contrast to a remote interface, a
web service endpoint interface is not accompanied by a home interface, which
defines the bean’s life-cycle methods. The only methods of the bean that may be
invoked by a web service client are the business methods that are defined in the
web service endpoint interface.

For a code sample, see A Web Service Example: HelloServiceBean (page 911).

Method Parameters and Access
The type of access affects the parameters of the bean methods that are called by
clients. The following topics apply not only to method parameters but also to
method return values.

Isolation
The parameters of remote calls are more isolated than those of local calls. With
remote calls, the client and bean operate on different copies of a parameter
object. If the client changes the value of the object, the value of the copy in the
bean does not change. This layer of isolation can help protect the bean if the cli-
ent accidentally modifies the data.

THE CONTENTS OF AN ENTERPRISE BEAN 871

In a local call, both the client and the bean can modify the same parameter
object. In general, you should not rely on this side effect of local calls. Perhaps
someday you will want to distribute your components, replacing the local calls
with remote ones.

As with remote clients, web service clients operate on different copies of param-
eters than does the bean that implements the web service.

Granularity of Accessed Data
Because remote calls are likely to be slower than local calls, the parameters in
remote methods should be relatively coarse-grained. A coarse-grained object
contains more data than a fine-grained one, so fewer access calls are required.
For the same reason, the parameters of the methods called by web service clients
should also be coarse-grained.

For example, suppose that a CustomerBean entity bean is accessed remotely.
This bean would have a single getter method that returns a CustomerDetails
object, which encapsulates all of the customer’s information. But if Customer-
Bean is to be accessed locally, it could have a getter method for each instance
variable: getFirstName, getLastName, getPhoneNumber, and so forth. Because
local calls are fast, the multiple calls to these finer-grained getter methods would
not significantly degrade performance.

The Contents of an Enterprise Bean
To develop an enterprise bean, you must provide the following files:

• Deployment descriptor: An XML file that specifies information about the
bean such as its persistence type and transaction attributes. The deploy-
tool utility creates the deployment descriptor when you step through the
New Enterprise Bean wizard.

• Enterprise bean class: Implements the methods defined in the following
interfaces.

• Interfaces: The remote and home interfaces are required for remote access.
For local access, the local and local home interfaces are required. For
access by web service clients, the web service endpoint interface is
required. See the section Defining Client Access with
Interfaces (page 866). (Please note that these interfaces are not used by
message-driven beans.)

872 ENTERPRISE BEANS

• Helper classes: Other classes needed by the enterprise bean class, such as
exception and utility classes.

You package the files in the preceding list into an EJB JAR file, the module that
stores the enterprise bean. An EJB JAR file is portable and can be used for differ-
ent applications. To assemble a J2EE application, you package one or more mod-
ules—such as EJB JAR files—into an EAR file, the archive file that holds the
application. When you deploy the EAR file that contains the bean’s EJB JAR
file, you also deploy the enterprise bean onto the Application Server. You can
also deploy an EJB JAR that is not contained in an EAR file.

Figure 23–3 Structure of an Enterprise Bean JAR

Naming Conventions for Enterprise
Beans

Because enterprise beans are composed of multiple parts, it’s useful to follow a
naming convention for your applications. Table 23–2 summarizes the conven-
tions for the example beans in this tutorial.

THE LIFE CYCLES OF ENTERPRISE BEANS 873

The Life Cycles of Enterprise Beans
An enterprise bean goes through various stages during its lifetime, or life cycle.
Each type of enterprise bean—session, entity, or message-driven—has a differ-
ent life cycle.

The descriptions that follow refer to methods that are explained along with the
code examples in the next two chapters. If you are new to enterprise beans, you
should skip this section and try out the code examples first.

The Life Cycle of a Stateful Session Bean
Figure 23–4 illustrates the stages that a session bean passes through during its
lifetime. The client initiates the life cycle by invoking the create method. The
EJB container instantiates the bean and then invokes the setSessionContext
and ejbCreate methods in the session bean. The bean is now ready to have its
business methods invoked.

Table 23–2 Naming Conventions for Enterprise Beans

Item Syntax Example

Enterprise bean name (DDa)

a.DD means that the item is an element in the bean’s deployment descriptor.

<name>Bean AccountBean

EJB JAR display name (DD) <name>JAR AccountJAR

Enterprise bean class <name>Bean AccountBean

Home interface <name>Home AccountHome

Remote interface <name> Account

Local home interface <name>LocalHome AccountLocalHome

Local interface <name>Local AccountLocal

Abstract schema (DD) <name> Account

874 ENTERPRISE BEANS

Figure 23–4 Life Cycle of a Stateful Session Bean

While in the ready stage, the EJB container may decide to deactivate, or passi-
vate, the bean by moving it from memory to secondary storage. (Typically, the
EJB container uses a least-recently-used algorithm to select a bean for passiva-
tion.) The EJB container invokes the bean’s ejbPassivate method immediately
before passivating it. If a client invokes a business method on the bean while it is
in the passive stage, the EJB container activates the bean, calls the bean’s ejbAc-
tivate method, and then moves it to the ready stage.

At the end of the life cycle, the client invokes the remove method, and the EJB
container calls the bean’s ejbRemove method. The bean’s instance is ready for
garbage collection.

Your code controls the invocation of only two life-cycle methods: the create
and remove methods in the client. All other methods in Figure 23–4 are invoked
by the EJB container. The ejbCreate method, for example, is inside the bean
class, allowing you to perform certain operations right after the bean is instanti-
ated. For example, you might wish to connect to a database in the ejbCreate
method. See Chapter 31 for more information.

THE LIFE CYCLE OF A STATELESS SESSION BEAN 875

The Life Cycle of a Stateless Session
Bean
Because a stateless session bean is never passivated, its life cycle has only two
stages: nonexistent and ready for the invocation of business methods. Figure 23–
5 illustrates the stages of a stateless session bean.

Figure 23–5 Life Cycle of a Stateless Session Bean

The Life Cycle of an Entity Bean
Figure 23–6 shows the stages that an entity bean passes through during its life-
time. After the EJB container creates the instance, it calls the setEntityCon-
text method of the entity bean class. The setEntityContext method passes the
entity context to the bean.

After instantiation, the entity bean moves to a pool of available instances. While
in the pooled stage, the instance is not associated with any particular EJB object
identity. All instances in the pool are identical. The EJB container assigns an
identity to an instance when moving it to the ready stage.

There are two paths from the pooled stage to the ready stage. On the first path,
the client invokes the create method, causing the EJB container to call the ejb-
Create and ejbPostCreate methods. On the second path, the EJB container

876 ENTERPRISE BEANS

invokes the ejbActivate method. While an entity bean is in the ready stage, an
it’s business methods can be invoked.

There are also two paths from the ready stage to the pooled stage. First, a client
can invoke the remove method, which causes the EJB container to call the
ejbRemove method. Second, the EJB container can invoke the ejbPassivate
method.

Figure 23–6 Life Cycle of an Entity Bean

At the end of the life cycle, the EJB container removes the instance from the pool
and invokes the unsetEntityContext method.

In the pooled state, an instance is not associated with any particular EJB object
identity. With bean-managed persistence, when the EJB container moves an
instance from the pooled state to the ready state, it does not automatically set the
primary key. Therefore, the ejbCreate and ejbActivate methods must assign a

THE LIFE CYCLE OF A MESSAGE-DRIVEN BEAN 877

value to the primary key. If the primary key is incorrect, the ejbLoad and ejb-
Store methods cannot synchronize the instance variables with the database. In
the section The SavingsAccountBean Example (page 931), the ejbCreate
method assigns the primary key from one of the input parameters. The ejbActi-
vate method sets the primary key (id) as follows:

id = (String)context.getPrimaryKey();

In the pooled state, the values of the instance variables are not needed. You can
make these instance variables eligible for garbage collection by setting them to
null in the ejbPassivate method.

The Life Cycle of a Message-Driven
Bean
Figure 23–7 illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For
each instance, the EJB container instantiates the bean and performs these tasks:

1. It calls the setMessageDrivenContext method to pass the context object
to the instance.

2. It calls the instance’s ejbCreate method.

Figure 23–7 Life Cycle of a Message-Driven Bean

878 ENTERPRISE BEANS

Like a stateless session bean, a message-driven bean is never passivated, and it
has only two states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the ejbRemove method. The
bean’s instance is then ready for garbage collection.

Further Information
For further information on Enterprise JavaBeans technology, see the following:

• Enterprise JavaBeans 2.1 specification:
http://java.sun.com/products/ejb/docs.html

• The Enterprise JavaBeans web site:
http://java.sun.com/products/ejb

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb

879

24
Getting Started with

Enterprise Beans

THIS chapter shows how to develop, deploy, and run a simple J2EE applica-
tion named ConverterApp. The purpose of ConverterApp is to calculate cur-
rency conversions between yen and eurodollars. ConverterApp consists of an
enterprise bean, which performs the calculations, and two types of clients: an
application client and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

1. Create the J2EE application: ConverterApp.

2. Create the enterprise bean: ConverterBean.

3. Create the application client: ConverterClient.

4. Create the web client in ConverterWAR.

5. Deploy ConverterApp onto the server.

6. From a terminal window, run ConverterClient.

7. Using a browser, run the web client.

880 GETTING STARTED WITH ENTERPRISE BEANS

Before proceeding, make sure that you’ve done the following:

• Read Chapter 1.

• Become familiar with enterprise beans (see Chapter 23).

• Started the server (see Starting and Stopping the Application
Server, page 27).

• Launched deploytool (see Starting the deploytool Utility, page 29)

Creating the J2EE Application
In this section, you’ll create a J2EE application named ConverterApp, storing it
in the file ConverterApp.ear.

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/

4. In the File Name field, enter ConverterApp.ear.

5. Click New Application.

6. Click OK.

7. Verify that the ConverterApp.ear file resides in the directory specified in
step 3.

At this point, the application contains no J2EE components and cannot be
deployed. In the sections that follow, when you run the deploytool wizards to
create the components, deploytool will add the components to the Converter-
App.ear file.

Creating the Enterprise Bean
The enterprise bean in our example is a stateless session bean called Converter-
Bean. The source code for ConverterBean is in the
<INSTALL>/j2eetutorial14/examples/ejb/converter/src/ directory.

Creating ConverterBean requires these steps:

1. Coding the bean’s interfaces and class (the source code is provided)

2. Compiling the source code with asant

CODING THE ENTERPRISE BEAN 881

3. With deploytool, packaging the bean into an EJB JAR file and inserting
the EJB JAR file into the application’s ConverterApp.ear file

Coding the Enterprise Bean
The enterprise bean in this example needs the following code:

• Remote interface

• Home interface

• Enterprise bean class

Coding the Remote Interface
A remote interface defines the business methods that a client can call. The busi-
ness methods are implemented in the enterprise bean code. The source code for
the Converter remote interface follows.

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.math.*;

public interface Converter extends EJBObject {
 public BigDecimal dollarToYen(BigDecimal dollars)
 throws RemoteException;
 public BigDecimal yenToEuro(BigDecimal yen)
 throws RemoteException;
}

Coding the Home Interface
A home interface defines the methods that allow a client to create, find, or
remove an enterprise bean. The ConverterHome interface contains a single cre-
ate method, which returns an object of the remote interface type. Here is the
source code for the ConverterHome interface:

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface ConverterHome extends EJBHome {
Converter create() throws RemoteException, CreateException;

}

882 GETTING STARTED WITH ENTERPRISE BEANS

Coding the Enterprise Bean Class
The enterprise bean class for this example is called ConverterBean. This class
implements the two business methods (dollarToYen and yenToEuro) that the
Converter remote interface defines. The source code for the ConverterBean
class follows.

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import java.math.*;

public class ConverterBean implements SessionBean {

BigDecimal yenRate = new BigDecimal("121.6000");
BigDecimal euroRate = new BigDecimal("0.0077");

public BigDecimal dollarToYen(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2,BigDecimal.ROUND_UP);

}

 public BigDecimal yenToEuro(BigDecimal yen) {
 BigDecimal result = yen.multiply(euroRate);
 return result.setScale(2,BigDecimal.ROUND_UP);
 }

 public ConverterBean() {}
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}
}

Compiling the Source Files
Now you are ready to compile the remote interface (Converter.java), the home
interface (ConverterHome.java), and the enterprise bean class (Converter-
Bean.java).

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/

2. Type the following command:

PACKAGING THE ENTERPRISE BEAN 883

asant build

This command compiles the source files for the enterprise bean and the applica-
tion client, placing the class files in the converter/build subdirectory (not the
src directory). The web client in this example requires no compilation. For more
information about asant, see Building the Examples (page xxxvii).

Note: When compiling the code, the preceding asant task includes the j2ee.jar
file in the classpath. This file resides in the lib directory of your Sun Java System
Application Server Platform Edition 8 installation. If you plan to use other tools to
compile the source code for J2EE components, make sure that the classpath
includes the j2ee.jar file.

Packaging the Enterprise Bean
To package an enterprise bean, you run the Edit Enterprise Bean wizard of the
deploytool utility. During this process, the wizard performs the following tasks:

• Creates the bean’s deployment descriptor

• Packages the deployment descriptor and the bean’s classes in an EJB JAR
file

• Inserts the EJB JAR file into the ConverterApp.ear file

To start the Edit Enterprise Bean wizard, select File→New→Enterprise Bean. The
wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. EJB JAR dialog box

a. Select the button labeled Create New JAR Module in Application.

b. In the combo box below this button, select ConverterApp.

c. In the JAR Display Name field, enter ConverterJAR.

d. Click Edit Contents.

e. In the tree under Available Files, locate the build/converter subdirec-
tory. (If the target directory is many levels down in the tree, you can sim-
plify the tree view by entering all or part of the directory’s path name in
the Starting Directory field.)

884 GETTING STARTED WITH ENTERPRISE BEANS

f. In the Available Files tree select these classes: Converter.class, Con-
verterBean.class, and ConverterHome.class. (You can also drag
and drop these class files to the Contents text area.)

g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. Under Bean Type, select the Stateless Session.

b. In the Enterprise Bean Class combo box, select converter.Convert-
erBean.

c. In the Enterprise Bean Name field, enter ConverterBean.

d. In the Remote Home Interface combo box, select converter.Convert-
erHome.

e. In the Remote Interface combo box, select converter.Converter.

f. Click Next.

4. In the Expose as Web Service Endpoint dialog box, select No and click
Next.

5. Click Finish.

Creating the Application Client
An application client is a program written in the Java programming language. At
runtime, the client program executes in a different virtual machine than the
Application Server. For detailed information on the appclient command-line
tool, see the man page at http://java.sun.com/j2ee/1.4/docs/rel-

notes/cliref/index.html.

The application client in this example requires two JAR files. The first JAR file is
for the J2EE component of the client. This JAR file contains the client’s deploy-
ment descriptor and class files; it is created when you run the New Application
Client wizard. Defined by the J2EE Specification, this JAR file is portable across
all compliant application servers.

The second JAR file contains stub classes that are required by the client program
at runtime. These stub classes enable the client to access the enterprise beans that
are running in the Sun Java System Application Server. The JAR file for the
stubs is created by deploytool when you deploy the application. Because this

http://java.sun.com/j2ee/1.4/docs/relnotes/cliref/index.html
http://java.sun.com/j2ee/1.4/docs/relnotes/cliref/index.html

CODING THE APPLICATION CLIENT 885

JAR file is not covered by the J2EE specification, it is implementation-specific,
intended only for the Application Server.

The application client source code is in the ConverterClient.java file, which
is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/src/

You compiled this code along with the enterprise bean code in the section Com-
piling the Source Files (page 882).

Coding the Application Client
The ConverterClient.java source code illustrates the basic tasks performed
by the client of an enterprise bean:

• Locating the home interface

• Creating an enterprise bean instance

• Invoking a business method

Locating the Home Interface
The ConverterHome interface defines life-cycle methods such as create and
remove. Before the ConverterClient can invoke the create method, it must
locate and instantiate an object whose type is ConverterHome. This is a four-step
process.

1. Create an initial naming context.

Context initial = new InitialContext();

The Context interface is part of the Java Naming and Directory Interface
(JNDI). A naming context is a set of name-to-object bindings. A name
that is bound within a context is the JNDI name of the object.

An InitialContext object, which implements the Context interface,
provides the starting point for the resolution of names. All naming opera-
tions are relative to a context.

2. Obtain the environment naming context of the application client.

Context myEnv = (Context)initial.lookup("java:comp/env");

The java:comp/env name is bound to the environment naming context of
the ConverterClient component.

886 GETTING STARTED WITH ENTERPRISE BEANS

3. Retrieve the object bound to the name ejb/SimpleConverter.

Object objref = myEnv.lookup("ejb/SimpleConverter");

The ejb/SimpleConverter name is bound to an enterprise bean refer-
ence, a logical name for the home of an enterprise bean. In this case, the
ejb/SimpleConverter name refers to the ConverterHome object. The
names of enterprise beans should reside in the java:comp/env/ejb sub-
context.

4. Narrow the reference to a ConverterHome object.

ConverterHome home =

(ConverterHome) PortableRemoteObject.narrow(objref,

ConverterHome.class);

Creating an Enterprise Bean Instance
To create the bean instance, the client invokes the create method on the Con-
verterHome object. The create method returns an object whose type is Con-
verter. The remote Converter interface defines the business methods of the
bean that the client can call. When the client invokes the create method, the
EJB container instantiates the bean and then invokes the ConverterBean.ejb-
Create method. The client invokes the create method as follows:

Converter currencyConverter = home.create();

Invoking a Business Method
Calling a business method is easy: you simply invoke the method on the Con-
verter object. The EJB container will invoke the corresponding method on the
ConverterBean instance that is running on the server. The client invokes the
dollarToYen business method in the following lines of code.

BigDecimal param = new BigDecimal ("100.00");
BigDecimal amount = currencyConverter.dollarToYen(param);

COMPILING THE APPLICATION CLIENT 887

ConverterClient Source Code
The full source code for the ConverterClient program follows.

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import java.math.BigDecimal;

public class ConverterClient {

public static void main(String[] args) {

try {
Context initial = new InitialContext();
Context myEnv =

(Context)initial.lookup("java:comp/env");
Object objref = myEnv.lookup("ejb/SimpleConverter");

ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(objref,

ConverterHome.class);

Converter currencyConverter = home.create();

BigDecimal param = new BigDecimal ("100.00");
BigDecimal amount =

currencyConverter.dollarToYen(param);
System.out.println(amount);
amount = currencyConverter.yenToEuro(param);
System.out.println(amount);

System.exit(0);

} catch (Exception ex) {
System.err.println("Caught an unexpected exception!");
ex.printStackTrace();

}
}

}

Compiling the Application Client
The application client files are compiled at the same time as the enterprise bean
files, as described in Compiling the Source Files (page 882).

888 GETTING STARTED WITH ENTERPRISE BEANS

Packaging the Application Client
To package an application client component, you run the New Application Client
wizard of deploytool. During this process the wizard performs the following
tasks.

• Creates the application client’s deployment descriptor

• Puts the deployment descriptor and client files into a JAR file

• Adds the JAR file to the application’s ConverterApp.ear file

To start the New Application Client wizard, select File→New→Application Cli-
ent. The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. JAR File Contents dialog box

a. Select the button labeled Create New AppClient Module in Application.

b. In the combo box below this button, select ConverterApp.

c. In the AppClient Display Name field, enter ConverterClient.

d. Click Edit Contents.

e. In the tree under Available Files, locate this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/build/

f. Select the ConverterClient.class file.

g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. In the Main Class combo box, select ConverterClient.

b. Click Next.

c. Click Finish.

SPECIFYING THE APPLICATION CLIENT’S ENTERPRISE BEAN REFERENCE 889

Specifying the Application Client’s
Enterprise Bean Reference
When it invokes the lookup method, the ConverterClient refers to the home of
an enterprise bean:

Object objref = myEnv.lookup("ejb/SimpleConverter");

You specify this reference in deploytool as follows.

1. In the tree, select ConverterClient.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleConverter.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field enter, converter.ConverterHome.

8. In the Local/Remote Interface field, enter converter.Converter.

9. In the JNDI Name field, select ConverterBean.

10.Click OK.

Creating the Web Client
The web client is contained in the JSP page
<INSTALL>/j2eetutorial14/examples/ejb/converter/web/index.jsp. A
JSP page is a text-based document that contains JSP elements, which construct
dynamic content, and static template data, which can be expressed in any text-
based format such as HTML, WML, and XML.

Coding the Web Client
The statements (in bold in the following code) for locating the home interface,
creating an enterprise bean instance, and invoking a business method are nearly
identical to those of the application client. The parameter of the lookup method
is the only difference; the motivation for using a different name is discussed in
Mapping the Enterprise Bean References (page 893).

890 GETTING STARTED WITH ENTERPRISE BEANS

The classes needed by the client are declared using a JSP page directive
(enclosed within the <%@ %> characters). Because locating the home interface
and creating the enterprise bean are performed only once, this code appears in a
JSP declaration (enclosed within the <%! %> characters) that contains the initial-
ization method, jspInit, of the JSP page. The declaration is followed by stan-
dard HTML markup for creating a form that contains an input field. A scriptlet
(enclosed within the <% %> characters) retrieves a parameter from the request
and converts it to a BigDecimal object. Finally, JSP expressions (enclosed within
<%= %> characters) invoke the enterprise bean’s business methods and insert the
result into the stream of data returned to the client.

<%@ page import="Converter,ConverterHome,javax.ejb.*,
javax.naming.*, javax.rmi.PortableRemoteObject,
java.rmi.RemoteException" %>
<%!

private Converter converter = null;
public void jspInit() {

try {
InitialContext ic = new InitialContext();
Object objRef = ic.lookup("

java:comp/env/ejb/TheConverter");
ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(
objRef, ConverterHome.class);
converter = home.create();

} catch (RemoteException ex) {
...

}
}
...

%>
<html>
<head>

 <title>Converter</title>
</head>

<body bgcolor="white">
<h1><center>Converter</center></h1>
<hr>
<p>Enter an amount to convert:</p>
<form method="get">
<input type="text" name="amount" size="25">

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

COMPILING THE WEB CLIENT 891

</form>
<%

String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

BigDecimal d = new BigDecimal (amount);
%>

<p><%= amount %> dollars are
<%= converter.dollarToYen(d) %> Yen.

<p><%= amount %> Yen are
<%= converter.yenToEuro(d) %> Euro.

<%
 }

%>
</body>
</html>

Compiling the Web Client
The Application Server automatically compiles web clients that are JSP pages. If
the web client were a servlet, you would have to compile it.

Packaging the Web Client
To package a web client, you run the New Web Component wizard of the
deploytool utility. During this process the wizard performs the following tasks.

• Creates the web application deployment descriptor

• Adds the component files to a WAR file

• Adds the WAR file to the application’s ConverterApp.ear file

To start the New Web Component wizard, select File→New→Web Component.
The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. WAR File dialog box

a. Select the button labeled Create New WAR Module in Application.

b. In the combo box below this button, select ConverterApp.

c. In the WAR Name field, enter ConverterWAR.

d. Click Edit Contents.

892 GETTING STARTED WITH ENTERPRISE BEANS

e. In the tree under Available Files, locate this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/web/

f. Select index.jsp.

g. Click Add.

h. Click OK.

i. Click Next.

3. Choose Component Type dialog box

a. Select the JSP Page button.

b. Click Next.

4. Component General Properties dialog box

a. In the JSP Filename combo box, select index.jsp.

b. Click Finish.

Specifying the Web Client’s Enterprise
Bean Reference
When it invokes the lookup method, the web client refers to the home of an
enterprise bean:

Object objRef = ic.lookup("java:comp/env/ejb/TheConverter");

You specify this reference as follows:

1. In the tree, select ConverterWAR.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/TheConverter.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter converter.ConverterHome.

8. In the Local/Remote Interface field, enter converter.Converter.

9. In the JNDI Name field, select ConverterBean.

10.Click OK.

MAPPING THE ENTERPRISE BEAN REFERENCES 893

Mapping the Enterprise Bean
References

Although the application client and the web client access the same enterprise
bean, their code refers to the bean’s home by different names. The application
client refers to the bean’s home as ejb/SimpleConverter, but the web client
refers to it as ejb/TheConverter. These references are in the parameters of the
lookup calls. For the lookup method to retrieve the home object, you must map
the references in the code to the enterprise bean’s JNDI name. Although this
mapping adds a level of indirection, it decouples the clients from the beans, mak-
ing it easier to assemble applications from J2EE components.

To map the enterprise bean references in the clients to the JNDI name of the
bean, follow these steps.

1. In the tree, select ConverterApp.

2. Click the Sun-specific Settings button.

3. Select the JNDI Names in the View field.

4. In the Application table, note that the JNDI name for the enterprise bean is
ConverterBean.

5. In the References table, enter ConverterBean in the JNDI Name column
for each row.

Figure 24–1 shows what the JNDI Names tab should look like after you’ve per-
formed the preceding steps.

894 GETTING STARTED WITH ENTERPRISE BEANS

Figure 24–1 ConverterApp JNDI Names

Specifying the Web Client’s Context
Root

The context root identifies the web application. To set the context root, follow
these steps:

1. In the tree, select ConverterApp.

2. Select the Web Context tab.

3. In the Context Root field, enter /converter.

DEPLOYING THE J2EE APPLICATION 895

For more information, see Setting the Context Root (page 92).

Deploying the J2EE Application
Now that the J2EE application contains the components, it is ready for deploy-
ment.

1. Select the ConverterApp application.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Tell deploytool to create a JAR file that contains the client stubs. (For
more information on client JAR files, see the description under Creating
the Application Client, page 884.)

a. Select the Return Client JAR checkbox.

b. In the field below the checkbox, enter
<INSTALL>/j2eetutorial14/examples/ejb/converter.

5. Click OK.

6. In the Distribute Module dialog box, click Close when the deployment
completes.

7. Verify the deployment.

a. In the tree, expand the Servers node and select the host that is running
the Application Server.

b. In the Deployed Objects table, make sure that the ConverterApp is
listed and its status is Running.

8. Verify that a stub client JAR named ConverterAppClient.jar resides in
<INSTALL>/j2eetutorial14/examples/ejb/converter.

Running the Application Client
To run the application client, perform the following steps.

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/

2. Type the following command:

appclient -client ConverterAppClient.jar

896 GETTING STARTED WITH ENTERPRISE BEANS

3. In the terminal window, the client displays these lines:

...

12160.00

0.77

...

Running the Web Client
To run the web client, point your browser at the following URL. Replace <host>
with the name of the host running the Application Server. If your browser is run-
ning on the same host as the Application Server, you can replace <host> with
localhost.

http://<host>:8080/converter

After entering 100 in the input field and clicking Submit, you should see the
screen shown in Figure 24–2.

Figure 24–2 ConverterApp Web Client

MODIFYING THE J2EE APPLICATION 897

Modifying the J2EE Application
The Application Server and deploytool support iterative development. When-
ever you make a change to a J2EE application, you must redeploy the applica-
tion.

Modifying a Class File
To modify a class file in an enterprise bean, you change the source code, recom-
pile it, and redeploy the application. For example, if you want to change the
exchange rate in the dollarToYen business method of the ConverterBean class,
you would follow these steps.

1. Edit ConverterBean.java.

2. Recompile ConverterBean.java.

a. In a terminal window, go to the
<INSTALL>/j2eetutorial14/examples/ejb/converter/ subdirec-
tory.

b. Type asant build.

3. In deploytool, select Tools→Update Module Files.

4. The Update Files dialog box appears. If the modified files are listed at the
top of the dialog, click OK and go to step 6. If the files are listed at the bot-
tom, they have not been found. Select one of those files and click Edit
Search Paths.

5. In the Edit Search Paths dialog box, specify the directories where the
Update Files dialog will search for modified files.

a. In the Search Root field, enter the fully qualified name of the directory
from which the search will start.

b. In the Path Directory list, add a row for each directory that you want
searched. Unless fully qualified, these directory names are relative to
the Search Root field.

c. Click OK.

6. Select Tools→Deploy. Make sure that the checkbox labeled Save Object
Before Deploying is checked. If you do not want to deploy at this time,
select Tools→Save to save the search paths specified in step 5.

To modify the contents of a WAR file, you follow the preceding steps. The
Update Files operation checks to see whether any files have changed, including

898 GETTING STARTED WITH ENTERPRISE BEANS

HTML files and JSP pages. If you change the index.jsp file of ConverterApp,
be sure to type asant. This task copies the index.jsp file from the web directory
to the build directory.

Adding a File
To add a file to the EJB JAR or WAR of the application, perform these steps.

1. In deploytool, select the JAR or WAR in the tree.

2. Select the General tab.

3. Click Edit Contents.

4. In the tree of the Available Files field, locate the file and click Add.

5. Click OK.

6. From the main toolbar, select Tools→Update Module Files.

7. Select Tools→Deploy.

Modifying a Deployment Setting
To modify a deployment setting of ConverterApp, you edit the appropriate field
in a tabbed pane and redeploy the application. For example, to change a JNDI
name from ATypo to ConverterBean, you would follow these steps.

1. In deploytool, select ConverterApp in the tree.

2. Select the JNDI Names tab.

3. In the JNDI Name field, enter MyConverter.

4. From the main toolbar, select File→Save.

5. Select Tools→Update Module Files.

6. Select Tools→Deploy.

899

25
Session Bean

Examples

SESSION beans are powerful because they extend the reach of your clients into
remote servers yet are easy to build. In Chapter 24, you built a stateless session
bean named ConverterBean. This chapter examines the source code of three
more session beans:

• CartBean: a stateful session bean that is accessed by a remote client

• HelloServiceBean: a stateless session bean that implements a web ser-
vice

• TimerSessionBean: a stateless session bean that sets a timer

The CartBean Example
The CartBean session bean represents a shopping cart in an online bookstore.
The bean’s client can add a book to the cart, remove a book, or retrieve the cart’s
contents. To construct CartBean, you need the following code:

• Session bean class (CartBean)

• Home interface (CartHome)

• Remote interface (Cart)

900 SESSION BEAN EXAMPLES

All session beans require a session bean class. All enterprise beans that permit
remote access must have a home and a remote interface. To meet the needs of a
specific application, an enterprise bean may also need some helper classes. The
CartBean session bean uses two helper classes (BookException and IdVeri-
fier) which are discussed in the section Helper Classes (page 906).

The source code for this example is in the
<INSTALL>/j2eetutorial14/examples/ejb/cart/ directory.

Session Bean Class
The session bean class for this example is called CartBean. Like any session
bean, the CartBean class must meet these requirements:

• It implements the SessionBean interface.

• The class is defined as public.

• The class cannot be defined as abstract or final.

• It implements one or more ejbCreate methods.

• It implements the business methods.

• It contains a public constructor with no parameters.

• It must not define the finalize method.

 The source code for the CartBean class follows.

import java.util.*;
import javax.ejb.*;

public class CartBean implements SessionBean {

String customerName;
String customerId;
Vector contents;

public void ejbCreate(String person)
throws CreateException {

if (person == null) {
throw new CreateException("Null person not allowed.");

}
else {

customerName = person;
}

SESSION BEAN CLASS 901

customerId = "0";
contents = new Vector();

}

public void ejbCreate(String person, String id)
throws CreateException {

if (person == null) {
throw new CreateException("Null person not allowed.");

}
else {

customerName = person;
}

IdVerifier idChecker = new IdVerifier();
if (idChecker.validate(id)) {

customerId = id;
}
else {

throw new CreateException("Invalid id: "+ id);
}

contents = new Vector();
}

public void addBook(String title) {
contents.addElement(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.removeElement(title);
if (result == false) {

throw new BookException(title + "not in cart.");
}

 }

 public Vector getContents() {
 return contents;
 }

 public CartBean() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}

}

902 SESSION BEAN EXAMPLES

The SessionBean Interface
The SessionBean interface extends the EnterpriseBean interface, which in turn
extends the Serializable interface. The SessionBean interface declares the
ejbRemove, ejbActivate, ejbPassivate, and setSessionContext methods.
The CartBean class doesn’t use these methods, but it must implement them
because they’re declared in the SessionBean interface. Consequently, these
methods are empty in the CartBean class. Later sections explain when you might
use these methods.

The ejbCreate Methods
Because an enterprise bean runs inside an EJB container, a client cannot directly
instantiate the bean. Only the EJB container can instantiate an enterprise bean.
During instantiation, the example program performs the following steps.

1. The client invokes a create method on the home object:
Cart shoppingCart = home.create("Duke DeEarl","123");

2. The EJB container instantiates the enterprise bean.

3. The EJB container invokes the appropriate ejbCreate method in Cart-
Bean:

public void ejbCreate(String person, String id)
throws CreateException {

if (person == null) {
throw new CreateException("Null person not allowed.");

}
else {

customerName = person;
}

IdVerifier idChecker = new IdVerifier();
if (idChecker.validate(id)) {

customerId = id;
}
else {

throw new CreateException("Invalid id: "+ id);
}

contents = new Vector();
}

http://java.sun.com/j2ee/tutorial/api/javax/ejb/SessionBean.html
http://java.sun.com/j2ee/tutorial/api/javax/ejb/EnterpriseBean.html

SESSION BEAN CLASS 903

Typically, an ejbCreate method initializes the state of the enterprise bean. The
preceding ejbCreate method, for example, initializes the customerName and
customerId variables by using the arguments passed by the create method.

An enterprise bean must have one or more ejbCreate methods. The signatures
of the methods must meet the following requirements:

• The access control modifier must be public.

• The return type must be void.

• If the bean allows remote access, the arguments must be legal types for the
Java Remote Method Invocation (Java RMI) API.

• The modifier cannot be static or final.

The throws clause can include the javax.ejb.CreateException and other
exceptions that are specific to your application. The ejbCreate method usually
throws a CreateException if an input parameter is invalid.

Business Methods
The primary purpose of a session bean is to run business tasks for the client. The
client invokes business methods on the remote object reference that is returned
by the create method. From the client’s perspective, the business methods
appear to run locally, but they actually run remotely in the session bean. The fol-
lowing code snippet shows how the CartClient program invokes the business
methods:

Cart shoppingCart = home.create("Duke DeEarl", "123");
...
shoppingCart.addBook("The Martian Chronicles");
shoppingCart.removeBook("Alice In Wonderland");
bookList = shoppingCart.getContents();

The CartBean class implements the business methods in the following code:

public void addBook(String title) {
 contents.addElement(title);
}

public void removeBook(String title) throws BookException {
 boolean result = contents.removeElement(title);
 if (result == false) {
 throw new BookException(title + "not in cart.");
 }
}

904 SESSION BEAN EXAMPLES

public Vector getContents() {
 return contents;
}

The signature of a business method must conform to these rules:

• The method name must not conflict with one defined by the EJB architec-
ture. For example, you cannot call a business method ejbCreate or
ejbActivate.

• The access control modifier must be public.

• If the bean allows remote access, the arguments and return types must be
legal types for the Java RMI API.

• The modifier must not be static or final.

The throws clause can include exceptions that you define for your application.
The removeBook method, for example, throws the BookException if the book is
not in the cart.

To indicate a system-level problem, such as the inability to connect to a database,
a business method should throw the javax.ejb.EJBException. When a busi-
ness method throws an EJBException, the container wraps it in a RemoteExcep-
tion, which is caught by the client. The container will not wrap application
exceptions such as BookException. Because EJBException is a subclass of
RuntimeException, you do not need to include it in the throws clause of the
business method.

Home Interface
A home interface extends the javax.ejb.EJBHome interface. For a session bean,
the purpose of the home interface is to define the create methods that a remote
client can invoke. The CartClient program, for example, invokes this create
method:

Cart shoppingCart = home.create("Duke DeEarl", "123");

HOME INTERFACE 905

Every create method in the home interface corresponds to an ejbCreate
method in the bean class. The signatures of the ejbCreate methods in the Cart-
Bean class follow:

public void ejbCreate(String person) throws CreateException
...
public void ejbCreate(String person, String id)
 throws CreateException

Compare the ejbCreate signatures with those of the create methods in the
CartHome interface:

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CartHome extends EJBHome {
Cart create(String person) throws

RemoteException, CreateException;
Cart create(String person, String id) throws

RemoteException, CreateException;
}

The signatures of the ejbCreate and create methods are similar, but they differ
in important ways. The rules for defining the signatures of the create methods
of a home interface follow.

• The number and types of arguments in a create method must match those
of its corresponding ejbCreate method.

• The arguments and return type of the create method must be valid RMI
types.

• A create method returns the remote interface type of the enterprise bean.
(But an ejbCreate method returns void.)

• The throws clause of the create method must include the
java.rmi.RemoteException and the javax.ejb.CreateException.

906 SESSION BEAN EXAMPLES

Remote Interface
The remote interface, which extends javax.ejb.EJBObject, defines the busi-
ness methods that a remote client can invoke. Here is the source code for the
Cart remote interface:

import java.util.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Cart extends EJBObject {

 public void addBook(String title) throws RemoteException;
 public void removeBook(String title) throws

BookException, RemoteException;
 public Vector getContents() throws RemoteException;
}

The method definitions in a remote interface must follow these rules:

• Each method in the remote interface must match a method implemented in
the enterprise bean class.

• The signatures of the methods in the remote interface must be identical to
the signatures of the corresponding methods in the enterprise bean class.

• The arguments and return values must be valid RMI types.

• The throws clause must include the java.rmi.RemoteException.

Helper Classes
The CartBean session bean has two helper classes: BookException and IdVeri-
fier. The BookException is thrown by the removeBook method, and the IdVer-
ifier validates the customerId in one of the ejbCreate methods. Helper
classes must reside in the EJB JAR file that contains the enterprise bean class.

Building the CartBean Example
Now you are ready to compile the remote interface (Cart.java), the home inter-
face (CartHome.java), the enterprise bean class (CartBean.java), the client

CREATING THE APPLICATION 907

class (CartClient.java), and the helper classes (BookException.java and
IdVerifier.java).

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/cart/

2. Type the following command:

asant build

Creating the Application
In this section, you’ll create a J2EE application named CartApp, storing it in the
file CartApp.ear.

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to <INSTALL>/j2eetutorial14/exam-
ples/ejb/cart/.

4. In the File Name field, enter CartApp.

5. Click New Application.

6. Click OK.

7. Verify that the CartApp.ear file resides in
<INSTALL>/j2eetutorial14/examples/ejb/cart/.

Packaging the Enterprise Bean
1. In deploytool, select File→New→Enterprise Bean.

2. In the EJB JAR screen:

a. Select Create New JAR Module in Application.

b. In the Create New JAR Module in Application field, select CartApp.

c. In the JAR Name field, enter CartJAR.

d. Click Choose Module File.

e. Click Edit Contents.

f. Locate the <INSTALL>/j2eetutorial14/exam-

ples/ejb/cart/build/ directory.

g. Select BookException.class, Cart.class, CartBean.class,
CartHome.class, and IdVerifier.class.

908 SESSION BEAN EXAMPLES

h. Click Add.

i. Click OK.

j. Click Next.

3. In the General screen:

a. In the Enterprise Bean Class field, select CartBean.

b. In the Enterprise Bean Name field, enter CartBean.

c. In the Enterprise Bean Type field, select Stateful Session.

d. In the Remote Home Interface field, select CartHome.

e. In the Remote Interface field, select Cart.

f. Click Next.

4. Click Finish.

Packaging the Application Client
To package an application client component, you run the New Application Client
wizard of deploytool. During this process the wizard performs the following
tasks.

• Creates the application client’s deployment descriptor

• Puts the deployment descriptor and client files into a JAR file

• Adds the JAR file to the application’s CartApp.ear file

To start the New Application Client wizard, select File→New→Application Cli-
ent. The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. JAR File Contents dialog box

a. Select the button labeled Create New AppClient Module in Application.

b. In the combo box below this button, select CartApp.

c. In the AppClient Display Name field, enter CartClient.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/ejb/cart/build directory.

f. Select CartClient.class.

PACKAGING THE APPLICATION CLIENT 909

g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. In the Main Class combo box, select CartClient.

b. Click Next.

c. Click Finish.

Specifying the Application Client’s Enterprise
Bean Reference
When it invokes the lookup method, the CartClient refers to the home of an
enterprise bean:

Object objref =
initial.lookup("java:comp/env/ejb/SimpleCart");

You specify this reference as follows.

1. In the tree, select CartClient.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleCart.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter CartHome.

8. In the Local/Remote Interface field, enter Cart.

9. In the JNDI Name field, select CartBean.

10.Click OK.

Deploying the Enterprise Application
Now that the J2EE application contains the components, it is ready for deploy-
ment.

1. Select CartApp.

910 SESSION BEAN EXAMPLES

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the Sun
Java System Application Server Platform Edition 8.

4. Under Application Client Stub Directory, check Return Client Jar.

5. In the field below the checkbox enter
<INSTALL>/j2eetutorial14/examples/ejb/cart/.

6. Click OK.

7. In the Distribute Module dialog box, click Close when the deployment
completes.

8. Verify the deployment.

a. In the tree, expand the Servers node and select the host that is running
the Application Server.

b. In the Deployed Objects table, make sure that CartApp is listed and that
its status is Running.

c. Verify that CartAppClient.jar is in
<INSTALL>/j2eetutorial14/examples/ejb/cart/.

Running the Application Client
To run the application client, perform the following steps.

1. In a terminal window, go to the <INSTALL>/j2eetutorial14/
examples/ejb/cart/ directory.

2. Type the following command:
appclient -client CartAppClient.jar

3. In the terminal window, the client displays these lines:

The Martian Chronicles

2001 A Space Odyssey

The Left Hand of Darkness

Caught a BookException: Alice in Wonderland not in cart.

A WEB SERVICE EXAMPLE: HELLOSERVICEBEAN 911

A Web Service Example:
HelloServiceBean

This example demonstrates a simple web service that generates a response based
on information received from the client. HelloServiceBean is a stateless session
bean that implements a single method, sayHello. This method matches the say-
Hello method invoked by the clients described in Static Stub Client (page 327).
Later in this section, you’ll test the HelloServiceBean by running one of these
JAX-RPC clients.

Web Service Endpoint Interface
HelloService is the bean’s web service endpoint interface. It provides the cli-
ent’s view of the web service, hiding the stateless session bean from the client. A
web service endpoint interface must conform to the rules of a JAX-RPC service
definition interface. For a summary of these rules, see Coding the Service End-
point Interface and Implementation Class (page 322). Here is the source code for
the HelloService interface:

package helloservice;
import java.rmi.RemoteException;
import java.rmi.Remote;

public interface HelloService extends Remote {

 public String sayHello(String name) throws RemoteException;
}

Stateless Session Bean Implementation
Class
The HelloServiceBean class implements the sayHello method defined by the
HelloService interface. The interface decouples the implementation class from
the type of client access. For example, if you added remote and home interfaces
to HelloServiceBean, the methods of the HelloServiceBean class could also

912 SESSION BEAN EXAMPLES

be accessed by remote clients. No changes to the HelloServiceBean class
would be necessary. The source code for the HelloServiceBean class follows:

package helloservice;
import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class HelloServiceBean implements SessionBean {

 public String sayHello(String name) {

 return "Hello "+ name + " from HelloServiceBean";
 }

 public HelloServiceBean() {}
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}
}

Building HelloServiceBean
In a terminal window, go to the <INSTALL>/j2eetutorial14/exam-

ples/ejb/helloservice/ directory. To build HelloServiceBean, type the fol-
lowing command:

asant build-service

This command performs the following tasks:

• Compiles the bean’s source code files

• Creates the MyHelloService.wsdl file by running the following wscom-
pile command:

wscompile -define -d build/output -nd build -classpath build

-mapping build/mapping.xml config-interface.xml

The wscompile tool writes the MyHelloService.wsdl file to the
<INSTALL>/j2eetutorial14/examples/ejb/helloservice/build/ subdirec-
tory. For more information about the wscompile tool, see Chapter 8.

Use deploytool to package and deploy this example.

BUILDING HELLOSERVICEBEAN 913

Creating the Application
In this section, you’ll create a J2EE application named HelloService, storing it
in the file HelloService.ear.

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to <INSTALL>/j2eetutorial14/exam-
ples/ejb/helloservice/.

4. In the File Name field, enter HelloServiceApp.

5. Click New Application.

6. Click OK.

7. Verify that the HelloServiceApp.ear file resides in
<INSTALL>/j2eetutorial14/examples/ejb/helloservice/.

Packaging the Enterprise Bean
Start the Edit Enterprise Bean wizard by selecting File→New→Enterprise Bean.
The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. EJB JAR dialog box

a. Select the button labeled Create New JAR Module in Application.

b. In the combo box below this button, select HelloService.

c. In the JAR Display Name field, enter HelloServiceJAR.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/ejb/helloservice/build/

directory.

f. In the Available Files tree select the helloservice directory and map-
ping.xml and MyHelloService.wsdl.

g. Click Add.

h. Click OK.

i. Click Next.

914 SESSION BEAN EXAMPLES

3. General dialog box

a. In the Enterprise Bean Class combo box, select helloservice.Hel-
loServiceBean.

b. Under Enterprise Bean Type, select Stateless Session.

c. In the Enterprise Bean Name field, enter HelloServiceBean.

d. Click Next.

4. In the Configuration Options dialog box, click Next. The wizard will auto-
matically select the Yes button for Expose Bean as Web Service Endpoint.

5. In the Choose Service dialog box:

a. Select META-INF/wsdl/MyHelloService.wsdl in the WSDL File
combo box.

b. Select mapping.xml from the Mapping File combo box.

c. Make sure that MyHelloService is in the Service Name and Service
Display Name edit boxes.

6. In the Web Service Endpoint dialog box:

a. Select helloservice.HelloIF in the Service Endpoint Interface
combo box.

b. In the WSDL Port section, set the Namespace to urn:Foo, and the Local
Part to HelloIFPort.

c. In the Sun-specific Settings section, set the Endpoint Address to hello-
ejb/hello.

d. Click Next.

7. Click Finish.

8. Select File→Save.

Deploying the Enterprise Application
Now that the J2EE application contains the enterprise bean, it is ready for
deployment.

1. Select the HelloService application.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Click OK.

BUILDING THE WEB SERVICE CLIENT 915

5. In the Distribute Module dialog box, click Close when the deployment
completes.

6. Verify the deployment.

a. In the tree, expand the Servers node and select the host that is running
the Application Server.

b. In the Deployed Objects table, make sure that HelloService is listed
and that its status is Running.

Building the Web Service Client
In the next section, to test the web service implemented by HelloServiceBean,
you will run the JAX-RPC client described in Chapter 8.

To verify that HelloServiceBean has been deployed, click on the target Appli-
cation Server in the Servers tree in deploytool. In the Deployed Objects tree
you should see HelloServiceApp.

To build the static stub client, perform these steps:

1. In a terminal go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/helloservice/ directory and type

asant build

2. In a terminal go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/staticstub/ directory.

3. Open config-wsdl.xml in a text editor and change the line that reads

<wsdl location="http://localhost:8080/hello-

jaxrpc/hello?WSDL"

to

<wsdl location="http://localhost:8080/hello-ejb/hello?WSDL"

4. Type

asant build

5. Edit the build.properties file and change the endpoint.address prop-
erty to

http://localhost:8080/hello-ejb/hello

For details about creating the JAX-RPC service and client, see these sections:
Creating a Simple Web Service and Client with JAX-RPC (page 320) and Static
Stub Client (page 327).

916 SESSION BEAN EXAMPLES

Running the Web Service Client
To run the client, go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/staticstub/ directory and enter

asant run

The client should display the following line:

Hello Duke! (from HelloServiceBean)

Other Enterprise Bean Features
The topics that follow apply to session beans and entity beans.

Accessing Environment Entries
Stored in an enterprise bean’s deployment descriptor, an environment entry is a
name-value pair that allows you to customize the bean’s business logic without
changing its source code. An enterprise bean that calculates discounts, for exam-
ple, might have an environment entry named Discount Percent. Before deploy-
ing the bean’s application, you could run a development tool to assign Discount
Percent a value of 0.05 in the bean’s deployment descriptor. When you run the
application, the bean fetches the 0.05 value from its environment.

In the following code example, the applyDiscount method uses environment
entries to calculate a discount based on the purchase amount. First, the method
locates the environment naming context by invoking lookup using the
java:comp/env parameter. Then it calls lookup on the environment to get the
values for the Discount Level and Discount Percent names. For example, if
you assign a value of 0.05 to the Discount Percent entry, the code will assign
0.05 to the discountPercent variable. The applyDiscount method, which fol-
lows, is in the CheckerBean class. The source code for this example is in
<INSTALL>/j2eetutorial14/examples/ejb/checker.

public double applyDiscount(double amount) {

try {

double discount;

COMPARING ENTERPRISE BEANS 917

Context initial = new InitialContext();
Context environment =

(Context)initial.lookup("java:comp/env");

Double discountLevel =
(Double)environment.lookup("Discount Level");

Double discountPercent =
(Double)environment.lookup("Discount Percent");

if (amount >= discountLevel.doubleValue()) {
discount = discountPercent.doubleValue();

}
else {

discount = 0.00;
}

return amount * (1.00 - discount);

} catch (NamingException ex) {
throw new EJBException("NamingException: "+

ex.getMessage());
}

}

Comparing Enterprise Beans
A client can determine whether two stateful session beans are identical by invok-
ing the isIdentical method:

bookCart = home.create("Bill Shakespeare");
videoCart = home.create("Lefty Lee");
...
if (bookCart.isIdentical(bookCart)) {
 // true ... }
if (bookCart.isIdentical(videoCart)) {
 // false ... }

Because stateless session beans have the same object identity, the isIdentical
method always returns true when used to compare them.

918 SESSION BEAN EXAMPLES

To determine whether two entity beans are identical, the client can invoke the
isIdentical method, or it can fetch and compare the beans’s primary keys:

String key1 = (String)accta.getPrimaryKey();
String key2 = (String)acctb.getPrimaryKey();

if (key1.compareTo(key2) == 0)
 System.out.println("equal");

Passing an Enterprise Bean’s Object
Reference
Suppose that your enterprise bean needs to pass a reference to itself to another
bean. You might want to pass the reference, for example, so that the second bean
can call the first bean’s methods. You can’t pass the this reference because it
points to the bean’s instance, which is running in the EJB container. Only the
container can directly invoke methods on the bean’s instance. Clients access the
instance indirectly by invoking methods on the object whose type is the bean’s
remote interface. It is the reference to this object (the bean’s remote reference)
that the first bean would pass to the second bean.

A session bean obtains its remote reference by calling the getEJBObject method
of the SessionContext interface. An entity bean would call the getEJBObject
method of the EntityContext interface. These interfaces provide beans with
access to the instance contexts maintained by the EJB container. Typically, the
bean saves the context in the setSessionContext method. The following code
fragment shows how a session bean might use these methods.

public class WagonBean implements SessionBean {

 SessionContext context;
 ...
 public void setSessionContext(SessionContext sc) {
 this.context = sc;
 }
 ...
 public void passItOn(Basket basket) {

...
 basket.copyItems(context.getEJBObject());
 }

USING THE TIMER SERVICE 919

Using the Timer Service
Applications that model business work flows often rely on timed notifications.
The timer service of the enterprise bean container enables you to schedule timed
notifications for all types of enterprise beans except for stateful session beans.
You can schedule a timed notification to occur at a specific time, after a duration
of time, or at timed intervals. For example, you could set timers to go off at 10:30
AM on May 23, in 30 days, or every 12 hours.

When a timer expires (goes off), the container calls the ejbTimeout method of
the bean’s implementation class. The ejbTimeout method contains the business
logic that handles the timed event. Because ejbTimeout is defined by the
javax.ejb.TimedObject interface, the bean class must implement TimedOb-
ject.

There are four interfaces in the javax.ejb package that are related to timers:

• TimedObject

• Timer

• TimerHandle

• TimerService

Creating Timers
To create a timer, the bean invokes one of the createTimer methods of the Tim-
erService interface. (For details on the method signatures, see the TimerSer-
vice API documentation.) When the bean invokes createTimer, the timer
service begins to count down the timer duration.

The bean described in The TimerSessionBean Example (page 921) creates a
timer as follows:

TimerService timerService = context.getTimerService();
Timer timer = timerService.createTimer(intervalDuration,

"created timer");

In the TimerSessionBean example, createTimer is invoked in a business
method, which is called by a client. An entity bean can also create a timer in a
business method. If you want to create a timer for each instance of an entity
bean, you can code the createTimer call in the bean’s ejbCreate method.

920 SESSION BEAN EXAMPLES

Timers are persistent. If the server is shut down (or even crashes), timers are
saved and will become active again when the server is restarted. If a timer
expires while the server is down, the container will call ejbTimeout when the
server is restarted.

A timer for an entity bean is associated with the bean’s identity—that is, with a
particular instance of the bean. If an entity bean sets a timer in ejbCreate, for
example, each bean instance will have its own timer. In contrast, stateless session
and message-driven beans do not have unique timers for each instance.

The Date and long parameters of the createTimer methods represent time with
the resolution of milliseconds. However, because the timer service is not
intended for real-time applications, a callback to ejbTimeout might not occur
with millisecond precision. The timer service is for business applications, which
typically measure time in hours, days, or longer durations.

Canceling and Saving Timers
Timers can be canceled by the following events:

• When a single-event timer expires, the EJB container calls ejbTimeout
and then cancels the timer.

• When an entity bean instance is removed, the container cancels the timers
associated with the instance.

• When the bean invokes the cancel method of the Timer interface, the con-
tainer cancels the timer.

If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandle method and
store the TimerHandle object in a database. (A TimerHandle object is serializ-
able.) To reinstantiate the Timer object, retrieve the handle from the database and
invoke getTimer on the handle. A TimerHandle object cannot be passed as an
argument of a method defined in a remote or web service interface. In other
words, remote clients and web service clients cannot access a bean’s TimerHan-
dle object. Local clients, however, do not have this restriction.

GETTING TIMER INFORMATION 921

Getting Timer Information
In addition to defining the cancel and getHandle methods, the Timer interface
defines methods for obtaining information about timers:

public long getTimeRemaining();
public java.util.Date getNextTimeout();
public java.io.Serializable getInfo();

The getInfo method returns the object that was the last parameter of the cre-
ateTimer invocation. For example, in the createTimer code snippet of the pre-
ceding section, this information parameter is a String object with the value
created timer.

To retrieve all of a bean’s active timers, call the getTimers method of the Tim-
erService interface. The getTimers method returns a collection of Timer
objects.

Transactions and Timers
An enterprise bean usually creates a timer within a transaction. If this transaction
is rolled back, the timer creation is also rolled back. Similarly, if a bean cancels a
timer within a transaction that gets rolled back, the timer cancellation is rolled
back. In this case, the timer’s duration is reset as if the cancellation had never
occurred.

In beans that use container-managed transactions, the ejbTimeout method usu-
ally has the RequiresNew transaction attribute to preserve transaction integrity.
With this attribute, the EJB container begins the new transaction before calling
ejbTimeout. If the transaction is rolled back, the container will try to call ejb-
Timeout at least one more time.

The TimerSessionBean Example
The source code for this example is in the <INSTALL>/j2eetutorial14/exam-
ples/ejb/timersession/src/ directory.

TimerSessionBean is a stateless session bean that shows how to set a timer. The
implementation class for TimerSessionBean is called TimerSessionBean. In
the source code listing of TimerSessionBean that follows, note the myCre-
ateTimer and ejbTimeout methods. Because it’s a business method, myCre-

922 SESSION BEAN EXAMPLES

ateTimer is defined in the bean’s remote interface (TimerSession) and can be
invoked by the client. In this example, the client invokes myCreateTimer with an
interval duration of 30,000 milliseconds. The myCreateTimer method fetches a
TimerService object from the bean’s SessionContext. Then it creates a new
timer by invoking the createTimer method of TimerService. Now that the
timer is set, the EJB container will invoke the ejbTimer method of TimerSes-
sionBean when the timer expires—in about 30 seconds. Here’s the source code
for the TimerSessionBean class:

import javax.ejb.*;

public class TimerSessionBean implements SessionBean,
 TimedObject {

 private SessionContext context;

 public TimerHandle myCreateTimer(long intervalDuration) {

 System.out.println
 ("TimerSessionBean: start createTimer ");
 TimerService timerService =
 context.getTimerService();
 Timer timer =
 timerService.createTimer(intervalDuration,

"created timer");
}

 public void ejbTimeout(Timer timer) {

 System.out.println("TimerSessionBean: ejbTimeout ");
 }

 public void setSessionContext(SessionContext sc) {
 System.out.println("TimerSessionBean:
 setSessionContext");
 context = sc;
 }

 public void ejbCreate() {
 System.out.println("TimerSessionBean: ejbCreate");
 }

 public TimerSessionBean() {}
 public void ejbRemove() {}

BUILDING TIMERSESSIONBEAN 923

 public void ejbActivate() {}
 public void ejbPassivate() {}

}

Building TimerSessionBean
In a terminal window, go to the <INSTALL>/j2eetutorial14/exam-

ples/ejb/timersession/ directory. To build TimerSessionBean, type the fol-
lowing command:

asant build

Use deploytool to package and deploy this example.

Creating the Application
In this section, you’ll create a J2EE application named TimerSessionApp, stor-
ing it in the file TimerSessionApp.ear.

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to <INSTALL>/j2eetutorial14/exam-
ples/ejb/timersession/.

4. In the File Name field, enter TimerSessionApp.ear.

5. Click New Application.

6. Click OK.

7. Verify that the TimerSessonApp.ear file resides in
<INSTALL>/j2eetutorial14/examples/ejb/timersession/.

Packaging the Enterprise Bean
Start the Edit Enterprise Bean wizard by selecting File→New→Enterprise Java-
Bean. The wizard displays the following dialog boxes.

1. In the Introduction dialog box:

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

924 SESSION BEAN EXAMPLES

2. In the EJB JAR dialog box:

a. Select the button labeled Create New JAR Module in Application.

b. In the combo box below this button, select TimerSessionApp.

c. In the JAR Display Name field, enter TimerSessionJAR.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/ejb/timersession/build/

directory.

f. Select these classes: TimerSession.class, TimerSession-

Bean.class, and TimerSessionHome.class.

g. Click Add.

h. Click OK.

i. Click Next.

3. In the General dialog box:

a. In the Enterprise Bean Class combo box, select TimerSessionBean.

b. In the Enterprise Bean Name field, enter TimerSessionBean.

c. Under Bean Type, select Stateless Session.

d. In the Remote Interfaces section, select TimerSessionHome for the
Remote Home Interface, and TimerSession for the Remote Interface.

e. Click Next.

4. In the Expose as Web Service Endpoint dialog box:

a. Select No for Expose Bean as Web Service Endpoint.

b. Click Next.

5. Click Finish.

Compiling the Application Client
The application client files are compiled at the same time as the enterprise bean
files.

BUILDING TIMERSESSIONBEAN 925

Packaging the Application Client
To package an application client component, you run the New Application Client
wizard of deploytool. During this process the wizard performs the following
tasks.

• Creates the application client’s deployment descriptor

• Puts the deployment descriptor and client files into a JAR file

• Adds the JAR file to the application’s TimerSessionApp.ear file

To start the New Application Client wizard, select File→New→Application Cli-
ent. The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. JAR File Contents dialog box

a. Select the button labeled Create New AppClient Module in Application.

b. In the combo box below this button, select TimerSessionApp.

c. In the AppClient Display Name field, enter TimerSessionClient.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/ejb/timersession/build

directory.

f. Select the TimerSessionClient.class file.

g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. In the Main Class combo box, select TimerSessionClient.

b. Click Next.

c. Click Finish.

926 SESSION BEAN EXAMPLES

Specifying the Application Client’s Enterprise
Bean Reference
When it invokes the lookup method, the TimerSessionClient refers to the
home of an enterprise bean:

Object objref =
initial.lookup("java:comp/env/ejb/SimpleTimerSession");

You specify this reference as follows.

1. In the tree, select TimerSessionClient.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleTimerSession.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter TimerSessionHome.

8. In the Local/Remote Interface field, enter TimerSession.

9. In the JNDI Name field, select TimerSessionBean.

10.Click OK.

Deploying the Enterprise Application
Now that the J2EE application contains the components, it is ready for deploy-
ment.

1. Select TimerSessionApp.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Under Application Client Stub Directory, check Return Client Jar.

5. In the field below the checkbox, enter
<INSTALL>/j2eetutorial14/examples/ejb/timersession/.

6. Click OK.

7. In the Distribute Module dialog box, click Close when the deployment
completes.

BUILDING TIMERSESSIONBEAN 927

8. Verify the deployment.

a. In the tree, expand the Servers node and select the host that is running
the Application Server.

b. In the Deployed Objects table, make sure that TimerSessionApp is
listed and that its status is Running.

c. Verify that TimerSessionAppClient.jar is in
<INSTALL>/j2eetutorial14/examples/ejb/timersession/.

Running the Application Client
To run the application client, perform the following steps.

1. In a terminal window, go to the <INSTALL>/j2eetutorial14/
examples/ejb/timersession/ directory.

2. Type the following command:

appclient -client TimerSessionAppClient.jar

3. In the terminal window, the client displays these lines:

Creating a timer with an interval duration of 30000 ms.

The output from the timer is sent to the server.log file located in the
<J2EE_HOME>/domains/domain1/server/logs/ directory.

View the output in the Admin Console:

1. Open the Admin Console by opening a web browser window to
http://localhost:4848/asadmin/admingui

2. Click the Logging tab.

3. Click Open Log Viewer.

4. At the top of the page, you’ll see these four lines in the Message column:
ejbTimeout
start createTimer
ejbCreate
setSessionContext

Alternatively, you can look at the log file directly. After about 30 seconds, open
server.log in a text editor and you will see the following lines:

TimerSessionBean: setSessionContext
TimerSessionBean: ejbCreate
TimerSessionBean: start createTimer
TimerSessionBean: ejbTimeout

928 SESSION BEAN EXAMPLES

Handling Exceptions
The exceptions thrown by enterprise beans fall into two categories: system and
application.

A system exception indicates a problem with the services that support an applica-
tion. Examples of these problems include the following: a database connection
cannot be obtained, an SQL insert fails because the database is full, or a lookup
method cannot find the desired object. If your enterprise bean encounters a sys-
tem-level problem, it should throw a javax.ejb.EJBException. The container
will wrap the EJBException in a RemoteException, which it passes back to the
client. Because the EJBException is a subclass of the RuntimeException, you
do not have to specify it in the throws clause of the method declaration. If a sys-
tem exception is thrown, the EJB container might destroy the bean instance.
Therefore, a system exception cannot be handled by the bean’s client program; it
requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise
bean. There are two types of application exceptions: customized and predefined.
A customized exception is one that you’ve coded yourself, such as the Insuffi-
centBalanceException thrown by the debit business method of the Sav-
ingsAccountBean example. The javax.ejb package includes several
predefined exceptions that are designed to handle common problems. For exam-
ple, an ejbCreate method should throw a CreateException to indicate an
invalid input parameter. When an enterprise bean throws an application excep-
tion, the container does not wrap it in another exception. The client should be
able to handle any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back
the transaction. However, if an application exception is thrown within a transac-
tion, the container does not roll back the transaction.

Table 25–1 summarizes the exceptions of the javax.ejb package. All of these
exceptions are application exceptions, except for the NoSuchEntityException
and the EJBException, which are system exceptions.

Table 25–1 Exceptions

Method Name Exception It Throws Reason for Throwing

ejbCreate CreateException
An input parameter is
invalid.

HANDLING EXCEPTIONS 929

ejbFindByPrimaryKey
(and other finder methods
that return a single object)

ObjectNotFoundException
(subclass of FinderException)

The database row for the
requested entity bean
cannot be found.

ejbRemove RemoveException
The entity bean’s row
cannot be deleted from
the database.

ejbLoad NoSuchEntityException
The database row to be
loaded into the entity
bean cannot be found.

ejbStore NoSuchEntityException
The database row to be
updated cannot be found.

(all methods) EJBException
A system problem has
been encountered.

Table 25–1 Exceptions (Continued)

Method Name Exception It Throws Reason for Throwing

