
Text Processing
Information Retrieval

Inf 141 / CS 121

Tokenization

• Break the input into words

• Character stream -> token stream

• Called a tokenizer / lexer / scanner

• Compiler front-end

• Lexer hooks up to parser

• Preprocessor for information retrieval

• Lexer feeds tokens to retrieval system

Identifying Tokens

• Divide on whitespace and throw away
punctuation?

• What is a token? Depends…

• Apostrophes

• O’Neill

• aren’t

• Hyphen-handling
• clear-headed vs clearheaded

• mother-in-law

Identifying Tokens

• Multiple words as single token?

• San Francisco

• white space

• New York University vs York University

• Tokens that aren’t words

• jossher@uci.edu

• http://www.ics.uci.edu/~lopes

• 192.168.0.1

Markup as Tokens

• Many documents are structured using
markup

• HTML, XML, ePub, etc…

• What to do about tags?

• Include them as tokens

• Filter them out entirely

• Filter tokens based on tags

Advanced Tokenization

• Tokenization can do more than break a
character stream into tokens

• Programming language tokenizers use
specific grammars

• Can identify comments, literals

• Associate a type with each token

Writing a Tokenizer

• while loop looking for delimiters

• Fast to write and execute

• Hard to maintain and easy to mess up

• Java library methods
• java.util.Scanner

• java.util.String.split()

• java.util.StringTokenizer

Writing a Tokenizer

• Deterministic Finite Automaton (DFA)

• Finite set of states

• Alphabet

• Transition function

• Start state

• End states

Start space

a-z

space

a-z

End

\n \n

Generating a Tokenizer

• Numerous open source tools

• ANTLR, JFlex, JavaCC

• Usually focused on programming
languages

• Specify the grammar, tool generates the
program

• Easy to maintain

• Very flexible

Dropping Common Terms

• Very common words can be bad for IR
systems

• he has it on that and as by with a…

• Stop words

• Use up lots of space in the index

• Match nearly every document

• Rarely central to document’s meaning

• How to detect them?

• Assignment part b

Drop Common Terms?

• Should you remove stop words?

• Flights to London vs Flights London

• Flights from London vs Flights London

• How to search for “to be or not to be”?

• Trend in Information Retrieval is to not
use stop words

• Replaced by statistical techniques

Normalization

• Canonicalize tokens so that superficial
differences don’t matter

• USA = U.S.A. = usa

• C.A.T = cat?

• Techniques

• Remove accents & diacritics

• Case-folding

• Collapse alternate spellings

Stemming and Lemmatisation

• Reduce word variants to single version

• am, are, is => be

• Stemming

• Reduce words to stem by chopping off
suffix

• Lemmatization

• Remove inflection to arrive at base
dictionary form of the word, called a
lemma

Porter’s Algorithm

• Most common algorithm for stemming
English

• 5 phases of sequential word reduction

• Stage 1 example

• SSES -> SS caresses -> caress

• IES -> I ponies -> poni

• SS -> SS caress -> caress

• S -> cats -> cat

Stemming Example

Stemming vs Lemmatisation

• Stemming is easy (ish)

• Fairly simple set of rules

• Lemmatisation is hard

• Requires complete vocabulary and
morphological analysis

• Which is better for retrieval?

• Depends…

• Both improve recall and harm precision

Acronym Expansion

• Expands acronyms and abbreviations
into their full form

• USA -> united stats of america

• In4matx -> informatics

• Usefulness depends on domain

• Source code retrieval greatly aided

Language Differences

• Some languages have more morphology
than English

• Spanish, German, Latin

• German has compound words

• Chinese and Japanese don’t segment
words

• French for the is a prefix that changes
depending on context

