
Map Reduce
Information Retrieval

© Crista Lopes, UCI

Example: term frequency

• Given one or more text files, produce the list of words and
their frequencies, and display the N (e.g. 25) most frequent
words and corresponding frequencies

• Trivial problem

• How to do this?

• Many styles, i.e. ways of thinking about the problem

Style 1: Monolithic

• The problem is not subdivided into smaller problems at all;
instead, it is solved as a whole. The programming task consists
in defining the data and control flow that rules this monolith.

• Main characteristics of this style:

• One monolithic conceptual unit that takes input and produces
the desired output

• For all but the simplest problems, the control flow becomes very
large

• Potentially small memory footprint

display

file

Read
l ine

Get next
character

EOF?

Inside
word?

alpha
numeric

?

New
word

detected

no

yes

alpha
numeric

?

yes

yes

End of word
detected;
Emit word

Stop
word? yes

Seen
before?

no

Add the word
with freq=1

no

Increment
freq of wi

yes

Freq(wi) >
Freq(wi-1)?

Swap wi, wi-1

yes

EOL?

yes
no

no

yes

no

Style 2: Functional

• Main characteristics of this style:

• Functions take input, produce output, don't have side effects

• There is no shared state

• The large problem is solved by composing functions one after the
other, as a faithful reproduction of mathematical function
composition f ◦ g ("f after g")

Read

File

Filter

Chars

Normalize

Scan

Remove

Stop

Words

Count

Frequencies

Sort

display

file

sort(frequencies(remove_stop_words(scan(normalize(filter_chars(\

 read_file(sys.argv[1])))))))

Style 3: Imperative

• Conceptual processing units similar to the functional style.
Radical difference in the way that the units share data. In this
style, the units all share a pool of state, which they read and
modify.

• Main characteristics of this style:

• Units may or may not take input, don't produce output relevant
to the main problem

• Units change the state of global, shared data

• The large problem is solved by issuing commands, one after the
other, that change, or add to, the global state

Read

File

Filter Chars

Normalize

Scan

Remove

Stop

Words

Count

Frequencies

Sort

display

file

Char
Data

Word
Data

Word
Freqs

read_file(sys.argv[1])

filter_chars_and_normalize()

scan()

remove_stop_words()

frequencies()

sort()

Many more styles.....

Map-Reduce, Basic

• Key observation is that this problem of counting words can be done
in a divide-and-conquer style over the input data.:

• split the input into chunks, and process each chunk independently so
to produce data that can then be reduced into counts of words.

• Main characteristics of this style:

• Two key abstractions:

• (1) map takes chunks of data and applies a given function to each chunk
independently, producing a collection of results;

• (2) reduce takes a collection of results and applies a given function to
them in order to extract some global knowledge out of those results

• Uses functions as data, i.e. as input to other functions

• The map operation over independent chunks of data can be
parallelized, potentially resulting in considerable performance gains

Read

File

file
Partition

Map

 Split

Words

Reduce

 Count

Words

Sort

display

[chunk1, chunk2, ...]

[result1, result2, ...]

splits = map(split_words,partition(read_file(sys.argv[1]),200))

splits.insert(0, []) # normalize input to reduce

word_freqs = sort(reduce(count_words, splits))

functions

Map-Reduce, Hadoop

• The previous style allows for parallelization of the map step,
but requires serialization of the reduce step. Google map-
reduce and Hadoop use a slight variation that makes the
reduce step also potentially parallelizable. The main idea is to
regroup, or reshuffle, the list of results from the map step so
that the regroupings are amenable to further mapping of a
reducible function.

• Main characteristics of this style:

• Similar to basic map-reduce, but with additional regroup (aka
shuffling) step, followed by another map that maps a reducible
function to a collection of inputs.

Read

File

file
Partition

Map

 Split

Words

Regroup

Count

Words

Sort

display

[chunk1, chunk2, ...]

[result1, result2, ...]

Map

Reduce

[(w1, (...)), (w2, (..)), ...]

splits = map(split_words,partition(read_file(sys.argv[1]),200))

splits_per_word = regroup(splits)

word_freqs = sort(map(count_words, splits_per_word.items()))

functions

reduce inside

