Student ID:

CS 151 Final

Name	:	,
	(Last Name)	(First Name)
Student ID	:	
Signature	:	

Instructions:

- 1. Please verify that your paper contains **16 pages** including this cover.
- 2. Write down your Student-Id on the top of each page of this final.
- 3. This exam is **closed book**. No notes or other materials are permitted.
- 4. Total credits of this final are 110 + 20 EXTRA CREDIT.
- 5. To receive credit you must show your work clearly.
- 6. No re-grades will be entertained if you use a pencil.
- 7. Calculators are **NOT** allowed.

PART I	PART II	PART II
		(Extra Credit)
50	60	20

Student ID:

PART I – Short Questions

In this section you need to show your work.

Q1: [Algebraic Manipulation]

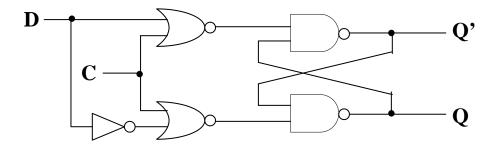
[5 Points]

Algebraically prove the following:

$$x'y'z' + xyz' + xyz + xy'z' + x'yz' = z' + xy$$

Q2: [2's Complement operation]

[5 Points]

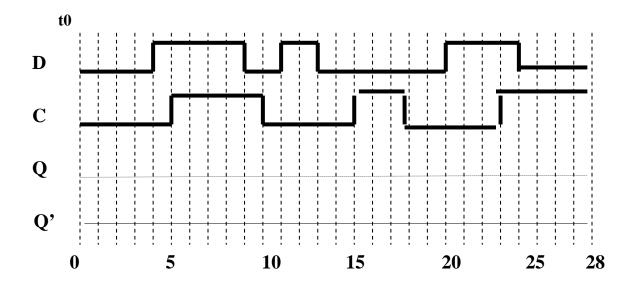

Using two's complement method show the result for the following operation:

$$101110 - 1110 =$$

Q3: [Latch Analysis]

[10 points]

Shown below is a NOR and NAND implementation of gated D-latch:



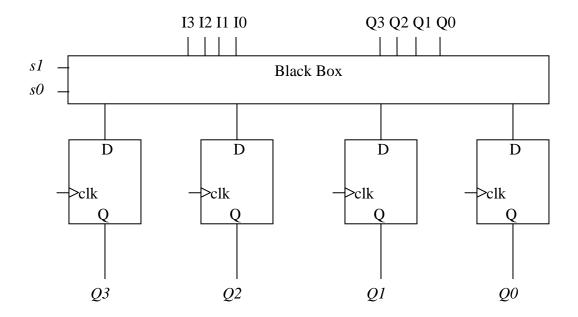
For the following timing diagram of inputs:

- fill in the following table for the value of Q given the inputs C and D, and
- draw the timing diagrams for outputs Q and Q' in the timing diagram

(Assume that Q=0 at t0 and there is no gate delay)

C	D	Q
0	0	
0	1	
1	0	
1	1	

Student ID:	
Q4: [Hierarchical DeMultiplexer Design]	[10 points]


Design a 1-to-16 DeMultiplexer using **ONLY** 1-to-4 DeMultiplexers.

Q5: Register Design

[10 points]

Design a 4-bit register with 2 control inputs s_1 and s_0 , 4 data inputs $I_3...I_0$, and 4 data outputs $Q_3...Q_0$. The function table below shows the configurations for the register. In this question you have to design the circuit inside the "Black Box".

S1	S0	Action	
0	0	Keep the current value	
0	1	Load I	
1	0	Clear the content of the register	
1	1	Rotate left by one bit	

Student ID:	

<This page is intentionally left blank>

Q6: [Karnaugh Map]

[10 Points]

In the following K-Map specify the prime implicants and the essential prime implicants and write the reduced function form:

Y_1Y_0				
X_1X_0	00	01	11	10
00	0	0	X	X
01	1	0	0	X
11	1	1	0	1
10	1	1	0	X

Student ID:	
Braacii ib.	

PART II – Design Questions

Q1: [Counter-based Design]

[20 points]

Using a 4-bit counter and minimum number of the following components design a circuit which outputs the following sequence: 3 -> 6 -> 9 -> 12 -> 25 -> 30 -> 35 -> 40

- a) Comparator
- b) Shifter
- c) Adder
- d) Subtractor
- e) Multiplexer

HINT: Think about the sequences 3 -> 6 -> 9 -> 12 -> 15 -> 18 -> 21 -> 24 and 5 -> 10 -> 15 -> 20 -> 25 -> 30 -> 35 -> 40 to solve the problem.

<This page is intentionally left blank>

Q2: C to RTL design

[40 points]

Consider the following C code which you want to eventually implement in hardware:

```
1. int Search(int image[])
2. { int nComp=0, val, valOld, x0, y0;
3. for (y0=0; y0 < 10; y0++)
4. { valOld=0;
5. for (x0=0; x0 < 15; x0++)
6. \{ val=image[x0+15*y0]; \}
7. lab=image[x0+15*y0];
8.
        if ((val > 0) && (valOld == 0))
        { nComp++;
9.
10.
        }
11. valOld=val;
12. }
13. }
14. return nComp;
15. }
```

Student ID:	
-------------	--

a.i) Derive the high-level state machine of this code. (Exploit as much concurrency as possible.) [10 Points]

Student ID:	

a.ii) Allocate data path components for fastest design and bind the operators to the components. [10 Points]

|--|

b.i) Derive the high-level state machine with the minimal number of resources. (i.e, exploiting resource sharing which results in the "smallest" design.) [10 Points]

Student II):		

b.ii) Allocate data path components for this smallest design and bind the operators to the components. (Assume the size of a multiplexer is much smaller than the size of the data path components) [10 Points]

Student ID:

[Extra Credit]Controller design

[20 points]

1. For the high-level state machine and the datapath designed in Q2.b.i and Q2.b.ii design the interface to the system and the interface of controller and the datapath. [5 Points]

2. Design the FSM for the controller. [15 Points]