CS 151 Quiz 7

Name	÷,,			
	(Last Name)	(First Name)		
Student ID	:			
Signature	:			

Instructions:

- 1. Please verify that your paper contains **8 pages** including this cover.
- 2. Write down your Student-Id on the top of each page of this quiz.
- 3. This exam is **closed book**. No notes or other materials are permitted.
- 4. Total credits of this quiz are **60 points.**
- 5. To receive credit you must show your work clearly.
- 6. No re-grades will be entertained if you use a pencil.
- 7. Calculators are **NOT** allowed.

In this problem we are going to design a 12-bit hierarchical carry look-ahead (CLA) adder out of 4-bit CLA components (as shown below). [15 points]

a) Draw the interface between the 4-bit CLAs and the CLA Logic that should be added to implement the 12-bit adder. Use the black box below. (At this stage you do not need to implement the circuit inside the blocks.) [15 points]

<This page was left blank intentionally>

Student ID:

b) Write the equations for the outputs of the CLA Logic block. [15 points]

$$\begin{array}{l} C1 = G0 + P0C0 \\ C2 = G1 + P1C1 = G1 + P1(G0 + P0C0) = G1 + P1G0 + P1P0G0 \\ C3 = G2 + P2C2 = G2 + P2(G1 + P1C1) = G2 + P2(G1 + P1G0 + P1P0G0) = G2 + P2G1 + P2P1G0 + P2P1P0G0 \end{array}$$

Q2 [Add and Shift Multiplier]

[15 points]

We want to multiply two 4-bit unsigned binary numbers using add and shift method with a data path shown below. The **multiplicand** is equal to 0101 and the **multiplier** is equal to 0111. The table on the next page shows an algorithmic step-by-step view of the process and the contents of registers Multiplicand, Multiplier and Running Sum. We have filled on the first 5 steps. Complete the table for executing the multiplication until it is done and show content of the registers after each step of adds and shifts.

Step	Action	Multiplicand reg (md)	Multiplier reg (mr)	Running Sum reg (rs)
1	Load mr	0101	0000	00000000
2	Load md	0101	0111	00000000
3	Check mr0			
4	Load rs (rs = rs+md)	0101	0111	01010000
5	Shift right rs	0101	0111	00101000
6	Check mr1			
7	Load rs $(rs = rs+md)$	0101	0111	01111000
8	Shift right rs	0101	0111	00111100
9	Check mr2			
10	Load rs (rs = rs+md)	0101	0111	10001100
11	Shift right rs	0101	0111	01000110
12	Check mr3			
13	Shift right rs	0101	0111	00100011
Done	Done	0101	0111	00100011

Design a 16-bit carry select adder out of 8-bit adders and multiplexers. Below is the diagram of a 8-bit adder.

<Blank page>