	Student ID:	
--	-------------	--

CS 151 Midterm

Name	:,	·,	
	(Last Name)	(First Name)	
Student ID	:		
Signature	:		

Instructions:

- 1. Please verify that your paper contains 13 pages including this cover.
- 2. Write down your Student-Id on the top of each page of this quiz.
- 3. This exam is **closed book**. No notes or other materials are permitted.
- 4. Total credits of this midterm are 80 points.
- 5. To receive credit you must show your work clearly.
- 6. Re-grade requests will not be entertained unless you write clearly.
- 7. Calculators are **NOT** allowed.
- 8. If necessary, state your assumptions clearly

Q1: [Sequential Circuit Timing Analysis]

[10 points]

The circuit below shows a sequential circuit using D Flip Flops, and Mastipliex enthat A_1 , A_0 , and S are the inputs of the circuit, and Q_1 is 0, Q_0 is 1 when time equals 0 (t0), show the timing diagram for Q_1 and Q_0 .

NOTE: You can assume that gate delay is negligible.

Q2: [ALU] [20 points]

We are going to design a 4-bit Arithmetic Unit (AU) with the following

functional table:

M1	M 0	Function Name	F (A , B)
0	0	if(A/4==0) add B to A; else subtract B from	if(A/4==0) S = A + B; else
		A	S = A - B
0	1	if(A <b) 8;="" a="" add="" b="" b<="" else="" td="" times="" to=""><td>if(A < B) S = A + (B * 8);</td></b)>	if(A < B) S = A + (B * 8);
		divided 4	else S = A + (B / 4)
1	0	Increment A by 4	S = A + 4
1	1	Add 1 to A+B * 8	S = A + (B * 8) + 1

Both A and B are 4-bit binary unsigned numbers <u>a3a2a1a0</u> and <u>b3b2b1b0</u>.

M1, M0 are the control inputs to this AU. Although B is the only input register to the AL-Extender unit, if you need to, you can also connect register A to the AL-Extender.

In this question you are required to design the logic inside AL-Extender using JUST Comparators, and Multiplexers if needed.

Hint: Although the inputs and outputs are unsigned numbers, you can use 2's complement arithmetic within the design.

Student ID:	

Student ID:	
-------------	--

Student ID:	
~	

Q3: [Counter Application]

[15 points]

Using only a 3-bit up binary counter, you are going to design a mod-8 specific sequence whose output (denoted by MOD8) is 1 when the equals 0, otherwise it outputs a 0. The sequence is defined below in Q 3a. any of the following components (Specify the bit widths, and name all inputs/outputs):

- 1) Adders
- 2) Shifters
- 3) Comparators
- 4) Multiplexers

Make sure you answer both parts 3a, and 3b.

3a. Using the 3-bit up binary counter, create a counter that generates the following sequence [10 points]:

$$2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 10 \rightarrow 12 \rightarrow 14 \rightarrow 16 \rightarrow 2 \rightarrow 4 \dots$$

Student ID:	

3b. Using the counter designed in part 3a design a mod-8 counter whose output (denoted by MOD8) is 1 when the sequence value mod 8 equals 0, otherwise it outputs a 0. [5 points]

The following high-level state machine has the task of finding either the minimum or the maximum among an array of 128 elements depending on the mode selected (Mode = 0 = find the minimum, and Mode = 1 = find the maximum). A_Data is an 8-bit input, A_Address is an 8-bit output, and minmax_out is the final 8-bit (minimum or maximum) output value. Data and minmax are both 8-bit internal registers. All inputs/outputs are unsigned. The Start input drives the circuit to start the execution of the task. Use this state machine to answer the following questions:

Student ID:	
-------------	--

4a. Design the data-path for this system. [15 points]

Please note that the initial value for the minmax register depends on the Mode, if the Mode = 0, minmax is initialized to 0, if the Mode = 1, minmax is **Hintal Newtroni(Anax** register will have at most 2 inputs.

You may use any of the following components:

- 1) Registers
- 2) Adders
- 3) Comparators
- 4) Multiplexers

Student ID:	
-------------	--

4b. Design the interface of the system and the interface between the controller and the datapath. [5 points]

Student ID:	
-------------	--

4c. Design the FSM of the controller. [15 points]

HINT: There is no timing issue for this system so you do not have to consider timing issues in designing the controller's FSM.

Student ID:	
-------------	--