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Abstract—With the advent of the Internet of Things (IoT), 
users are more likely to have privacy concerns since their 
personal information could be collected, analyzed, and utilized 
without notice by the networked IoT devices and services. Users 
may want to control all such activities by explicitly expressing 
their privacy preferences. However, it is becoming increasingly 
difficult for users to do so, not only because of the cognitive 
burden of continuously making privacy decisions for IoT services, 
but also because IoT devices have no, or only very restricted, 
user interfaces. Intelligent software helping users make better 
privacy decisions will be an important component of privacy-
preserving IoT environments. In order to construct such a 
component, we aim to verify whether it will be possible to 
computationally model and predict users’ privacy preferences in 
IoT. To that end, we survey 172 participants in a simulated 
campuswide IoT environment about their privacy preferences 
regarding hypothetical personal information tracking scenarios. 
Then, we cluster the scenarios based on the survey responses, 
arriving at four clusters with distinct associated privacy prefer-
ences. Based on the clustering results, we uncover contextual 
factors that induce privacy violations in IoT. Finally, we build 
machine learning models to predict users’ privacy decisions, 
using both contextual information and the corresponding cluster 
membership as training data. The final trained model shows 77% 
accuracy in predicting users’ decisions whether or not to allow 
the respective IoT scenario. 

Keywords — IoT, privacy, preference modeling, experience 
sampling, Google Glass, K-modes clustering, conditional inference 
tree 

I. INTRODUCTION 

The Internet of Things (IoT) is a networked computing 
environment consisting of various types of physical objects 
(i.e., things) that are able to collect and exchange data over a 
network with minimum user intervention [1-4]. Sensors and 
devices in IoT can easily collect data about our personal 
characteristics and behavior. For individuals, there are many 
advantages of incorporating IoT into their lives. These ad-
vantages can come in various forms such as safety, financial 
benefits, social relationships, convenience, and health. For 
instance, IoT-based home automation systems can monitor 
users’ behavior via motion sensors, Wi-Fi signals or facial 
recognition technology, to identify their presence in their 
homes and automatically control room temperature or lighting. 
IoT technologies can be embedded into virtually every 

situation that users encounter in their daily lives. IoT could 
improve users’ overall quality of life if it works appropriately, 
but compromise their privacy if it does not. This is mainly 
because IoT devices can collectively gather massive amounts 
of personal information, without informing users let alone 
asking for their permission [5-8]. For these reasons, it is under-
stood that safeguarding users’ privacy is a big challenge to the 
widespread adoption of IoT products and services. 

To protect users’ privacy in ubiquitous computing environ-
ments, service providers increasingly ask them to make privacy 
decisions (e.g., grant or deny smartphone apps permission to 
access the user’s location). However, users are increasingly 
unable to make these decisions due to limits in their available 
time, motivation, and their cognitive decision-making abilities 
[9, 10]. Therefore, many researchers proposed various mech-
anisms to predict users’ privacy decisions via machine learning 
models trained on a subset of users’ prior privacy behavior [11-
18]. Software agents can then use these machine learning 
models to give users personalized privacy recommendations, 
thereby assisting them to better control their privacy. This kind 
of technology is going to become more important in IoT 
environments, not only because users need to make decisions 
much more frequently for pervasive IoT services, but also 
because of the lack of user interfaces for specifying privacy 
preferences to the services. It is therefore necessary to 
investigate whether it will be possible to model users’ privacy 
preferences in such IoT environments as well as to predict their 
future privacy decisions. 

In this vein, we conducted a series of studies consisting of 
privacy preference collection, privacy preference analysis, and 
privacy preference prediction. First, we collected people’s 
decisions and opinions regarding their privacy in diverse 
privacy-invasive scenarios in simulated IoT environments, 
through the experience sampling method (ESM). We devel-
oped an app for Google Glass that can dynamically display a 
description of an IoT scenario related to the current location of 
the user. We then recruited participants and asked them to walk 
around a university campus while wearing Google Glass. They 
were instructed to answer survey questions whenever they 
received notifications from Google Glass describing an IoT 
scenario related to their current location. We utilized Google 
Glass to give participants an immersive virtual experience of 
being monitored by IoT devices, to ensure that our research 
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would be as situated as is currently possible. As a result, we 
collected 33,090 valid survey responses from 172 participants 
over a period of three months.  

Next, we clustered the collected responses using the K-
modes clustering algorithm to quantitatively assess the impact 
of different contextual factors (e.g., what is monitored, by 
whom, etc.) on participants’ desire for notification and control, 
and on their subjective evaluation of potential privacy risks. 
We found four distinct clusters in terms of their stated privacy 
preferences, and explored relationships between IoT contexts 
and user attitudes by comparing the survey responses in each 
cluster. Through this analysis, we can now understand how 
contextual factors influence people’s behaviors and perceptions 
toward their privacy in IoT environments.  

Finally, we tried to predict participants’ privacy decisions 
by learning conditional inference trees, using the gathered 
survey responses as training data. We utilized the above-
mentioned contextual factors as well as clustering results as 
variables (or features) for predicting how participants will 
make privacy decisions in the presented scenarios. The final 
trained model has a 77% 10-fold cross validation accuracy in 
predicting whether or not participants will allow personal 
information monitoring in a given IoT scenario. 

II. RELATED WORK 

In this section, we present a literature review of user 
privacy in various computing environments including IoT. To 
begin with, we survey previous studies aimed at understanding 
the causes and effects of users’ privacy behavior in mobile/ 
ubiquitous computing environments. Next, we focus on tech-
niques for predicting users’ privacy decisions or preferences in 
such environments. 

A. Privacy Preference Analysis 

In order to design privacy-preserving applications and 
services, we first need to understand the extent to which users’ 
privacy preferences are shaped by the context in which the 
usage of these applications or services takes place. In this 
regard, many researchers have investigated several contextual 
factors that could influence users’ privacy concerns in diverse 
application scenarios. 

Lederer et al. [19] conducted a scenario-based online 
survey to evaluate the relative importance of two factors, 
requester and situation, in determining users’ privacy prefer-
ences in ubiquitous computing environments. They presented a 
set of personal information disclosure scenarios to participants, 
and then collected participants’ reactions to these scenarios. 
Specifically, users were asked to specify the preferred degree 
of disclosure of their personal information at three levels (i.e., 
full disclosure, vague disclosure, non-disclosure). By quantita-
tively analyzing the responses, the authors found that the 
identity of information requester (4 possible values: spouse, 
employer, stranger, merchant) is more significant than the 
current situation (2 possible values: working lunch and social 
evening) in making a privacy decision. However, there is no 
guarantee that this finding can also be applied to IoT contexts 
since the situation was too coarsely defined in this study. 

Choe et al. [20] confirmed that users are less willing to 
share self-appearance, intimacy behavior, cooking or eating, 
media use, and oral expressions at home when various sensors 
are installed. They also conducted an anonymous online 
survey to collect personal behavior that people usually exhibit 
at home but would not want to be monitored. The authors 
concluded that designers and developers of in-home sensing 
systems should be careful not to monitor such private 
behaviors. Although this work gives useful insights into 
important contextual factors like location, the findings are 
restricted to the specific place investigated, namely people’s 
homes. 

Benisch et al. [21] performed a user study in order to 
identify contextual factors that influence users’ willingness to 
share their location with others. Using a web-based online 
survey, they collected detailed preferences from 27 subjects 
for three weeks. Regarding the actual locations that each 
participant visited that day, the participant was asked after-
wards to decide whether or not to share the locations with 
her/his acquaintances (e.g., friend and family). Participants 
also specified the preferred time spans for these location-
sharing activities. By statistically analyzing the collected 
preferences, the authors discovered several contextual factors 
that significantly impact people’s perception of location 
privacy, such as time of day, day of week, and exact location. 
They also found that privacy settings, comprised of these 
factors, make users have less privacy concerns compared to 
the conventional method, namely whitelists. This work also 
sheds light on important contextual factors like time and 
location, and suggests meaningful guidelines for designing 
mobile applications with a location-sharing functionality. 
However, it considered merely one of the many possible 
application scenarios realizable in IoT environments. 

We find little research that comprehensively investigates 
diverse contextual factors influencing users’ attitudes and 
preferences towards their privacy in an IoT environment. One 
of the aims of our work is to fill this gap. 

B. Privacy Preference Prediction 

Substantial research efforts have been made to devise 
mechanisms that infer users’ privacy decisions and proactively 
recommend privacy choices to users. Researchers claim that 
this kind of technology could help users alleviate the cognitive 
burden of privacy decision-making, thereby allowing them to 
make their preferred privacy choices more easily. 

Sadeh et al. [12] proposed an automated mechanism in a 
mobile social networking application for making privacy 
decisions on behalf of users. To this end, the authors adopted a 
supervised machine learning algorithm named random forests. 
This algorithm was utilized to semi-automatically generate 
sharing policies for the current location of the users, based on 
their previous decisions. The authors showed that these 
machine-generated policies have better accuracy than the user-
defined policies: 91% vs. 79% success rate in satisfying users’ 
actual preferences, respectively. The reason is that users are 
generally not able to specify privacy policies consistent with 
their actual location-sharing behavior in the real world. 
However, the users’ binary feedback (accept or reject) on the 



generated policies was relatively consistent with their actual 
behavior. Thus, the authors utilized user feedback as an 
additional input feature for training machine learning models, 
so as to achieve better prediction accuracy. 

Fang et al. [13] presented a system that infers access 
control policies for personal information on online social 
networking services like Facebook. Similar to [12], they 
presented a supervised machine learning approach to learn 
users’ privacy preferences by iteratively asking them 
questions regarding their sharing activities with friends. In 
doing so, the authors asked the users about privacy 
preferences that machine learning models are most uncertain 
about (i.e., active learning with uncertainty sampling). By 
using both the collected answers and personal profiles (e.g., 
gender, age, etc.) of the users, the authors continuously trained 
personalized machine learning models that can assign privi-
leges to unlabeled friends of each user (e.g., friend A can see 
my photos). According to their study with 45 Facebook users, 
the system was effective in reducing user burden in configur-
ing privacy settings on Facebook. In addition, the system 
showed 90% accuracy in predicting personal privacy policies 
with a small amount of labeled training data (25 out of 200 
friends with privileges). 

Bilogrevic et al. [15, 17] proposed a privacy-preserving 
information sharing platform named SPISM that semi-
automatically decides whether or not to disclose different 
types of personal information and at what level of granularity. 
Like other previous research, the authors used a logistic 
classifier (a supervised machine learning method) to predict 
users’ privacy decision-making. They employed contextual 
information (e.g., types of information requested, location, 
time, etc.) and past behavior as features for training a classifier, 
and verified that the trained classifier can make a prediction 
with 90% accuracy. Like [13], the authors adopted an active 
learning paradigm in the training procedure, thereby 
minimizing users’ initial labeling efforts. The authors also 
deployed SPISM on the Android operating system so that 
users could be assisted in making decisions for a considerable 
amount of information sharing requests on mobile computing 
platforms. Similarly, Liu et al. [18] developed and evaluated a 
personalized privacy assistant (PPA) that proactively produces 
permission settings for Android applications on behalf of users. 
They first employed hierarchical clustering to categorize users 
into several groups based on their prior privacy attitudes (i.e., 
privacy profiles). Next, they built SVM classifiers to predict 
users’ decisions for each permission request by using their 
privacy profiles and other available information related to 
such a request (e.g., app category, permission type, etc.) as 
input features. PPA was also designed to nudge users to make 
a correct privacy decision by giving them recommendations 
(classification results) at the operating system level. Through 
field experiments with 72 Android users, the authors 
confirmed that 78.7% of the recommendations made by PPA 
was accepted by the users. 

All of the abovementioned works not only remind us of the 
importance of predicting privacy decisions in online or mobile 
computing environments, but also provide practical guidelines 

for adapting the prediction results to people’s actual behaviors 
that can evolve over time. However, there is still a lack of 
research on this topic targeted at IoT environments. Here, we 
aim to study whether it is possible in IoT environments to 
model and predict users’ privacy preferences through data 
mining and machine learning technologies. 

III. PHASE I: PRIVACY PREFERENCE COLLECTION 

Our study is conducted in three main steps: (i) collect 
privacy preferences of users in simulated IoT environments, 
(ii) understand how the users make privacy decisions in such 
environments by analyzing the collected preferences, and (iii) 
build machine learning models to predict future privacy 
decisions of the users by using contextual information related 
to their privacy choices as training data. These steps will be 
described in this and the next two sections. 

We adopted ESM to collect people’s privacy preferences 
on various IoT service scenarios (mostly about monitoring of 
personal information). We used Google Glass, one of the 
representative wearable computers, for presenting the IoT 
scenarios to study participants because we intended to let them 
perceive the scenarios as realistically as possible. Specifically, 
we developed a Google Glass app called IoT Privacy to 
dynamically display scenarios based on participants’ location. 
Participants were then asked to walk around our university 
campus wearing Google Glass. As participants move towards 
one of 130 selected locations on campus, the IoT Privacy app 
presents the scenario pertaining to this location. Participants 
then answer several questions on their preferred privacy 
protection in the given scenario. Our immersive spatial setup 
seems more suitable to collect accurate privacy preferences 
from participants than a traditional online survey system, since 
it situates them in scenarios and is therefore likely to better 
capture the situatedness of privacy decisions [22, 23]. In 
addition, location has been found to be a particularly critical 
component in understanding people’s privacy decision-making 
[12, 15, 17, 21]. 

A. Data Description 

In order to formalize users’ privacy preferences, we 
defined several parameters representing both contextual 
characteristics of IoT scenarios (“contextual parameters”) and 
possible user reactions (“reaction parameters”). In earlier 
interview and online survey studies [24, 25], we had already 
identified five contextual parameters that have the most 
influence on the reaction parameters.  

These five parameters define the place where the monitor-
ing occurs (parameter “where”), the type of information being 
monitored (“what”), the entity that is monitoring (“who”), the 
reason for monitoring (“reason”), and the frequency of the 
monitoring (“persistence”). We also identified the most impor-
tant reaction parameters that serve as proxies of people’s 
privacy preferences, namely the desire to be notified about the 
monitoring (parameter “_notification”) and the willingness to 
accept the monitoring (“_permission”). In addition, we also 
found it important to measure people’s opinion on each 
monitoring activity in terms of comfort, risk, and appropriate-
ness (parameters “_comfort”, “_risk”, “_appropriateness”). 



Tables I and II display the contextual and reaction para-
meters, respectively, together with their values which are all 
categorical or ordinal. Each scenario can be described by an 
expression that includes every contextual parameter together 
with its respective parameter value for this scenario. 

TABLE I.  CONTEXTUAL PARAMETERS (“>” indicates the purpose) 

Parameter (id) Values 

“where” (C1) 

0. your place 
1. someone else’s place 
2. semi-public space (e.g., restaurant) 
3. public space (e.g., street) 

“what” (C2) 

1. phoneID 
2. phoneID>identity 
3. location 
4. location>presence 
5. voice 
6. voice>gender 
7. voice>age 
8. voice>identity 
9. voice>presence 
10. voice>mood 
11. photo 
12. photo>gender 

13. photo>age 
14. photo>identity 
15. photo>presence 
16. photo>mood 
17. video 
18. video>gender 
19. video>age 
20. video>presence 
21. video>mood 
22. video>lookingAt 
23. gaze 
24. gaze>lookingAt 

“who” (C3) 

1. unknown 
2. colleague/fellow 
3. friend 
4. own device 

5. business 
6. employer/school 
7. government 

“reason” (C4) 
1. safety 
2. commercial 
3. social 

4. convenience 
5. health 
6. none 

“persistence” (C5) 0. once 1. continuously 

TABLE II.  REACTION PARAMETERS 

Parameter (id) Values 

“_notification” (R1) 

1. notify me, always 
2. notify me, just this time 
3. don’t notify me, just this time 
4. don’t notify me, always 

“_permission” (R2) 

1. allow, always 
2. allow, just this time 
3. reject, just this time 
4. reject, always 

“_comfort” (R3) 1. very uncomfortable/risky/inappropriate 
2. uncomfortable/risky/inappropriate 
3. somewhat uncomfortable/risky/inappropriate 
4. neutral 
5. somewhat comfortable/safe/appropriate 
6. comfortable/safe/appropriate 
7. very comfortable/safe/appropriate 

“_risk” (R4) 

“_appropriateness” 
(R5) 

B. Scenario Generation 

In our earlier online survey [25], we had created a broad 
range of 2,800 hypothetical IoT scenarios through random 
permutation of the values of the abovementioned five contex-
tual parameters. This approach allowed us to diversify the 
range of scenarios without much time and effort. However, 
given that participants responded to the created scenarios at a 
time and location that bear no relationship to the scenarios 
described in the survey questions, there could have been a 
sense of decreased realism to the scenarios. This may have 
negatively influenced the quality and accuracy of their survey 
responses. 

In the present study, we tackle this limitation by creating 
more realistic scenarios that are specifically related to known 
geographical locations, and by letting Google Glass prompt 
the scenarios based on the current location of the participant. 
To meet the former aim, our research team collaboratively 
created numerous scenario descriptions using Google My 
Maps, which lets multiple users create and update a custom 
Google Map. As shown in Fig. 1, we created landmarks with 
GPS coordinates and associated scenario descriptions 
containing all five contextual parameters. We aimed to make 
the scenarios as specific and realistic as possible by cross-
validating the scenario texts with each other. Through this 
approach, we were able to improve the realism of the 
scenarios compared to our earlier work. We produced 130 IoT 
scenarios in total for our campus. 

 

 

Fig. 1.  Collaborated Scenario Generation via Google My Maps 

As Google My Maps provides functionality to export all 
entries into a machine-readable format such as XML, we 
extracted all created scenarios and relevant information as a 
single XML file and converted it to a more compact format in 
JSON (see Table III). Note that we also transformed each 
scenario description into a specific sequence of values of the 
contextual parameters (context_param in Table III) to make it 
analyzable by data mining and machine learning algorithms. 
For the parameters “where” (C1) and “who” (C3), we then 
replaced their written values with categorical values defined in 
Table I. For instance, the School of Engineering is mapped 
with C1=3 because this place is considered as a public place. 

TABLE III.  SAMPLE JSON FILE 

Attribute Value 
location_name School of Engineering 

latitude -117.841359 
longitude 33.643657 
scenario A device of the School of Engineering (C3=6) records 

your voice to detect your presence (C2=9). This 
happens continuously (C5=1), while you are at the 
School of Engineering (C1=3), for safety (C4=1) 
purposes, namely to check whether you are in a 
restricted area. 

scenario_id 111 
context_param {C1=3, C2=9, C3=6, C4=1, C5=1} 



C. Location-based Scenario Display for Google Glass 

To operationalize our study, we designed and developed a 
novel Google Glass application named IoT Privacy that 
synchronizes the display of IoT scenario descriptions with the 
current location of survey respondents. Google Glass is a 
small computer that is worn like a pair of eyeglasses. Users 
can receive various information from its head-up display and 
built-in speaker, and also freely interact with their environ-
ments (i.e., hands-free user experience). Because Google 
Glass itself is not equipped with a GPS sensor, it needs to 
receive GPS information from a Bluetooth-paired smartphone.  

IoT Privacy operates in the following steps:  
1. The app tracks participants’ location every 40 seconds with 

GPS data received from a Bluetooth-paired smartphone, 
2. The app continuously compares the current location with 

the GPS coordinates of all scenario descriptions stored in a 
JSON-formatted database mounted in Google Glass, 

3. When the current distance to a stored scenario location is 
below a given threshold, the app displays the description 
and its unique scenario ID, as shown in Fig. 2, together 
with a sound notification. A scenario description is dis-
played only once, i.e., it does not appear any more if a 
participant returns to the same area later. 
 

  

Fig. 2.  IoT Privacy Screenshot 

D. Study Procedure 

We recruited study participants on a university campus 
through e-mails and posted flyers. Participants needed to be at 
least 18 years old, be proficient in English, have a smartphone, 
and not have serious vision problems. They were briefed 
individually about the overall study procedure, basic usage of 
Google Glass (including Bluetooth pairing with their smart-
phone), and functional details of the IoT Privacy app. Partici-
pants were asked to walk around campus while wearing 
Google Glass. When a scenario description relating to a 
nearby location was displayed in Glass, participants were 
asked to read it, record the scenario ID, and answer the 
following questions: 
1. Would you want to be notified about this monitoring? (R1) 
2. Would you want to allow this monitoring? (R2) 
3. How comfortable is the monitoring? (R3) 
4. How risky is the monitoring? (R4) 
5. How appropriate is the monitoring? (R5) 

 Table II lists all available answer options. Subjects were 
asked to answer our questions on paper. While this seems 
technically unimpressive and made data collection cumber-
some for the experimenters, our pilot tests showed this to be 
by far the best method for our participants, many of whom 
were first-time Google Glass users. Due to the small screen 

size of Glass, participants would otherwise have had to navi-
gate through numerous pages to view each single question 
with all its answer options. The smartphone was also not a 
feasible entry device since the glare from near-permanent 
sunshine during the duration of the open-air experiment made 
the display hard to view.  

Participants could carry out the experiment as long as they 
wished but were asked not to exceed three hours. After they 
returned Google Glass and the completed questionnaires, they 
took an exit survey and had a brief interview about their study 
experience. All participants received $10-60 in cash as com-
pensation depending on how many questions they answered. 

We recruited 172 participants in total over a period of 
three months: 106 males and 65 females (one person did not 
disclose her/his gender), with the majority (82%) being 18-25. 
Because we recruited the participants on campus, most of 
them have some university affiliation (107 undergraduate 
students, 63 graduate students, 1 postdoctoral fellow, 1 faculty 
member). Participants answered 39 scenario descriptions on 
average (std. dev: 14.72). After carefully checking our tran-
scriptions and excluding a few invalid responses (e.g., answer 
number out of range), we wound up with a total of 33,090 
privacy preferences for 6,618 IoT scenarios. 

IV. PHASE II: PRIVACY PREFERENCE ANALYSIS 

We first analyze the collected privacy preferences to 
understand how the contextual factors impact people’s 
reactions toward information monitoring activities in IoT 
environments. Specifically, we utilize the K-modes clustering 
algorithm to identify contexts (or situations) which might 
induce different privacy behavior of people. 

A. K-modes Clustering 

K-means clustering is a well-known data mining technique 
to group data points into K clusters. Each data point is 
assigned to the cluster with the nearest mean, a representative 
value of the cluster. However, K-means can only process 
continuous numeric values as its input. As a variant of K-
means, the K-modes clustering algorithm was designed to 
utilize the K-means paradigm in clustering categorical (or 
ordinal) values without data conversions. The K-modes algo-
rithm modifies the original K-means by (1) replacing cluster 
means with cluster modes, (2) using the simple matching dis-
similarity function instead of Euclidean distance to calculate 
the distance between categorical objects, and (3) updating 
modes with the most frequent categorical values in each 
iteration of the clustering [26, 27]. More specifically, K-
modes clustering divides categorical objects into K groups 
such that the distance from objects to the assigned cluster 
modes is minimized. Default simple-matching distance is used 
to measure the dissimilarity between two categorical objects. 
It is computed by counting the number of mismatches in all 
variables. This distance is weighted by the frequencies of the 
clusters (modes) in the data. We used the klaR [28], an R 
implementation of K-modes, on the collected privacy prefer-
ences so as to discover cluster modes and assign each data 
point to the specific cluster according to its dissimilarity 
function in an iterative clustering process. 



TABLE IV.  MODES OF CLUSTERS 

Mode 
Contextual Parameters Reaction Parameters 

Cluster Label Number of Instances Color Code 
C1 C2 C3 C4 C5 R1 R2 R3 R4 R5 

M1 3 2 6 4 0 1 1 6 6 6 CL1 Acceptable 2,608/6,618 Green 
M2 2 16 5 2 0 1 2 4 4 4 CL2 Neutral 1,199/6,618 Yellow 
M3 3 20 3 4 0 1 4 3 3 3 CL3 Somewhat unacceptable 1,492/6,618 Red 
M4 3 17 7 3 1 1 4 1 1 1 CL4 Very unacceptable 1,319/6,618 Black 

 

B. Determining Number of Clusters 

Determining the number of clusters (K) is the first step in 
the data clustering process. We need to find a balance between 
maximum data compression by assigning all data points into a 
single cluster (K=1) and maximum accuracy by assigning 
each data point into an individual cluster (K=n). Thus, we 
heuristically search for the optimal K by utilizing the well-
known Elbow method [29]. First, we compute the sum of 
errors (SE) of the K-modes clustering with a maximum of 50 
iterations, while increasing K from 2 to 10. The SE is defined 
as the sum of the distance between each instance of the cluster 
and the cluster’s centroid (mode): 

  





K

i
cx iK

i
cxdistSE

1

,  

where x is a data point belonging to the ith cluster and ci is the 
mode of the ith cluster. Next, we calculate the values for the 
difference between SEK and SEK-1, and find that the largest 
decrease in errors occurs when we increased K from 3 to 4 
(error difference: 1,080, see Fig. 3). Therefore, we chose 4 as 
a suitable number of clusters, and use it as a parameter 
(modes) for running the K-modes clustering algorithm on our 
data set. The algorithm then randomly chooses 4 categorical 
instances as the initial modes, and updates the modes through 
iterative clustering. Since we did not specify a maximum 
number of allowed iterations (iter.max), the algorithm contin-
ues until the clustering error is minimized. 

 

15173

14093

12000

12500

13000

13500

14000

14500

15000

15500

16000

2 3 4 5 6 7 8 9 10

S
E

K

Sum of Errors (SE)

 

Fig. 3.  Sum of Errors 

C. Interpretation of Clusters 

Table IV presents the resulting cluster modes, which are 
composed of both contextual and reaction parameter values. 
The clusters are quite distinct from each other, primarily in the 
contextual parameters “what” (C2) and “who” (C3). Each 
mode has a unique categorical value for these parameters, 

which indicates that C2 and C3 characterize clusters relatively 
more influentially than the other contextual parameters. 
Additionally, each mode has identical and unique values for 
the reaction parameters “_comfort” (R3), “_risk” (R4, reverse-
coded), and “_appropriateness” (R5). These parameters 
represent people’s privacy attitudes about IoT scenarios on a 
scale of 1 to 7. For example, R3=1, R4=1, and R5=1 indicate 
that a specific scenario is perceived by a participant as “very 
uncomfortable”, “very risky”, and “very inappropriate”, 
respectively (see Table II). On the other hand, the remaining 
reaction parameters such as “_notification (R1)” and “_per-
mission (R2)” do not show unique values per cluster. 

Since the reaction parameters R3, R4, and R5 have unique 
values for each mode, we can mark the clusters using these 
parameters. We labeled scenarios belonging to the cluster CL1 
as “acceptable” to the study participants as its mode has the 
second highest value for R3, R4, and R5 (namely 6 on a 7-item 
scale). Likewise, we labelled scenarios for CL2 as “neutral”, 
scenarios for CL3 as “somewhat unacceptable” (since the 
value of its reaction parameters (3) falls slightly below the 
scale average), and scenarios for CL4 as “very unacceptable.” 
As a result, 39.4% of the scenario descriptions were grouped 
into the “acceptable” while 19.9% were grouped into the “very 
unacceptable” cluster. 

D. Verification of Clustering Results 

To validate the distinctiveness of the resulting clusters, we 
performed three Welch’s t-tests on the R3 parameter between 
the following pairs of clusters: (CL1, CL2), (CL2, CL3), and 
(CL3, CL4). The reason for using Welch’s t-test is that all 
clusters have different variances in the R3 parameter. The tests 
confirm that the difference in the means of the R3 parameter 
between each pair of the clusters is statistically significant (p 
< 0.016, Bonferroni-corrected for three comparisons). Next, 
we also conducted Welch’s t-tests on the R4 and R5 parameters, 
and drew the same conclusion. Therefore, we find the clusters 
are sufficiently distinct from each other in terms of 
participants’ reactions to the scenarios pertaining to each 
cluster. 

E. Analysis of Results 

In this section, we compare the clusters with regard to the 
five contextual parameters to comprehend how people’s 
reactions to and perceptions of the given IoT scenarios vary 
depending on the contextual parameters. 

1) where 
Regarding the “where” parameter (see Fig. 4), participants 

consider monitoring activities as very unacceptable if they 
occur at their own private places like home (“where”=0, see 



CL4; p < .0001, Cohen’s d = 0.60691). This is mainly because 
people do not exercise self-control in such places, and thus do 
not want to be monitored. We confirm that these findings are 
consistent with existing research results such as [20]. In 
contrast, participants consider monitoring that occurs at public 
spaces as acceptable (“where”=3, see CL1; p = 0.000113, 
Cohen’s d = 0.2016). As for semi-public spaces (“where”=2) 
like a restaurant, participants’ attitude is somewhat neutral 
(see CL2) since it can be perceived as both a personal and a 
public place, depending on other contextual factors like 
“what” and “who.” 
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Fig. 4.  Relative Distribution of “where” Parameter per Cluster 
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Fig. 5.  Relative Distribution of “what” Parameter per Cluster 

2) what 
In regard to the “what” parameter (see Fig. 5), participants 

do not allow situations in which someone is videotaping them 
without a clear purpose (“what”=17, see CL4; p < .0001, 
Cohen’s d = 0.804) or monitoring their eye movements to 
figure out what they are looking at (“what”=24, see CL4; p 
< .0001, Cohen’s d = 0.6539). In this context, participants also 
consider video monitoring as somewhat unacceptable even if 
it has some purpose (“what”=20, 22, see CL3; p < .0001, 
Cohen’s d = 0.7449). Photo-taking (“what”=11, see CL1) is 
relatively more acceptable to the participants than video 
monitoring (“what”=17, see CL1); however, they still worry 
about this activity if it aims to detect their personal 
information like age (“what”=13, see CL4). Therefore, we can 

                                                           
1 In the Social Sciences, effect sizes less than 0.3 are commonly regarded as 
small, effect sizes between 0.3 and 0.6 as medium, and effect sizes larger than 
0.6 as large [30]. 

conclude that photo-taking and/or video monitoring of 
individuals could present significant privacy threats in IoT 
environments. On the other hand, participants are very open to 
provide information about their personal devices such as a 
unique phone identifier (“what”=1, 2, see CL1; p < .0001, 
Cohen’s d = 0.9571), presumably because they perceive this 
information not to directly represent their personal behavior. 

3) who 
In previous studies, we found that the identity of the 

information requester is an important determinant of people’s 
privacy decisions on various information monitoring activities 
[19, 24]. Through the present cluster analysis (see Fig. 6), we 
further confirm that participants’ responses to the given 
scenarios are very privacy-conservative if the entity of the 
monitoring is unknown to them (“who”=1, see CL4; p < .0001, 
Cohen’s d = 1.1071), or if it is the government (“who”=7, see 
CL4; p < .0001, Cohen’s d = 1.0858). Participants also have 
some privacy concerns if their school/employer (“who”=6, see 
CL3; p < .0001, Cohen’s d = 0.6562) tracks their personal 
information and behavior. Interestingly, a fair number of parti-
cipants feel safe if the monitoring was performed by their 
school/employer (“who”=6, see CL1; p < .0001, Cohen’s d = 
0.9128). These responses are probably because most partici-
pants were students who typically trust what their school does. 
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Fig. 6.  Relative Distribution of “who” Parameter per Cluster 

4) reason 
The monitoring purpose can take on one of six values: 

safety, commercial, social, convenience, health, and “not 
specified” (see Fig. 7). Participants consider monitoring as 
very unacceptable when it is performed for social (“reason”=3, 
see CL4; p < .0001, Cohen’s d = 0.9691) or safety-related 
purposes (“reason”=1, see CL4; p < .0001, Cohen’s d = 
0.6245). This means that these purposes are not convincing 
enough for participants to allow the respective monitoring 
activities. For instance, some participants commented that 
they could not understand why an IoT service would try to 
recommend new friends to them. Also, participants tend to 
consider a university campus as safe, thus having difficulties 
envisioning safety-related IoT service scenarios (e.g., finding 
wanted criminals through face recognition). Conversely, 
health is the most significant purpose for participants to accept 
a given scenario (“reason”=5, see CL1; p < .0001, Cohen’s d = 
0.6089). In addition, convenience is also a reasonable justifi-
cation (“reason”=4, see CL1; p < .0001, Cohen’s d = 0.9004). 
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Fig. 7.  Relative Distribution of “reason” Parameter per Cluster 

5) persistence 
Considering the frequency of monitoring, participants are 

usually concerned about the risk of privacy violations if IoT 
devices monitor them continuously, rather than just once (see 
Fig. 8). Participants are clearly unwilling to accept scenarios 
with continuous monitoring of personal information (“persist-
ence”=1, see CL4; p < .0001, Cohen’s d = 0.7252). In contrast, 
one-time monitoring is generally acceptable to them 
(“persistence”=0, see CL1; p < .0001, Cohen’s d = 0.3842). 
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Fig. 8.  Relative Distribution of “persistence” Parameter per Cluster 

V. PHASE III: PRIVACY PREFERENCE PREDICTION 

Finally, we build machine learning models to predict 
people’s privacy preferences in the analyzed scenarios. Speci-
fically, we aim to predict participants’ response to the question 

If this situation [= scenario] happens, would you want 
to allow it? 

using contextual parameter values and cluster membership of 
the scenarios as input features. We focus on the parameter 
“_permission” because it may reflect people’s substantive 
privacy decisions in IoT environments. We utilize a condition-
al inference tree for building machine learning models. 

A. Conditional Inference Tree 

Conditional inference tree (CTree) is a statistics-based 
decision tree learning algorithm that uses non-parametric tests 
as splitting criteria [31]. Unlike other learning algorithms such 
as recursive partitioning and regression trees (rpart), CTree 
uses a significance test procedure to select variables to split, 
instead of information measures like the Gini coefficient. In 
other words, CTree chooses predictor variables that have a 
statistically significant relationship (p < 0.05) with the re-

sponse variable as internal nodes of the tree. Because the 
algorithm performs multiple test procedures (i.e., permutation 
tests) to determine whether there exist statistical associations 
between any of the covariates and the response variable, it can 
not only avoid potential overfitting but guarantee unbiased 
predictor selection. We used party [32], an R implementation 
of the CTree algorithm, for training CTree decision tree 
models on our data set. 

B. Experimental Setup 

To investigate whether it is possible to predict people’s 
future privacy choices, we learn CTree models (classifiers) to 
predict values of the parameter “_permission” (R2) for the 
presented IoT scenarios. Among the attributes of our data set, 
we chose the five contextual parameters, “where” (C1), “what” 
(C2), “who” (C3), “reason” (C4), and “persistence” (C5), for 
specifying a basic feature vector for the classifiers. We saw in 
Section IV that all these parameters influence people’s privacy 
decision-making. We then added cluster membership (CLK), 
assigned by the K-modes clustering algorithm, as an addi-
tional input feature, to analyze its impact on the predictive 
power of the decision tree models. Since there are 4 possible 
values in the parameter R2 (1: allow always, 2: allow just this 
time, 3: reject just this time, 4: reject always), a prediction for 
this parameter can be formalized as a multi-level classification 
problem. We also noticed that many researchers have tried to 
predict people’s binary privacy decisions, namely whether to 
allow or reject (recommended) privacy settings for personal 
information disclosure [15, 17, 18]. Therefore, we also build 
and evaluate CTree models as binary classifiers by converting 
R2=1, 2 into “allow” and R2=3, 4 into “reject.” 

C. Experimental Results 

We used 10-fold cross-validation accuracy for estimating 
prediction performance of the CTree models. In addition, we 
also computed Cohen’s Kappa coefficient for gauging inter-
rater agreement in predicting the response variable. In general, 
Kappa coefficients ranging from 0.4 to 0.6 denote a moderate 
agreement between two classifiers [33]. For the binary class-
ification, we also measured the F1 score to consider both 
precision and recall for the classification results. 

Table V summarizes the prediction accuracy of the learned 
CTree models. For multi-level privacy decisions (4 class), the 
model can predict future decisions with the maximum accura-
cy of 62%. When we narrowed the possible range of decisions 
to binary (allow or reject), the accuracy increased to 77%. As 
can be seen, adding cluster membership as an additional 
feature improves the performance of both the multi-level and 
the binary classifiers; it led to an accuracy increase of 21% 
and 11%, respectively. Performance measures of previous 
classifications of binary privacy decisions [15, 17, 18] are not 
directly comparable because each work uses different data sets 
and definitions of “privacy decision.” However, when consi-
dering both the F1 score (0.701) and the Kappa coefficient 
(0.511), our binary classifier shows a prediction accuracy at 
least above the average of other works. We expect the 
performance could be further enhanced with the collection of 
extra training data. This is because a more sufficient amount 



of data would reduce the uncertainty for the classifier. For 
these reasons, we believe that it is practically feasible to 
predict privacy preferences of users in IoT environments if we 
can extract and model privacy-related contexts from the IoT 
environment. 

TABLE V.  CLASSIFICATION PERFORMANCE 

Response 
Variable 

Predictor Variables Acc. F1 Kappa 

R2 (4 class) C1 + C2 + C3 + C4 + C5 0.41 - 0.116 

R2 (4 class) C1 + C2 + C3 + C4 + C5 + CLK 0.62 - 0.461 

R2 (binary) C1 + C2 + C3 + C4 + C5 0.66 0.358 0.148 

R2 (binary) C1 + C2 + C3 + C4 + C5 + CLK 0.77 0.701 0.511 

VI. DISCUSSION AND FUTURE WORK 

We showed that it is feasible to group privacy scenarios 
into clusters with distinct user reactions, and to predict privacy 
preferences using data mining and machine learning tech-
niques. Yet, our work still has some issues that need to be 
considered and addressed. 

A. Skewed Participants 

Our study participants were skewed toward students aged 
18-25 (82%) since we recruited them on campus. This may 
result in a sampling bias that makes our results less general. 
For instance, we had earlier conducted a cluster analysis on 
data collected from Amazon MTurk workers whose age was 
predominantly between 25 and 40 (57.5%) [25]. We used the 
same algorithm, but the outcomes were slightly different. 
Regarding the “who” parameter, for instance, MTurkers trust 
their own personal device (“who”=4) the most, while partici-
pants recruited for the present study trust their school or 
employer (“who”=6) the most. Thus, we might also need to 
consider demographic information when building machine 
learning models for the prediction of privacy preferences. In 
this regard, we plan to validate our approach and arguments 
with more representative samples, thereby establishing a 
future direction of this research (e.g., into personalized priva-
cy preference prediction). 

B. Usability of Google Glass 

Many participants mentioned that they became interested 
in our study because of Google Glass. They wanted to get 
hands-on experience with Glass as it is considered the most 
famous smart glass, and has been currently discontinued by its 
manufacturer. However, participants also complained about its 
usability. The major issue was the visibility of text shown in 
the Google Glass display. Google Glass users need to glance 
slightly upwards to view the screen rather than look straight. 
For this reason, a few participants felt dizzy shortly after using 
Google Glass and one even withdrew their participation early. 
Moreover, some participants had difficulty reading the 
scenario descriptions displayed in small letters on the screen. 
As discussed before, we also had to ask participants to record 
their responses on paper questionnaires because many screens 
would need to be navigated to see questions and all answer 
options in Google Glass. For these reasons, we need to devise 
a new way of letting participants interact with Google Glass. 

A voice user interface to our IoT Privacy app could be a 
possible approach for achieving better interaction: text-to-
speech for presenting scenarios and questions, and speech 
recognition for collecting user responses. Its feasibility in 
practice will still need to be verified though. 

C. Privacy Paradox 

We analyzed stated privacy preferences collected in a 
simulated IoT environment, and not actual behavior in a 
working IoT environment. Although we tried to make partici-
pants believe they were in a real situation, we still do not 
know how they would actually behave in real world situations. 
Previous research [34-36] has confirmed that people’s stated 
privacy preferences are often inconsistent with their actual 
behaviors. However, operational IoT environments are not 
available to us yet, and hence our setup represents the closest 
possible approach to privacy decision behavior in the wild. 

VII. CONCLUSION 

In this paper, we investigated how people’s privacy 
decision-making in IoT environments can be modeled and 
predicted. We aimed to simulate user experience in a real IoT 
environment as realistically as possible, by letting users walk 
around campus wearing Google Glass, and occasionally 
asking them about their preferences regarding hypothetical 
privacy-invasive information tracking at nearby locations. We 
then performed a cluster analysis on the collected preferences 
in order to understand users’ privacy concerns towards IoT 
applications and services. The results of the analysis show that 
IoT scenarios can be grouped into four distinct clusters in 
terms of their perceived privacy risks. By comparing the 
resulting clusters, we also extracted a number of contextual 
factors causing privacy threats in IoT. Lastly, we built deci-
sion tree models to predict users’ future privacy decisions by 
utilizing both contextual information and its cluster member-
ship as training data. The trained model showed 77% accuracy 
in predicting a binary privacy decision whether to accept or 
reject a specific IoT scenario. 
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