A crucial prerequisite for the capability of an artificial intelligence system for processing natural
language and reasoning about given facts is a knowledge representation (KR) scheme that in-
cludes conceptual knowledge, i.e. knowledge about the attributes of objects which are denoted
by concepts. At least for avoiding redundancy, this knowledge is usually stored in the form of
concept hierarchies, in which subconcepts inherit the information connected with their super-
concepts if no local information exists.

In traditional artificial intelligence research, a great number of representation schemes have been
developed for this purpose in the last two decades. These include in particular the so-called
“frame” representations, semantic networks, predicate calculus, and (as an attempt to get the
best out of all these whilst leaving out their deficiencies) the family of the KL-ONE languages.
which have been investigated by Brachman (1978), Brachman & Schmolze (1985), Kaczmarek et
al. (1986), v. Luck et al. (1987), Kobsa (1989) and several others. More recently, connectionist
networks for the representation of conceptual hierarchies have been implemented as well (see
e.g. Hinton 1981, Feldman & Ballard 1982, Cottrell 1985, Shastri & Feldman 1986, Derthick
1987a, b; Diederich 1988a, b, c; Shastri 1988a, b, forthcoming).' Unlike the case with traditional
KR systems, processes in these networks operate in a parallel way and largely without a global
control mechanism.

As will be shown, the expressive power of current connectionist systems for the representation
of conceptual knowledge is weaker than that of representation systems developed in traditional
artificial intelligence research. Nevertheless, it seems worthwhile to investigate the extent to
which specific processes operating upon such conceptual representations can be more profitably
realized in a parallel rather than a classical architecture. In this paper, three of these processes
will be identified: classification in hierarchies which allow for the cancellation of attributes; (a
rudimentary form of) Wilensky's (1983) concretion algorithm; and classification in concept hier-
archies which include some sort of Rosch’s (1973, 75) basic categories. Connectionist realizations
of these processes on the basis of the Rochester Connectionist Simulator (Goddard et al. 1988)
will be discussed.

2 Concept Representation in Traditional Al

In this section, a short survey of traditional concept representation systems will be given which
is focused on the KL-ONE philosophy, a standard representation technique for conceptual knowl-
edge in the field of natural-language processing. The SB-ONE system (Kobsa 1989) will be taken’
as a special representative of this representation language family, but any other member would
do as well.

1Several more connectionist networks exist which are capable of representing conceptual knowledge, but cannot
represent concept hierarchies. These will not be dealt with in this paper.
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e the general level, which represents knowledge of a universal nature — in particular, knowl-
edge about classes of objects; this part of a knowledge base is often addressed as the
terminological box (T-Box) in KL-ONE jargon:

e the individualized level, which represents knowledge about individual facts and objects (the
individuals) in the domain of discourse; this part of a knowledge base is often regarded as
forming part of the so-called assertional box (A-box).

At both levels, the most important means of representation are concepts and attribute descrip-
tions. General concepts correspond to unary predicates which can be applied to individuals of
the situation to be represented. A relationship which normally exists between two individuals to
which concepts gc; and gc, can be applied, respectively, is expressed through a general attribute
description of one of these concepts. An attribute description of a concept gc; consists of a
binary role predicate and the concept gc,. This so-called value-restriction concept gc; restricts
the possible values of the relation’s second argument. The number restriction of an attribute
description specifies how many of these attributes the individuals in the denotation of gc; pos-
sess in the minimal, maximal and default case. A necessity marker indicates in SB-ONE whether
individuals to which gc, applies possess the respective attribute necessarily or only optionally.

Figure 1: Example of a concept hierarchy in SB-ONE

Fig. 1 shows an example of an SB-ONE concept hierarchy in a graphical notation. The ovals
and circles which do not possess lateral vertical chords represent general concepts and roles,
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is an XXX (as an arbitrary additional attnbute) The lower part represents the fact that blocks
possess exactly six sides all of which are rectangles, and exactly one xxx which is an XXX.

Individualized concepts in SB-ONE assert that, in the domain being represented, there exist
individuals to which the corresponding predicates apply. In Fig. 1, the concepts ‘POLYHEDRON",
‘RECTANGLE’ and ‘XXX’ as well as the attribute descriptions with role names ‘side’ and ‘xxx’
have been individualized (individualized concepts and roles carry lateral vertical chords). The
whole structure expresses the fact that in the given situation there exist a polyhedron and six
rectangles which form its sides, as well as an XXX which is its xxx.

Most of the rei:ently proposed KL-ONE languages possess a precise mathematical interpretation
(i.e. a so-called “semantics”). In the case of NIKL (Kaczmarek et al. 1986, Robins 1986), BACK
(v. Luck et al. 1987), KRYPTON (Brachman et al. 1983) and related languages. it consists
of a mapping from KR expressions into sets of individuals and two-placed relations between
individuals. (In the case of SB-ONE, the mapping is into sets, relations, and an interpretation
value out of {0,1}). Such an interpretation is given in order to make the meaning of representation
structures as clear as possible, both for reasons of communication (everybody should interpret the
same KR structure in the same way), and for a theoretical and practical evaluation of the behavior
of processes operating upon the KR structure (i.e. for verifying whether processes operating upon
a KR structure really always yield the desired result). Moreover, a precise interpretation makes
it possible to clarify the capabilities and limits of a KR system, i.e. helps to determine what can
and cannot be represented within the system.

Concepts can be ordered in a so-called subsumption hierarchy. A concept gc, subsumes a
concept gc; if, semantically speaking, the extension of gc, is a subset of the extension of gc;.
On the syntactical level, this is parallelled by the specialization relation (denoted by the broad
arrows in Fig. 1). A necessary condition for gc, to be a specialization of gc; is that each of
gcy's attribute descriptions is also possessed by gc,, either in restricted form or unchanged
("inherited”). The SB-ONE relations ‘restr’ and ‘inh’, respectively, hold true in these cases. In
languages of the KL-ONE family, concept hierarchies are always subsumption hierarchies, and
attribute descriptions can only be inherited via this kind of hierarchy.

In Fig. 1, the concept ‘BLOCK" is subsumed by the concept ‘POLYHEDRON'. Specialization
holds because the concept ‘BLOCK' inherits from ‘POLYHEDRON' the attribute description with
role name ‘xxx’ without changes (cf. the ‘inh’ relation in Fig. 1), and the attribute description
with role name ‘side’ in a restricted form (cf. the ‘restr’ relation; the number restriction interval
and the value restriction concept become more specific). In KL-ONE-related languages, both
‘POLYGON' and 'RECTANGLE' could also possess attribute descriptions of their own for which
inheritance or restriction relations would have to apply.

The process of classification (see e.g. Schmolze & Lipkis 1983) determines for a concept gc, the
most specific generalization, i.e. that concept gc; which subsumes gc, but does not subsume a
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Figure 2: Classification in traditional concept hierarchies

concept gcs which itself subsumes gc, (there may also exist several such gc;). The classification
process operates exclusively on syntactical grounds (i.e. on the basis of the specialization rela-
tion), and should therefore be correct and complete with respect to subsumption. In the example
of Fig. 2. the classifier would recognize that not only the concept ‘POLYHEDRON’, but also its
specialization '‘BLOCK’ subsumes the concept marked with ‘?°, since the attribute description of
‘7" is a restriction of that of ‘BLOCK' because of the more specific value restriction.

The process of realization (Mark 1982) [or recognition, MacGregor 1988] does similar things
for individualized concepts, namely to determine the most specific concept of which an individ-
ualized concept is an individualization. In Fig. 1, the realizer would recognize that the concept
‘POLYHEDRON1' actually is not an individualization of ‘POLYHEDRON', but more specifically
of ‘BLOCK".

In addition to the representational elements mentioned. a great variety of other elements usually
exist in classical conceptual representations. The SB-ONE language, for instance, also features
inverse attribute descriptions, role value maps (for expressing identity relationships between
role fillers), role differentiation (for forming partitions of the extensions of roles), as well as
exhaustiveness and disjointness relations between subconcepts, among many others. Here we
shall not deal with these advanced KR features, however, since they have hardly ever been realized
in a connectionist architecture.



In connectionist networks, knowledge about conceptual hierarchies is virtually always represented
in @ more or less “localized” way. This means that the conceptual information is not distributed
over a whole network, but locally separable within the network. There exists a wide variety
of connectionist conceptual representation systems which differ in expressive power and func-
tionality. Nearly all of these distinguish between concepts and attribute descriptions, as is the
case in traditional knowledge representation. However, no difference is often made between a
general level and an individualized level, i.e. between generalized and individualized concepts and
attribute descriptions. This reminds one of early frame representations such as FRL (Roberts
& Goldstein 1977), where individualized frames were regarded as general frames with so much
specific information associated with them that the cardinality of the extension was reduced to
one.

Moreover, many connectionist representations do not distinguish between attribute descriptions
and their value restrictions, neither on the general nor on the individualized level (if these levels
are distinguished at all). In the cases of Figs. 1 and 2, this would mean, for instance, that the
properties ‘has-sides-which-are-polygons’ and ‘has-sides-which-are-rectangles’ cannot be further
decomposed, but are primitive. Therefore, then, these two properties have nothing to do with
each other.

3.1 Example of a Connectionist Representation for Conceptual Hierarchies

For a first example of an implementation of a connectionist concept representation system, let
us regard the network described in Diederich (1988a, b, c), which we will name ‘DN’ for short.?
DN is partitioned into 4 spaces:

e the concept space, which contains the concepts
e the attribute space, which contains the attribute descriptions

e the instance space, which contains the instances (these correspond to the individualized
concepts of SB-ONE)

e the free space, which is a repository for new concept sub-networks to be recruited in

concept-learning processes (cf. Diederich 1988a, c)

For our purposes, it is sufficient to regard each concept, attribute description and instance
as corresponding to exactly one node in the network. Actually, concepts in DN are 3-unit

%]t should be pointed out that DN has primarily been developed for purposes of learning (Diederich 1988a, c).
and less for the purposes of retrieval and classification with which we are mostly concerned here.
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competitive networks (so-called winner-take-more networks) which allow a value restriction to
have more than one value. Since these features are not relevant for our purposes, we will ignore
them for the rest of this paper. The free space will also be disregarded here.

attribute space

XXX | >( 4EDRoN )<—| side:POLYGON

N P
concept side:RECTANGLE
space _

instance ‘ POLY- ’
space HEDRON1

Figure 3: Fig. 1 in Diederich’s architecture

Fig. 3 shows what elements of the knowledge base depicted in Fig. 1 can currently be represented
in DN, and how this is performed:

e All concepts are linked to their attribute descriptions by excitatory links. The activation of
a concept will thus activate all its attribute descriptions.

e Concepts may be ordered in a pre-defined hierarchy or heterarchy by establishing excitatory
links from subconcepts to their direct superconcept(s). Activation of the subconcept will
successively activate all direct and indirect superconcepts as well as their attribute descrip-
tions. Hence, for determining the properties of a concept, it is not necessary to directly
connect a concept with the attribute descriptions of its superconcepts, since they will be
“inherited” .

e All attribute descriptions are linked by excitatory links to the concepts which possess these
attribute descriptions. Whenever an attribute description is linked both to a concept and
its subconcepts, the weight of the latter links should be somewhat smaller than the for-
mer link. This guarantees that, when a set of attribute descriptions is clamped on, the
topmost concept which possesses the most of these attribute descriptions will become the
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e The nodes for individualized concepts in the instance space are linked to concepts (whose
attribute descriptions they inherit when clamped on) and possibly to additional attributes.

As can be seen, there exist a number of great differences between the KL-ONE-like knowledge
base depicted in Fig. 1 and its connectionist reconstruction in DN. First of all, all attribute
descriptions in DN are independent of each other. It is not possible to specify that one at-
tribute description is a specialization of some other. Of course, since value restrictions are not
distinguished, no hierarchy is possible for them either.

Also, instances in connectionist conceptual representations behave in principle like “normal” con-
cepts. As is the case for concepts, the activation of instances is propagated to their attributes. In
traditional knowledge representation systems, the “individualization” link between individualized
concepts and general concepts has much more importance for practically all processes operating
upon the knowledge base.

Consequently, connectionist “classification” in DN is also different from “classification” in tra-
ditional representations for concept hierarchies. Traditional classification takes attribute de-
scriptions of value restriction concepts into account and determines subsumption relationships
between concepts also on the basis of inferred subsumption relationships between these value
restrictions, if necessary. And it often also draws complex deductions on the basis of information
about number restrictions and disjointness (see e.g. Nebel 1988). Connectionist classification
only determines the concept which possesses the most of the activated attribute descriptions
(and need not do more since it is based on a simpler representation).

Moreover, no terminological distinction is usually made in the field of connectionism between
the classification of concepts and the “classification” (i.e. "realization”, in KL-ONE terms) of
instances. Due to the fact that there is no distinction between general and individualized attribute
descriptions both are performed in an identical way by clamping on the attributes which the
instance of the concept possesses.

3.2 Other Connectionist Conceptual Hierarchies
3.2.1 Localist Representations

Shastri (1988a. b, forthcoming) has implemented a connectionist representation for conceptual
hierarchies which overcomes some of the deficiencies mentioned (DN is currently also being
enhanced with that goal in mind). He proposes the introduction of separate property nodes
(which are identical in spirit to the “role nodes” in SB-ONE). A concept, a property and a
property value are linked by two independent nodes, so-called binder nodes. These binder nodes
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When ‘side’ and ‘POLYGON' are clamped on, binder node b2 will become activated and will
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a kind of connectionist classification as described above will take place.
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Figure 4: Detail of the general level of Fig. 2 in Shastri's architecture

Hollbach (1988a, b) extends Shastri's representation in that concepts can also be linked to sets
of possible values. These values can be declared to be mutually disjoint.

Although Shastri also introduced “specialization links™ between subordinated and superordinated
concepts, and similar links between property values, these cannot be introduced between any
two concepts and property values. For an example see Fig. 4: If one introduces the specialization
links marked by "?’, an activation of ‘BLOCK" and 'side’ will also activate 'POLYHEDRON' and
yield two values for the ‘side’ property of ‘BLOCK" (via binder nodes bl and b3, respectively).
Also, an activation of '/RECTANGLE" and ‘side’ will activate 'POLYGON" and thus also yield
‘POLYHEDRON' as a second, less specific classification result. Various mechanisms, however,
can be introduced to overcome these problems (e.g. by taking the delay of activation into account).

3.2.2 Semi-Localist Representations

Hinton (1981) presents a representation for conceptual hierarchies which is “local at a global scale
but global [= distributed, A. K.] at a local scale” (Hinton et al. 1986, p. 79). Essentially, a triple
of binary patterns is introduced for the representation of a concept-property-value relationship
(cf. Fig. 5). This binary triple is used for teaching a network of perceptron-like units (Rosenblatt
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verbal description representation pattern
POLYHEDRON side POLYGON 1000 1 0100
BLOCK side RECTANGLE 1100 1 0110
? side SQUARE 1010 1 0111

Figure 5: Possible representation of Fig. 2 in Hinton's architecture

The binary patterns for subconcepts in Hinton's system possess '1's in all positions where they
occur in the pattern of the superconcept, plus additional '1's which distinguish them from the
patterns of all other concepts. The special input combination function used by the system
guarantees that incomplete triples which contain the subconcept pattern are completed by using
specific information concerning the subconcept, if such information was previously entered into
the system, or otherwise by using information about the direct or indirect superconcepts. This
means that attribute descriptions can be inherited, but also that inherited attribute descriptions
can be overwritten by local exceptions. The same holds true for the relationship between concepts
and their instances.® Fig. 5 shows a possible representation of the general level of Fig. 2 in
Hinton's architecture.

Hinton uses an implicit encoding of subsumption relationships: the representation pattern of a
subconcept includes the representation pattern of a superconcept. This kind of representation
can be rather expensive: If one allows concepts to have more than one superconcept, the binary
vector for concept patterns must be at least of length n, where n is the number or concepts to
be represented. If only strict hierarchies are to be represented, the minimal pattern length is
[log,(n + 1)]. where ‘[ ]" is the integer ceiling function. It increases considerably for narrow and
for balanced hierarchies, and may even also be equal to n in the extreme case where the hierarchy
is just a linear path. Moreover, one should bear in mind that in both cases the distinguishability
of concepts need not mean good retrieval. It is probably no coincidence that in the examples of
Hinton (1981) the Hamming distance between patterns is always much greater than 1.

It seems possible, in principle, to introduce value restrictions instead of values at the general level,
and to regard them as concepts between which subsumption relationships can be defined. This,
of course, increases even more the minimal length of the concept pattern vectors. Classification
is not possible: In Hinton's system, incomplete triples containing the property and the value will
be completed by the supermost concepts which possess this attribute description. Hence, if n
attribute descriptions are clamped on one after the other, possibly as many as n different concept
patterns will subsequently result, which need not even be direct or indirect superconcepts. An
additional mechanism would be necessary to find the most general subconcept of them.

Actually, Hinton (1981) only discusses this latter relationship explicitly. His architecture, however, can also be
used for the representation of subsumption relationships, which the author seems to have had in mind anyway.

11



reatures Of an instance and of the concept to which the instance belongs are represented as
binary vectors. Connections between features are represented in 5 modules (Hopfield networks)
which are interrelated: The subject module represents an instance; the subject-type module
represents the concepts to which the instance belongs; the role-fillers module represents the set
of roles in which the features of the instance are fillers; the role-filler-type-restrictions module
represents the set of value restrictions imposed on role fillers by the concept represented in the
subject-type module; and the role-filler-types module represents the type of each instance in the
role-fillers module. Subsumption relationships are only indirectly expressed. namely by subset
relationships of the concept features. At the moment, the network is only used for retrieval
purposes and for specific kinds of probability inferences.

4 More Differences between Traditional and Connectionist Con-
cept Hierarchies

4.1 Spreading Activation vs. Connectionist Activation Propagation

In connectionist representations for conceptual hierarchies, search and inference processes are
realized by an activation flow in connectionist networks. The activation of a node is propagated to
those nodes with which the node is connected. In traditional architectures, so-called spreading-
activation processes are sometimes employed (cf. Quillian 1968, Collins & Loftus 1975, Fahlmann
1979, 81; Charniak 1986), which at first sight seem to be very similar to activation propagation
in the connectionist style. Although all sorts of intermediate systems can be defined, there are
generally a number of differences between connectionist networks and traditional networks which
employ spreading activation techniques (for others see Diederich, forthcoming):

¢ In connectionist networks, the activation flow is “semantically uncontrolled”: there exists
only one type of link (e.g. a concept’s link to its superconcept cannot be distinguished
from a link to one of its attribute descriptions), and only the link weights can influence
the propagation of activation. In traditional concept hierarchies, activation can often be
selectively propagated on specific links only, depending on the task to be solved.*

e In connectionist networks, the propagation of activation stabilizes after a certain period,
whereas spreading activation in traditional networks is generally aborted after a given time,
usually by an external controller.

e The result of spreading activation is usually evaluated by an external path evaluator, which
compares and analyzes paths of highly activated nodes and selects “interesting” and “mean-
ingful” paths. A corresponding mechanism does not exist for connectionist networks. In

“In some connectionist systems (e.g. that of Shastri 1988a. b, forthcoming). however, links can be disabled when
the network is to perform certain tasks. This seems to correspond to selective spreading activation.

12



4.2 Epistemological Status of Attribute Descriptions

In many traditional knowledge representation schemes for conceptual hierarchies, attribute de-
scriptions are regarded as necessary and sufficient conditions for a concept (this is particularly
true for the languages of the KL-ONE family). This means (a) that all objects to which a concept
applies possess all attributes described by the attribute descriptions of the concept, and (b) that
a concept applies to an object only if the object possesses all of the attributes described by the
concept’s attribute descriptions. The connectionist representations presented seem to adhere
only to the former conception: when concept nodes (and in Shastri's case their role nodes) are
clamped on, all their attribute values become activated. Attribute descriptions, however, are not
regarded as sufficient conditions since, when a set of attribute descriptions is clamped on, the
topmost concept which possesses the most of these attributes will become the most activated.
It is not necessary that this concept possesses all of these attributes, as must be the case in
traditional knowledge representation.

4.3 Interpretation of Knowledge Representation Structures

Traditional conceptual representation languages usually possess a well-defined interpretation,
mostly a mapping of language expressions into a domain (a structure consisting of a set of
individuals and two-placed relations between individuals) or into a set of truth values. A set-
theoretic or truth-functional justification can then be given for the results of the classification
and realization processes. On the basis of such an interpretation, the computational complexity,
decidability and completeness of these inference processes can also be determined (see e.g.
Brachman & Levesque 1984, Nebel 1988, Patel-Schneider 1988).

No such interpretation can as yet be given to connectionist conceptual representations. Explana-
tions for elements and processes of the implementation (such as that some node is supposed to
stand for the concept ‘elephant’ or the set of elephants, or that a certain type of activation pattern
is to determine whether or not some instance belongs to the set of elephants) can only be made
verbally. First attempts are currently being made to reconstruct the behavior of connectionist
models by formal means (see e.g. Cooper 1988, Shastri 1988b). No formal specification of the
relationship between such a model and its reconstruction has been given, however. There also
exist general attempts to relate connectionist models to symbolic models (see e.g. Smolensky
1988 and the open peer commentary). At least as far as the structure of conceptual hierarchies is
concerned, however, there still seems to be a long way to go towards some sort of connectionist
semantics comparable to the usual kinds of semantics of traditional knowledge representation
schemes, or to some kind of “procedural semantics”.

13



The expressive power of current connectionist systems for the representation of conceptual knowl-
edge is considerably weaker than that of representation systems developed in traditional artificial
intelligence research: usually no difference is made between a general knowledge representa-
tion level and an individualized level (and hence no conceptual distinction is necessary between
classification and realization); many connectionist representations do not distinguish between
attributes and their values or value restriction concepts (hence the latter cannot form a concept
hierarchy and cannot possess attributes of their own); and many representational elements of
traditional representations (e.g. inverse attribute descriptions, role value maps, role differentia-
tion, exhaustiveness or disjointness of subconcepts, etc.) have so far hardly been realized in a
connectionist architecture.

Nevertheless, it seems worthwhile to investigate the extent to which specific processes which
operate upon such conceptual representations can be more profitably realized in a parallel rather
than a classical architecture. In the following sections, three processes will be identified which can
be easily and elegantly integrated into a connectionist representation of concept hierarchies while
they are hard and cumbersome to integrate into a traditional architecture. These processes are
classification in hierarchies which allow for the cancellation of attributes, (a rudimentary form of)
Wilensky's (1983) concretion algorithm, and classification in concept hierarchies which include
some sort of Rosch’s (1973, 75) basic categories. Connectionist realizations of these processes
on the basis of the Rochester Connectionist Simulator (Goddard et al. 1988) will be discussed.

5 Cancellation of Attributes

Sometimes, when defining a concept hierarchy, one would like to see a concept B to be a
subconcept of some concept A, apart from a specific attribute description of A which B should
not possess. Another case is that the value restriction of an attribute description which B
inherited from A should not be a subconcept of A’s value restriction of this attribute description.
For instance, it sometimes makes sense to regard a whale as being a fish, apart from the fact
that it has lungs for breathing and not gills.

Several problems arise, however, if one introduces this kind of cancellation into a traditiona'
concept hierarchy (cf. Brachman 1985). Remedies can be found for all of them, mostly by
imposing additional restrictions on the use of cancellation (some of which are rather arbitrary,
however). For instance, the maximum number of cancelled attribute descriptions of a concept
can be limited (e.g. to one or two), the cancellation of already cancelled attribute descriptions
can be prohibited, or the cancellation can be restricted to optional attribute descriptions only.

At least the following problem remains, however: When operating in a top-down fashion, a
traditional classifier will prune away all branches in which attribute descriptions exist which
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further down in the hierarchy. Thus, the traditional classifier ought to search the whole hierarchy.
An alternative is provided by a connectionist architecture in which attributes are connected to all
concepts which possess these attributes (as is the case with the network of Diederich 1988a, b,
c). In this architecture, the appropriate concept will be found by the classifier even if attributes
have been cancelled for a superordinate concept.

There obviously exists a trade-off between exhaustive search in concept hierarchies and full con-
nectivity between attribute descriptions and concepts. Traditional classifiers avoid the former,
cannot rely on the latter, and thus have problems with cancelled attribute descriptions. Con-
nectionist networks possess the latter in any case and thus get classification in hierarchies with
cancellation for free.

6 Concretion

Wilensky (1983), Wilensky et al. (1986), Norvig (1987), Wu (1987), Jacobs (1988) and others
investigated the so-called concretion mechanism. Concretion is intuitively a very natural form
of reasoning. The idea behind it is that a description of an instance may be positioned lower in
the hierarchy than is justified by mere classification if there exists evidence gained from outside
the system (e.g. through contextual information) that a specific lower concept could have been
addressed by the description. That is, a concept can be positioned at a certain level in the
hierarchy even if specific necessary attributes are missing. Default values are supplied for these
attributes. Concretion thus is “a plausible inference, not a logical consequence of the taxonomy,
and thus is beyond the scope of KL-ONE classification” (Norvig 1987, p. 114). Contextual
information leads to a sort of priming which influences inference processes.

It is relatively easy to implement a rudimentary form of this kind of reasoning in a connectionist
architecture if one assumes that contextual expectations will result in a small residual potential
of the expected concept. This potential might be a residue of a preceding direct activation of the
concept itself (e.g. if the concept has been addressed in an ongoing dialog). or a consequence
of the activation of a context node with which the concept node is connected (Waltz & Pollack
1985, Hollbach 1988b).

For an example, assume that in Fig. 6 there exists such a residual potential for the concept
‘ROYAL ELEPHANT'. When the instance marked with '?" is clamped on (which activates
the ‘leg:CYLINDER" and ‘trunk:CYLINDER' attributes), “normal” connectionist classification
would yield the strongest activation for the concept ‘ELEPHANT' (see Section 3.1), and smaller
activation for the concepts 'ROYAL ELEPHANT" and ‘ANIMAL’. If the residual potential of
‘ROYAL ELEPHANT is strong enough to make up the difference between the classification-based
activation of 'ROYAL ELEPHANT' and 'ELEPHANT", concretion will yield ' ROYAL ELEPHANT"
as a result. '
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Figure 6: Classification enhanced by concretion

If the instance only had 'leg:CYLINDER' as an attribute, the classification-based activation of
‘ROYAL ELEPHANT" would be smaller than in the first case, and the context-based activation of
‘ROYAL ELEPHANT' would have to be stronger to overcome this difference. Thus there exists
a kind of natural trade-off between the strength of expectation and the degree of match between
the attributes of the instance and the expected concept.

The model is not restricted to the assumption that only one concept possesses a residual con-
textual potential: Assume that in Fig. 6 there exist several activated subconcepts of the concept
‘ELEPHANT" (possibly at different fevels in the hierarchy). The result of the concretion process
will be that concept (or those concepts) for which the sum of residual potential and activation
received from normal connectionist classification is greatest. Thus the model goes beyond the
least commitment principle (Wilensky 1983, Wu 1987) since the result of concretion is not
necessarily the supermost of the concepts which possess a residual potential (i.e. that activated
concept which has the fewest attributes in addition to those determined for the new instance).
Instead, the model also takes the possibly different residual potentials of these concepts into
account.

The model may however fail to meet the exhaustion principle (Wilensky 1983, Wu 1987) which
requires that the selected concept must (at least) possess all attributes of the instance. To
see why this is the case, assume that the hierarchy in Fig. 6 is extended by an additional
subconcept of '"ANIMAL’, namely "HORSE" (cf. Fig. 7). This concept thus possesses the attribute
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Figure 7: Misclassification due to contextual priming

‘leg:CYLINDER', but not ‘trunk:CYLINDER'. Normal connectionist classification would recognize
an instance which possesses exactly these two attributes as being an ELEPHANT. This concept
receives activation from both attributes, whereas the concept ‘HORSE’ is activated only by
the former. Nevertheless, if the concept 'HORSE' possesses a very high residual potential, it
might be selected by the connectionist concretion process even though it does not possess the
attribute ‘trunk:CYLINDER'. This “defect” is not surprising since connectionist inferences are
not logical inferences. but constitute a sort of fuzzy reasoning in which plausible assumptions
are as important as observed facts.

>

[ Basic Categories

Rosch (1973, 75, 78) has shown that there exist basic level concepts (or preferred concepts) in
human classification: In a forced naming task (cf. Rosch et al. 1976), subjects who are shown
the picture of a particular collie tend to respond that it is a dog. and not that it is a collie, a
mammal, or an animal. In a target recognition task, subjects confirm that a pictured collie is
a dog more quickly than they confirm that it is a collie, a mammal or an animal. These two
results indicate that the concept ‘dog’ forms a basic level concept in this hierarchy.



TRV TN sTrvs s \ACr v PIVEVOL LHUL DUDIV LV LWHLL P LD APPSO LY VT LS HTIVOL BUHISidl LUIHILEPLD

for which the extensions still possess many common attributes. Gluck & Corter (1985) also take
the (relative) cardinality of the extensions of concepts into account and introduce the notion
of category utility: For basic concepts, the product of the relative probability of an individual
which is in the extension of the concept and the expected number of correct predictions given
such an instance is maximized. Other work (e.g. Tversky & Hemenway 1984, Hoffmann &
Ziessler 1983, Corter et al. 1988) suggests that qualitative rather than quantitative differences
in the attribute descriptions of concepts might be a reason why these concepts are basic (i.e.
specific attribute descriptions - such as ‘part’ - play a more important role than others). Work
by Barsalou (1987) on the context-dependency of typicality (i.e. which concepts are regarded as
“typical” subconcepts of a superordinate concept) might even suggest a context-dependency of
- basic level concepts.

concept space attribute space

leg:CYLINDER

trunk:CYLINDER

p4
1 //
ELEPHANT /< 7 color:WHITE
/N
[/
| %
®. instance space

Figure 8: Classification in hierarchies with basic categories

We cannot deal here with the question of why certain concepts are preferred to others. We
will simply presuppose that certain concepts possess some basic level potential (which might
possibly be induced by the current context). Assume that in Fig. 8 the concept 'ELEPHANT'
possesses such a basic potential. Note that, unlike in Fig. 6, the instance marked by ‘?" now
possesses all three attribute descriptions. When this instance is clamped on, the concept ‘'ROYAL
ELEPHANT" receives the highest activation from connectionist classification, and 'ELEPHANT"
somewhat less. If the basic potential of the concept 'ELEPHANT' is strong enough. however, it
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An interesting variant of this connectionist solution is to base the response to a categorization
task not on the determination of the most strongly activated concept, but on a determination of
that concept whose potential is the first to exceed a certain threshold value. Given appropriate
weights of the links between attribute descriptions and concepts, as well as appropriate concept
activation functions for determining the increase of concept potential on the basis of its current
potential and the activation received from its activated attribute descriptions, basic level concepts
will be the first to exceed this threshold potential (although they receive less activation from their
attribute descriptions than more specific concepts, they have a better start due to their initial
activation). Thus one can not only account for the preferences in the above-mentioned forced
naming task, but also for the quicker performance in the target recognition task.

8 Summary

Although current connectionist realizations of conceptual hierarchies possess considerably less
expressive power than their counterparts in the field of traditional knowledge representation,
there exist a number of processes which can be very easily and elegantly realized in a connec-
tionist architecture whilst they are hard or cumbersome to implement on the basis of traditional
knowledge representation systems. Examples were given for classification in concept hierarchies
which allow for the cancellation of attribute descriptions, classification enhanced by concretion,
and classification in hierarchies which contain basic concepts. All of these processes constitute
some kind of fuzzy reasoning. and it seems intuitive that connectionist architectures can carry
out these tasks more easily than traditional systems.

All connectionist concept hierarchies with a minimal amount of expressive power currently pos-
sess a more or less local representation of knowledge (for a semi-localist one, see the models of
Hinton 1981 and Derthick 1987a, b, which were discussed above). One can expect that if the
expressive power is to be increased, even more of the uniformity of a network must be given up.
For instance, when one allows in Shastri's representation (see Fig. 4) that POLYGONs may also
have sides, then an activation of the concept 'POLYHEDRON' and the property 'side’ results
in an activation of the concept ‘POLYGON', which in return (since ‘side’ is still on) results in
an activation of the value of 'side’ for 'POLYGON". Special mechanisms (e.g. task-dependent
deactivation of binder nodes) must be introduced to prevent such undesired effects (and, indeed.
Shastri 1988a, b already utilizes such mechanisms in his system). Enhanced connectionist archi-
tectures for conceptual hierarchies will probably resemble tradiiional representations even more
than they do today. The idea of hybrid systems which make the best out of both approaches no
longer seems so futuristic, therefore.
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