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Abstract

With an increase in the number of different
visualization techniques, it becomes necessary to develop
a measure for evaluating the effectiveness of
visualizations. Metrics to evaluate visual displays were
developed based on measures of information content
developed by Shannon and used in communication theory.
These measures of information content can be used to
quantify the relative effectiveness of displays.

1. Introduction

Given that a sender wants to communicate a set of data
to a receiver, the question is what is the most effective
representation of the data. The encoding of data into a
visual display can take on several possible forms, but the
primary function of visualization is to display information
to facilitate understanding. Although there has been much
written about guidelines for good graphic design practices
[1-5], little is known about how to objectively choose the
better display overall.

Designers could benefit from metrics for evaluating
and choosing visual displays of information. Metrics have
been proposed by Brath for three-dimensional
visualizations [6]. Card and Mackinlay facilitate
comparisons of visualizations by categorizing the visual
data types present in displays and presenting this
information in morphological tables [7]. In this paper, we
introduce metrics using information content measures
based on Shannon's mathematical communication theory
or information theory. Quantifying the information
content of displays is a new approach towards the goal of
measuring the effectiveness of visualizations.

2. A representational framework

Before beginning our discussion on information
content measures, we must first establish a framework for
the visual representations in order to have a common
understanding.

First, in the communication of visual information
between sender and receiver, visualizations can be
analyzed at different levels: syntactic, semantic and
pragmatic. The syntactic information of a visualization
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can be defined as the marks, lines, regions and their
organization in the display. However, a syntactic analysis
does not involve an interpretation of what the display
represents. The semantic information associated with a
visual display is the meaning imparted by the marks and
their configurations. It is the receiver that perceives,
processes, and makes a semantic reading of the display
that can change as different visual representations convey
information at differing degrees of effectiveness.

The pragmatic level of visual communication deals
with the actual communication situation and the value or
usefulness of the display above and beyond the direct
semantic interpretation. This level accounts for the
individuality of the sender and/or receiver. and their
respective experiences or schema, as well also the
limitations of the communication medium.

3. Information content of visual displays

The theory of information introduced by Shannon
deals with the transmission of signals through a
communication channel [8]. In his treatment, information
is dealt with only on a syntactic level. No weight is given
to the semantics of the transmitted information. Although
Shannon explicitly states that his theory does not in any
way take into account the semantic aspects of
information, considerable confusion and misinterpretation
has resulted because of the loaded meaning attached to
the word information. However, within these limitations,
the Shannon theory can be applied in the context of
visualization.

The practical attempt to determine the information
content for a visual display requires a strict definition of
information content. It is important to understand what it
is that is being measured. For visual displays, we have
identified four types of information content measures.
These are the amount of information spanned by the data;
the amount of information spanned by a display (or the
capacity of a display); the amount of information in a
particular data display; and the amount of topological
information content.

3.1. The information content spanned by the data

For each set of data, the dimensions are the basic
elements of a display. For example, consider Table 1, a



simple product development dataset with five dimensions:
task, date, duration, resource, and status.

Table 1. The 5 dimensions of a project data set.

Define customer needs 1/1 5 days A complete
Concept generation 1/6 2 days B complete
Design product 1/6 1wk C complete
Produce prototype 1/11 2 wks A not complete
Test prototype 1/16 10 days B not complete

Each dimension contributes to the total information
content of the data. The amount of information spanned
by the data is the sum of the information contents for each
of the dimensions. The information content of each
dimension of the data set can be calculated as

1= logz[ﬂ?’?—] (1
preczsmn
The information content associated with a choice of 2
states, as in the example of task status is
Istams =loga 2 =1bit 2)
The information content associated with a choice of 3
states, as in the example of 3 resources
Lesource = 1082 3 =1.6bits A3)
The information content associated with a ratio or
interval variable is dependent on the range and precision
of the scale. For the task duration dimension, the range is
1 to 14 days with the precision equal to 1 day. This gives
14 increments with an information content of
1 guration =108214 = 3.8 bits (4)
The total information content of a data set is the sum
of the individual components given the independence of
the components. Thus, the total information content for
the data in Table 1 is 13.4 bits and is the total amount of
information that should be displayed in one graph.

3.2. The information content of a data display

If the size of the data set or number of dimensions is
too large, it may not be possible to represent all of the
data in one display. It may be necessary to split the data
into separate displays resulting in a higher overall
information content for the multiple displays. For
example, it is difficult to create a single display that can
display an entire database. Therefore, many smaller
subsets of the database along with their key attributes
would be displayed instead.

Figure 1 shows a visual display commonly known as a
Gantt chart for the product development data set. The
total information content for this particular display is 13.4
bits. The contributions from the individual dimensions are
shown on the graph.
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Figure 1. A Gantt chart showing data of Table 1.

In general, to create an effective display of
information, the information contents of the data and the
display should be equal. In this particular example, the
Gantt chart effectively represents the data.

3.3. Information capacity of a display

It is useful to measure the amount of information that
can be contained in a display. This measure would
represent the capacity of a display. For example, suppose
we wanted to represent relational information such as the
task dependencies and operational flows in a product
development process. These task-dependencies can be
represented in a 12 x 12 matrix as seen in Figure 2a and is
known as a design structure matrix or DSM. In a different
representation, the information could be shown in a nodal
graph as in Figure 2b.
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Figure 2. a) A DSM of 12 tasks (A through L) showing
task dependencies and b) a nodal graph representation.

For the general case of an N x N matrix, there are N
N possible locations for an X or a blank to represent the
existence of a task dependency. Each location contributes
1 bit of information giving a total of
I=N?% N bits )
For the 5 x 5 matrix shown in Figure 3a, there are 20
possible locations (the boxes on the diagonal are not used)
for a total of 20 bits for the matrix display.



The information capacity of an XY planar display is
dependent on resolution. The grid of Figure 3b delineates
the space to provide 400 possible locations for node
placements for a total of 400 bits. The capacity of a
display increases dramatically for higher resolutions.
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Figure 3. a) Matrix representation and b) planar nodal
representation for showing relational information.

3.4. Examples

The information content associated with putting m
marks on a display is

1o p!
r=es ©

where m = number of marks, and p = number of possible
locations. Therefore, for 5 tasks and 4 relations, the
information associated with the matrix in Figure 3a is

20! .
Imarks = logz[m) =12.2 bits (7)

X encodes nothing, high I

Y encodes nothing, high I
Z encodes year, I,

(a) planar

R encodes nothing, fixed, [=0

0 encodes nothing, high I
Z encodes year, I,

(b) cylindrical

The XY-plane representation (Figure 3b) requires
more information. The information content for this
display can be calculated by the sum of the information
associated with displaying the nodes and the information
associated with displaying the links between the nodes.

Liotal = Tnodes * 1 links ®
In the XY -plane, there are X x Y possible locations for
N nodes. Therefore, the information associated with
placing N nodes on the display is
Inodes = N 1og, (XY) bits ®)
I odes = 51087 (400) = 43.2 bits (10)
For N nodes, the number of possible directed links
between the nodes is N>-N, The information associated
with the links is the same as Equation 6.

20! .
Ilinks —logz{mj—IZ.Zblts (1])
Liotat = Inodes * Liinks = 554 bits (12)

Therefore, matrix visualization requires less
information (12.2 bits) for representing this relational
information as compared to the node and directed link
visualization (55.4 bits). The amount of information
increases even more for three-dimensional visualizations.

The information content measure of a display can be
used to explain the differences in the 3D visual
representations of a document database. The three
different representations are shown in Figure 4.

R encodes frequency, lower I

0 encodes nothing, lower I
Z encodes year, I,

(c) variable radius

Figure 4. Different citation graph representations.



In this particular visualization, nodes represent
documents and the links between the documents represent
citation references. The Z-axis encodes the year of the
document for all three representations, all document
nodes lie in the same plane for their corresponding year.
Therefore, the Z-axis contributes the same amount of
information, I,, to each display. In Figure 4a, the nodes
are arranged in XYZ space. In the planar view, the X and
Y axes encode nothing. In other words, the syntactic
representations of the nodes have no correspondence to
semantic meaning. Therefore, both the X and Y axes
contribute a relatively high amount of information.

In Figure 4b, the cylindrical representation results from
a fixed radius and a variable angle. Since the radius is
fixed, there is no information associated with the radius.
The angle, 6, encodes no semantic meaning and therefore
also contributes a high information content.

Finally, in Figure 4c, the radius in this representation is
used to encode the number of documents published in a
particular year. Fewer documents for a given year result
in a smaller ring radius. Also, although the angle in this
representation encodes nothing, the angle in this
representation contributes less information because the
size of the rings can be smaller resulting in larger angle
increments.

3.5. Topological Information Content

The topological information content of relational
information can be determined with the use of an
approach described by Rashevsky in the field of
biophysical mathematics [9]. A topology graph is created
for the data where each vertex of the graph represents an
unambiguous distinguishable part of the display. Figure §
shows 5 different topological graphs. Figures Sa, b, ¢ and
d each have 9 vertices, n = 9. Figure 5e has n = 11. The
edge of the graph represents a spatial or hierarchical
relationship between the vertices. The degree of the
vertex equals the number of edges that are incident with
the given vertex. Thus, in the graph in Figure Sa, the
vertex 4 is of degree two while vertex 9 is of degree one.
Figures 5d and 5e are topological graphs similar to those
found in visualization tools such as Narcissus [10] and
Hyperbolic Trees [11].

(b) (©

(d)
Figure 5. Topology graphs.
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The vertices are partitioned into /4 subsets according to
the degree of the vertex as seen in Table 2. A vertex is
equivalent to another vertex if their degrees are equal.
This is a 0™ order analysis. If the equivalence relation is
changed to include the first-order neighborhood, the
vertices of the graphs are then partitioned as shown in
Table 3. The number of vertices in the ith subset
(i=1,2,...h) equals n; and, therefore, Zn; = n. The subsets
for the topological graphs for 0™ order and 1% order
equivalency are shown in Tables 2 and 3, respectively.

Table 2. Subsets for for zero-order information content.

Graph Subset h Degree Vertices n

11 land9 2

2 2 2 2,3,4,5,6,7,20d 8 7
1 1 9 1

b 2 2 1,2,and 8 3

3 3 3,4,5,6,7 5

1 2 1,3,7,and 9 4

c 2 3 2,4,6,and 8 4
3 4 5 1

d 1 1 1,2,3,4,6,7,82nd 9 8
2 3 5 1

1 1 1,2,3,4,6,7,9,10,and 11 9

¢ 2 3 8 1
Table 3. Subsets for first-order information content.
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The probability p; that a randomly selected vertex of
the graph belongs to the ith subset is expressed by the
relation

pi=-t (13)
n
The information content based on the given
equivalence relation can be calculated by Shannon’s
formula for entropy, which represents an average amount
of information content per vertex and is given as
h
H =*2Pi logs p;

i=l

(14



Therefore, the topological information content for the
five different layouts for zero-order and first-order
equivalency is shown in Table 4.

Table 4. Topological information content for Fig. 7 graphs.

ap | d ord

a 0.76 bits 1.44 bits
b 1.35 bits 2.42 bits
c 1.39 bits 1.39 bits -
d 0.50 bits 0.50 bits
e 087bits  149bits |

The topological information content for the graph in
Figure 5d is the lowest with 0.5 bits. In general the
topological information content increases as you increase
the order from zero to one. The difference between 0™
order and 1* order topological information content can be
explained as follows. The 0" order topological
information content is a concept of information content
calculated from the symbols only. The 1% order (or k®
order if need be for k > 1) topological information content
can be regarded as a particular quantitative expression of
what is created by the symbols and is a measure of their
symmetry. Incidentally, the maximum topological
information content for a graph with n = 9 nodes is /o =
log, 9 = 3.17, and for a graph with n = 11 nodes, lnx =
logy 11 =3.46.

4. Summary

Metrics have been developed based on Shannon’s
information theory to facilitate the evaluation and design
of visual displays. These measures are used for
quantifying the amount of information content present in
the data in the form of its dimensions or its topology, and
also the information content of a corresponding
representational display. Again, it is emphasized that
information content does not account for a semantic
interpretation of the visual display. It cannot
quantitatively assess any increase in information due to
emergent features that were not a part of the original
relation set.
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