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Abstract

This paper describes major concepts of a scalable information
visualization framework. We assume that the exploration of hete-
rogenous information spaces at arbitrary levels of detail requires a
suitable preprocessing of information quantities, the combination
of different graphical interfaces and the illustration of the frame
of reference of given information sets. The innovative features of
our system include dynamic hierarchy computation and user con-
trolled refinement of those hierarchies for preprocessing unstruc-
tured information spaces, a new Focus+Context technique for vi-
sualizing complex hierarchy graphs, a new paradigm for visuali-
zing information structures within their frame of reference and a
new graphical interface that utilizes textual similarities to arrange
objects of high dimensional information space in 3-dimensional
visualization space.

1. Introduction

Visual exploration of complex information spaces has become
one of the “hot topics” in computer graphics research. A vari-
ety of novel visualization paradigms and frameworks have been
developed in recent years. Nevertheless achieving flexible visuali-
zations i.e., preprocessing large quantities of unstructured hetero-
geneous information, displaying information context (e.g. frame
of spatial or domain references) and supporting a variety of explo-
ration tasks carry over entirely new qualities of problems. Some
of the most important ones can be summarized as follows:

o Reducing information and Obtaining structure: The explo-
ration of large unstructured information spaces requires in-
formation preprocessing in order to reduce the active data
size to processible levels. In this regard "filtering out unin-
teresting items" and merging similar objects into groups are
necessary. Suitable metrics have to be applied for obtaining
similarities and structures in high-dimensional feature space.
Furthermore the degree of abstraction has to be controlled in-
teractively in order to browse information space at arbitrary
levels of detail.

o Visualizing information sets: The success of visualization
depends very much on its ability of supporting a variety of
exploration tasks (e.g. overview, zoom in on items of inte-
rest or details on demand). Different visualization methods
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are required for revealing information structure and informa-
tion contents (e.g. attribute values). Furthermore novel in-
teraction techniques are needed for controlling the degree of
abstraction within visual representations and for providing
navigational aids in information space.

o Visualizing the frame of reference: Effective explorations of
spatially referenced information (e.g. health data in certain
areas) require the combination of an adequate display of the
spatial frame of reference with the visualization of complex
information structures. It is necessary to find an appropriate
mapping between information and frame of reference. This
problem hasn’t been widely studied yet in the case of dis-
playing complex graphs such as large hierarchies over geo-
graphical maps.

A variety of visualization methods have been developed in dif-
ferent domains. Among these are techniques for visualizing and
interacting with hierarchies like Cone Trees [6] or Disc Trees
[13] which use horizontal and vertical cones or discs to layout
hierarchies. FSN [22] and Information Pyramids [1] exploit the
metaphor of 3D information landscapes to depict large hierarchi-
cal information spaces. Other approaches such as Treemaps [14]
and CHEOPS [5] are well known 2D techniques which use avail-
able screen space very effectively.

Several techniques have been developed for visualizing multi-
dimensional information. These methods try to map correlations
of objects in high dimensional information space to spatial corre-
lations in a 2D or 3D presentation space. Among these are ap-
proaches like IVORY |8], VR-VIBE (4] and Narcissus [10] which
exploit spring models to place objects according to their similari-
ties, whereby similar objects are placed spatially close together.
Other systems like Lyberworld[9] and SPIRE[24] use different vi-
sual metaphors like Relevance Spaces|9], Information Galaxies or
Themescapes[24] in order to visualize document collections or re-
sults from data base retrieval. FOCUS[21] is an interactive table
viewer which supports the exploration of complex object-attribute
tables by a combination of a focus+context technique, a hierar-
chical outliner for large attribute sets and a general easy-to-use
dynamic query mechanism.

Systems like Descartes |2] or Devise [7] provide solutions for
visualizing geographically related information. Different types of
icons, diagrams, colored faces and maps are used for depicting
data within their spatial frame of reference. In contrast to that
these systems do not support the visualization of rather complex
information structures as for instance abstract node link graphs or
hierarchies.



Most of the systems mentioned above solve, each in its own
manner, some of the single problems introduced earlier in this
section. But, up to now, there are still open questions of how to
provide a flexible framework for solving those problems in a more
general way.

We suggest a scalable visualization framework (cf. section 2)
in order to address the introduced problems. Basically our frame-
work integrates a scalable preprocessing pipeline for organizing
large unstructured high-dimensional information spaces (see sec-
tion 3) with several new scalable visualization techniques (cf. sec-
tion 4) for visualizing information structure along with informa-
tion contents. We propose a new paradigm for integrating the
visualization of information structures and their spatial frame of
reference in section 5. Future work and conclusions are covered in
section 6.

2. Basic concept of a scalable framework

The design of a scalable visualization framework requires a
formal and easily adaptable information model for describing in-
formation units and the general characteristics of the information
space. Therefore we introduce Information objects 10; as the basic
elements of our information model. The term information object
denotes a necessary abstraction of the data for specifying infor-
mation units. Each information object is characterized by a set of
attributes which can have arbitrary continuous ranges of values in
order to describe object properties. Information objects /0; can
be text documents, files or real world objects like cars, houses or
cities. A more formal transcription of our information model is
given by Wiinsche [25].

In order to solve the problems addressed in section 1 we
propose a framework which integrates a scalable preprocessing
pipeline and different visualization modules. Our preprocess-
ing pipeline implements several algorithms (e.g. clustering, dy-
namic hierarchy computation and neural networks) for analyzing
unstructured information spaces. Combining different techniques
within a flexible framework helps to scale preprocessing with re-
spect to the characteristics of the information space and users ex-
ploration tasks. In order to display preprocessing results and to
explore information space graphically the framework offers seve-
ral new visualization techniques as well.

Scalable Preprocessing

Preprocessing information in order to gain structure, e.g. iden-
tifying groups of related information objects or forming meaning-
ful subsets of the given data is a non-trivial task because there
is no general mathematical framework or paradigm on how to
build those groups or subsets. Basically our approach exploits
similarities between information objects in high dimensional fea-
ture space. Therefore we have to provide adequate measures
Sij = 8(10;,10;) for calculating similarities between information
objects /0; and 10;.

As stated in [3] computing similarity measures is rather com-
plicated because similarity can be defined in various ways, and of-
ten domain specific expertise is required for determining appropri-
ate measures. Furthermore the decision if two objects are similar
or not is specific to user goals. Lets consider an example. A num-

ber of firms are described by the volume of sales over a period of
several years. As it is the objective to group those firms with simi-
lar sales rates within this time period Euclidean Distance or some
Minkowski Distances [15] are sufficient measures. In contrast to
that the Dot product or a Correlation coefficient [15] are appropri-
ate if it is the intention grouping firms with similar sales growth
within that period of time. Thus either of the different measures
might be appropriate in certain cases.

Furthermore the applicability of a specific similarity measure
depends on the basic data types of the information object’s at-
tribute values. Thus similarities might have to be computed from
variables that are binary, nominal, ratio scaled or a combination of
these (cf. [15] for further information about these data types).

Summarizing the discussion above we conclude that provid-
ing a single similarity measure is not sufficient for a flexible pre-
processing of complex information spaces. Therefore our pre-
processing pipeline offers a variety of different metrics and simi-
larity measures : Euclidean distance, Ly-metric, Mahalonobis
distance, Dot product, Normalized dot product, Correlation co-
efficient, General M-coefficient and M-coefficient. Moreover the
pipeline can easily be extended by additional measures. In addi-
tion to flexibility regarding similarity measures our pipeline sup-
ports different algorithms for preprocessing information. Depend-
ing on exploration tasks the user can choose one of the following
techniques:

o Self Organizing Maps [16] which are suitable for determin-
ing an overview of the entire collection and revealing the
overall similarity structure between information objects in
information space

e Dynamic hierarchy computation which can be controlled in-
teractively in order to achieve sophisticated organizations of
complex data sets and to reveal patterns and relationships
among the data

Scalable Visualization

The effective presentation of different aspects of a given infor-
mation set (e.g. visualization of information structure or display
of concrete attribute values) requires the combination of differ-
ent visualization methods respectively scalable techniques which
can be adopted to specific exploration goals. Our scalable vi-
sualization framework provides several visualization techniques.
Beneath Highfields (cf. Figure 1), KOAN [18] and Parallel Co-
ordinates [12] we introduce the new techniques Magic-Eye- View
for displaying complex graphs and Shape Vis for depicting multi-
dimensional information sets. Furthermore we propose a new ap-
proach which we named Marching Sphere for visualizing complex
information structures with spatial dependencies.

3. Structuring and preprocessing information

Exploring information collections becomes increasingly diffi-
cult as the volume of information grows. Major problems arise
due to visual clutter and the limited screen space as the number
of objects exceeds some limits. Hence it is indispensable to apply
suitable preprocessing for gaining structures, extracting relevant
subsets of the information and for reducing the active data size to
processible levels.
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Figure 1. Example of information organization based on
self-organizing maps

3.1, Self-organizing maps

Self-organizing maps (SOM) as introduced by Kohonen [16]
provide an effective mechanism for preprocessing and organizing
unstructured data. SOMs are able to extract groups of similar in-
formation objects and can be described as nonlinear projection
from n-dimensional input space onto two-dimensional visualiza-
tion space. A self organizing map consists of a two-dimensional
network of neurons typically arranged on a regular lattice. Each
cell is associated with a single randomly initialized n-dimensional
reference vector. In the basic SOM algorithm the map is trained
with a set of input vectors several times. For each input vector the
map is searched for the most similar reference vector, called the
winning vector. The winning vector is updated such that it more
closely represents the input vector. Along with that the reference
vectors in the neighborhood around the winning vector are also
adjusted in response to the actual input vector. After the training
phase reference vectors in adjacent cells represent input vectors
which are close (i.e. similar) in information space. Thus SOMs
provide a useful topological arrangement of information objects
in order to display clusters of similar objects in information space.

Figure 1 illustrates the use of SOMs for structuring unorga-
nized information spaces in our framework. The picture was gen-
erated from a car data set with 6 dimensions. Each peak in the map
displays a cluster of similar objects. The number of objects within
a single cluster is mapped onto the height of the peak. Color is
used for displaying similarities between adjacent clusters where
bright intensities denote a higher degree of dissimilarity. Thus
SOMs are suitable for providing an overview of the entire infor-
mation space.

3.2. Dynamic hierarchy computation
The dynamic hierarchy computation is another possible

method to achieve predictable presentations of unstructured infor-
mation spaces, even if the given data set is not a "natural” hierar-

chy. If an abstraction is used to organize data, it is important to
remember that users may have different requirements when merg-
ing objects into groups. Thus we do not compute a fixed number of
static groups. Instead, a nested sequence of groups is determined
and organized into a hierarchy, whereby the requirements accord-
ing to the similarity of the objects within those groups increase as
the hierarchy is descended.

Dynamic hierarchy computation is carried out by adapted ag-
glomerative clustering algorithms [15]. Based on one of the al-
gorithms Single Linkage, Complete Linkage, Average Linkage,
Ward, Median, Flexible Strategy and Zentroid [15], information
objects /O are merged into groups according to their similarities
in information space. Therefore a symmetric (n x n) similarity
matrix S is computed (with » number of information objects JO in
information space) based on a single or on a combination of the
similarity measures enumerated in section 2.

S11 0 San
S=| - .
Sn,l Sn,n
where S;; =S;; Vi,j=1,---,n and
Sii =1 Vi=1-,n

The similarity matrix serves as a basis for a bottom up creation
of a binary dendrogram (cf. Figure 2 left).
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binary dendrogram with computed final hierarchy according
standardized hetcrogeneities to specified heterogencities

Figure 2. Construction of the final Hierarchy tree with 3
levels based on the binary dendrogram

In the first step we start merging the two most similar infor-
mation objects 10;,10j, i.e. where S; j = max into the first group.
Subsequently a new (n— 1 x n — 1) similarity matrix is calculated
and the next two closest objects (groups) are merged. This pro-
cess continues until all information objects 70; are processed and
the binary dendrogram is determined completely. A heterogene-
ity value, which denotes the average dissimilarity within a single
group of objects, is calculated for each node in the binary dendro-
gram.

The hierarchy computation within our framework is scalable in
terms of several similarity measures (c.f. section 2) and clustering
algorithms. Furthermore it is our objective to generate dynamic
hierarchies under different aspects from the same information set.
Therefore we need a basis which can be used effectively for a user

29



driven dynamic refinement of the hierarchy. The binary dendro-
gram (cf. Figure 2) which was computed previously provides such
a basis. If the binary dendrogram has been determined the final
hierarchy tree which represents the similarity structure of the in-
formation space is derived form it (cf. Figure 2). Therefore het-
erogeneity values have to be assigned with each level of the final
hierarchy tree. These values denote the allowed average dissimi-
larities of the clusters at the levels in the final hierarchy tree (e.g.,
the maximum heterogeneity value Hyuax is attached with the root
node). These heterogeneity values can either be specified inter-
actively by the user or determined automatically by our system in
order to achieve optimized clustering of the data. Once the number
of desired hierarchy levels and the heterogeneity values are speci-
fied the final hierarchy is derived from the dendrogram according
to the following algorithm:

1. Create the root node of the final hierarchy tree (RHT) ac-
cording to the dendrograms root node (RD).

2. Test if the heterogeneity of RD’s children (max. 2) are less
then the first (current) element in the heterogeneity list.

(a) If not, proceed with the node’s children at step 2.

(b) If yes, i.e. the heterogeneity of a child node in the bi-
nary dendrogram is less than the current value in the
list, insert this node into the final hierarchy. The be-
longing dendrogram’s node’s position of the inserted
node is stored.

3. All new inserted nodes form new sub-trees within the final
hierarchy. Execute step 1-2 for all those stored nodes with
the next value in the heterogeneity list.

4. Tterate step 1-3 until the heterogeneity list is processed com-
pletely.

Using the binary dendrogram is very efficient. Once the den-
drogram is created we do not need time consuming recomputations
of the similarity matrices for refining the hierarchy tree.

Thus complex information spaces can be browsed interactively
in a top down like fashion by starting with an overview with only
a few hierarchy levels (cf. Figure 3) and refining embodiments
by increasing the number of hierarchy levels for determining more
subtle patterns in the data (cf. Figure 4). The final hierarchy tree
contains information objects IO at its leaves. The remaining nodes
represent clusters which fulfil the heterogeneity conditions associ-
ated with each hierarchy level. The principle of hierarchy refine-
ment is depicted in Figure 3 and Figure 4. As the number of levels
is increased, bigger clusters are split up into smaller sub-clusters
(see Fig. 3 and 4). Thus a stepwise exploration at arbitrary levels
of detail is supported.

4. Visualization

Supporting a variety of different exploration tasks (e.g. dis-
playing different aspects of given information sets) as well as
processing different types of information (e.g. hierarchical infor-
mation structures or unstructured multi-dimensional information
spaces) requires several visualization methods or a combination
of these methods. Therefore our framework provides a range of
different techniques. Beneath known techniques (c.f. section 2)
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Figure 4. Hierarchy refinement with 7 levels

we propose the new Focus+Context technique Magic-Eye-View for
displaying complex hierarchy graphs and an adapted version of our
ShapeVis for visualizing multidimensional information sets.

4.1. Hierarchy Visualization

Visualizing the computed hierarchies becomes complicated as
the number of levels and nodes increases. Standard 2D hierarchy
browsers can typically display about 100 nodes [17]. Exceeding
this number makes perceiving details difficult. Zooming and pan-
ning do not provide a satisfying solution to this drawback due to
loss of context information. In order to solve these problems sev-
eral Focus+Context techniques have been developed, e.g. Graphi-
cal Fisheye Views [20] or the Hyperbolic Browser [17] which ex-
ploit distortion to enlarge a focus area while preserving context
information. In order to achieve an additional degree of freedom
for focussing arbitrary areas of the hierarchy graph, we propose
the new Focus+Context technique Magic Eye View. Our approach
maps a hierarchy graph onto the surface of a hemisphere. We then
apply a projection in order to change the focus area interactively
by moving the center of projection.

Graph mapping onto the hemisphere

Laying out the hierarchy tree is done with a simple 2-d algorithm
which is similar to the algorithm of Reingold and Tilford [19].
Thus we determine (x,y)-coordinates for each node of the hier-
archy within a Cartesian coordinate system. The graph is then
mapped onto the surface of a hemisphere. Each point on a sphere
can be described uniquely by two angles (A,¢). Thus the deter-
mined Cartesian coordinates can be mapped directly to spherical
coordinates.
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Figure 6. Projection rays before and after moving )

Change of Focus

The objective of change of focus is to enlarge those parts of the
graph which are in or near the focus region while the size of the
remaining part is reduced. We introduce a projection in order to
achieve this and to enable a smooth transition between the focus
and context region. Therefore we compute a ray S; from the center
of projection which is initially located at the origin pp = (0,0,0)
through each of the n nodal-points p; (cf. Figure 6 left), i.e. the
directions of these rays are determined by the nodes’ initial posi-
tions which were ascertained by the layout algorithm. In order to
change focus the center of projection pg can be moved arbitrar-
ily, whereby the directions of the rays S; are retained (cf. Figure
6 middle and right). New positions of the graph’s nodes are ob-
tained by computing the new intersection points of the rays 5; with
the hemisphere. Thus the distances between nodes are increased
or decreased depending on the position of pg. By increasing the
distance between nodes in the focus area we obtain more space to
view the details while maintaining context information. As well as
moving po along the X, Y, Z-axis, the hemisphere can also be ro-
tated, translated and zoomed. Compared to the Hyperbolic View
[17] we introduce additional degrees of freedom for browsing hie-
rarchies since we use change of focus along with conventional 3D
navigation. Figures 5 and 7 demonstrate change of focus. Figure
5 shows a complex hierarchy graph mapped onto a hemisphere.
The center of projection has been moved in Figure 7 in order to set
the focus to the marked sub-graph. We introduce colored rings for
minimizing the amount of confusion introduced by the distortion.
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Figure 7. Complex hierarchy graph with enlarged focus
region

4.2. Visualization of Multi-dimensional information

We developed the new technique ShapeVis! for further explo-
ration of multi-dimensional information sets (e.g. revealing at-
tribute values of the data or determining object similarities within
a cluster or at certain hierarchy levels). ShapeVis exploits an en-
hanced spring model for arranging n-dimensional information ob-
jects in 2(3)-dimensional visualization space according to their at-
tribute values. For reasons of readability, we briefly sketch the
basics of our model in this section.

Enhanced spring model

Information objects IO are described by a set of n atiributes®
which have continuous ranges of values. Thus each 10 in the
n-dimensional information space is a n-tuple (cy,...,cn) € R”
with (c1,...,¢n) > 0. The ¢; withi = 1,...,n can be considered
as the coordinates of the /0O in information space. (As an exam-
ple, consider the 10 as text documents and the attributes as certain
keywords. Then the coordinates (¢y,...,ca) of an 10 are the fre-
quencies of appearance of the key words in the document.)
Several approaches (e.g. [11]) use a classical spring model for
mapping objects from n-dimensional information space onto 2(3)-
dimensional visualization space. In the classical spring model
every dimension of the information space is related to a point
d; € ]RZ(R3), (i=1,...,n) in the visualization space. An infor-
mation object /O = (c1, ... ,cn) is mapped to a point p in visuali-
zation space using n springs - from each dimension point d; to p.
The stiffness of the springs are set to the values ¢y,...,cn. Then
the location of p is searched where the spring model is in balance.

We use an adapted version of our technique introduced in [23] within
the framework.

2The terms data dimension and attribute are used exchangeable in the
following sections.
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For fixed d; this location can be computed explicitly:

_Zimcicdi
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The location of p gives spatially intuitive information about the
information objects, i.c. the bigger the value of a certain attribute
(ci) the closer moves p towards d;. Furthermore objects with simi-
lar properties are spatially close in the visualization. Beneath these
advantages the classical spring model introduces two major draw-
backs.

1. ambiguity: Objects with different properties (coordinates
(c1,---,cn) in information space) may collapse to the same
point in visualization space (cf. [23]).

2. insensitivity against coordinate scalings: The information
objects (cy,...,cn) and (c1 - k,...,cn - k) with k > 0 can-
not be distinguished in the visualization because they are
mapped to the same point.

In order to solve the problems mentioned above we assign an
information object /0 not only with a point but with a small shape
which is composed off basic geometric primitives. Size, location
and orientation of these primitives are determined based on the
following enhanced spring model.

As in the classical spring model, we place a fixed point d; €
R?(R?) for every dimension of the information space. We attach
n springs with the constant stiffness ¢ > 0 to p. The other ends
of the springs are named py,...,ps. Now we consider » more
springs - from p; to d; with the stiffness c;. The points p, p1,...pn
are free moveable, the points dy, ... ,d,, are fixed. Then we search
for the state of balance of this spring system. Figure 8 illustrates
this principle. Applying this model, an information object /0 =
(c1,---,cn) is described by the n+ 1 points p, p1, . . . , p» Which can
be computed explicitly by solving the linear system of equations

2)-@):

Ty wid;
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P Z?:lwi @
with
wi=— fori=1,...,n 3)
1_C+Ci — A
Then py,...,Ppn are obtained by:
_cptadi .
p'_——c+c,- i=1,...,n “4)

Obviously the locations of p, py, ... p» depend on the attribute val-

ues (c1,... ,cn) of the information object and on the value of con-
stant ¢. Thus the points p,p;,...,Pp» describe an information ob-
ject10 = (cy,...,cn) uniquely. Thus we solve the problems intro-

duced by the classical spring model.
Obtaining geometric objects

Even if the points p,py, ... ,p» describe an object uniquely - n+1
points are not suitable for visualizing information objects. We
studied the use of small closed free-form-surfaces (c.f. [23]) for
obtaining an intuitive imagination of the locations of p,p1,...,pn.
But approximating point locations using free-form-surfaces be-
comes rather difficult when the number of information objects is

Figure 8. Enhanced spring model for an information
object /0 in 4-dimensional information space
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Figure 9. Visualizing an object (1,2,1,1,2) with different
parameters C.

increased to several hundreds or thousands because of the large
number of polygons required for generating smooth surfaces. (E.g,
the geometric complexity of the visualization exceeded a million
polygons when approximating 500 objects with a satisfying geo-
metric resolution.)

Therefore we propose basic primitives (n cylinders) for com-
posing geometric objects out of the p,py,...,pn. These n cylin-
ders tic up p and p; in order to build the geometric shape
which is assigned with the according information object. Lo-
cation, Orientation and lengths of each cylinder depend on
P,P1,- - - ,Pn and the constant ¢. Thus the geomteric objects de-
scribe the information objects 1O = (cy,...,cn) uniquely. This
principle and the influence of parameter c are illustrated in Figure
9. The strength of the deformation (length of cylinders) decreases,
if parameter ¢ is increased. If the length of all cylinders of a geo-
metric object is less than a certain threshold, we replace this object
with a small sphere around p. In this case we have the classical
spring model. The parameter controlled deformation is very use-
ful for visualizing a higher number of objects. First we obtain a
global impression by visualizing all objects with a high parameter
¢. The objects are small points and we try to detect clusters. If
we found a cluster, we zoom into it and decrease ¢ such that the
deformation of the cylinders provides more information about the
object properties (i.¢. a long cylinder into the direction of a certain
d; denotes large data value of the according ¢; of this object). Fig-
ure 10 illustrates this principle. Our approach is applied to a data
set which measures 6 demographic parameters of 106 countries.
We placed one point d; for each dimension of the data set in an
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Figure 10. Visualization of a demographic data set with
6 dimensions with deformable geometric objects.
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equidistant way on the surface of a sphere. The global clustering
of the data can be obtained within the sphere. The objects in the
upper right, which have big values in the dimensions Baby mor-
tality and Birthrate move towards the according dimension points
d;. Furthermore we can verify the assumption that these objects
have big values in the dimensions Baby mortality and Birthrate by
applying the deformation to the geometric objects. The cylinders
which point towards the Baby mortality and Birthrate dimension
points are much longer than the cylinders which point towards the
remaining d; (c.f. Figure 10 magnification of the upper cluster). In
contrast to that the cluster lower left is characterized by countries
with much bigger values with respect to the dimensions Literacy
and Gross Domestic Product while the values of Baby mortality
and Birthrate are rather small,

4.3. Combination of techniques

The techniques introduced above are combined in our frame-
work in order to support flexible visualizations at arbitrary levels
of detail. Therefore arbitrary subsets of the hierarchy can be se-
lected for further exploration.

e Selection of cluster nodes - Each cluster node of the hierar-
chy tree can be selected. Color is used to distinguish between
cluster nodes and object nodes, whereby the size of a cluster,
i.e. the number of objects is mapped to the intensity of the
node’s color. All objects of a selected cluster are visvalized
with ShapeVis in a separate display area.

o Selection of hierarchy levels - A representative is determined
for each cluster which resides at the selected level by calcu-
lating mean values of the data of all cluster members. Shape-
Vis is used to visualize those representatives and all remain-
ing objects at the selected level.

Exploring clusters and levels with ShapeVis reveals basic infor-
mation about attribute values and similarities between clusters and
information objects. In order to identify concrete information con-
tents, i.e. real attribute values, arbitrary shape objects can be se-
lected and visualized with parallel coordinates [12]. Labeling the
coordinate axis and displaying the data values provides more de-
tailed information about each information object.

Figure 11 illustrates the combination of ShapeVis, Magic-Eye-
View and Parallel Coordinates applied to a data set which de-
scribes 2440 houses with five attributes. The left picture shows
the 2440 houses with ShapeVis and reveals three visual clusters.
Exploration of single objects is rather complicated because of the
dense object cloud. Reducing the size of the objects and zoom-
ing into the cluster is possible with ShapeVis but makes analysis
difficult due to the vanishing dimension points. In this case it is
more meaningful to preprocess the data as introduced in section
3 in order to form manageable subsets. The picture in the middle
of Figure 11 depicts the hierarchical representation of the data set.
The three major clusters are represented by the hierarchy nodes at
the first level. Furthermore the tree shows that these clusters are
split up into smaller sub-clusters at the following levels. These
sub-clusters can be selected for further exploration.

We selected the first level of the hierarchy tree and obtained
the picture upper right which shows one representative for each
of the three major clusters. Thus we can explore the relationships
between the three clusters very easily by size, location and defor-
mation of its graphical objects.

The picture lower right shows the use of parallel coordi-
nates. In our example we selected a single information object
(Haus_516) which belongs to the cluster CN.1. The diagram dis-
plays the concrete attribute values of (Haus_516) compared to the
data values of the object which represents the whole cluster CN. 1.

5. Marching Sphere

In many application domains (e.g. demographic research,
health monitoring etc.) complex information structures are given
within a spatial frame of reference. In general the usability of
visual representations of given information can be enhanced sig-
nificantly by displaying these frame of reference. Geographic In-
formation Systems (GIS) provide various functions for displaying
this spatial frame of reference but do not offer the functionality for
depicting information structures like complex graphs or hierarchy
trees.

We propose in our framework the Marching Sphere as a new
approach for solving these drawback. The Marching Sphere com-
bines the visualization of complex information structures and the
display of the spatial frame of reference within the same visual
representation. In order to achieve this we had to solve a range of
problems:

o The visualization of spatially referenced information struc-
tures is rather complicated because of the high display com-
plexity, since the information structures have to be visualized
along with the spatial frame of reference.

e Techniques which generate compact embodiments of the
given information set have to be applied such that the vi-
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sual representation of the information can easily be displayed
within the geographical frame of reference.

o Suitable graphical representations have to be provided for the
spatial (geographical) frame of reference. Furthermore an
appropriate function has to be specified for mapping graph-
ical representations of the information into the virtual frame
of reference (e.g. onto the appropriate positions over the ge-
ographic maps).

e Interaction techniques are necessary for manipulating both
embodiments of the geographical frame of reference and in-
formation structure in order to support a variety of explo-
ration tasks.

Displaying information structure

We use abstract 3-dimensional graphs for displaying informa-
tion objects and revealing structural relations between informa-
tion units. Basically we apply a technique called KOAN [18]
(KOntext ANalysator), originated by SIEMENS. KOAN maps in-
formation objects from high-dimensional information space onto
3-dimensional visualization space according to the principle "con-
textual correlation = spatial proximity", whereas contextual cor-
relation denotes the similarity between information objects in in-
formation space. Thus similar objects are arranged spatially close
in the graph. KOAN uses different types of nodes for depicting
information objects (e.g. small cubes) and attributes (e.g. small
spheres). Furthermore edges can be displayed between graph
nodes in order to show whether objects or attributes are related
to each other or not. This approach allows an easily understand-
able and compact visualization of complex information sets and
shows structural relationships between units of information very
intuitively.
Displaying the spatial frame of reference

The visualization of the spatial frame of reference is based on ordi-
nary 2-dimensional maps. Maps provide very intuitive visualiza-
tions of geographical areas and offer sufficient space for displaying
further information.
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Figure 12. Refinement of the geographical granularity

We propose a hierarchical organization of these maps in order
to display geographic areas at different levels of detail. This seems
to be very useful because geographic areas usually contain sub-
areas. Imagine for example the geographic structure of Germany.
The country consists of several federal states, each of which con-
tains a number of different counties. Counties are subdivided into
zip code areas which are further split up into communities. Hence
it is necessary to support different geographical resolutions in or-
der to achieve a suitable visualization of the geographical frame
of reference. Map refinement is illustrated in Figure 12. The
picture shows a map of the German federal state Mecklenburg-
Vorpommern in the 4 different resolutions - state, county, zip code
area and community.

Combination of information structure and geographical
frame of reference

The Marching sphere implements the combination of both
embodiments of information and spatial frame of reference.
Therefore the 2-dimensional map is rendered in a virtual 3D scene.
The 3-dimensional graph which represents the related information
set is mapped into the virtual 3D scene as well, such that it is
located above the area in which the information is given. The in-
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formation graph is surrounded by a translucent sphere which is
linked to the related area of the geographic map. Thus we provide
unique mapping between information representation and frame of
reference.

Placing complex graphs above each sub-area of a geographic
map becomes increasingly difficult as the number of sub-areas
grows or the complexity of the graph exceeds some limits. In or-
der to avoid overlap of different graphs we propose the idea of the
Marching Sphere. Basically we show only one complete graph at a
time above an area of interest which can be specified interactively.
In order to explore the information related to the remaining areas
of the map, the sphere can be moved to arbitrary destination ar-
cas. The graph which was shown in the sphere previously is faded
out and replaced with the graphical representation of the informa-
tion related to the destination areca. Thus the sphere can ‘march’
throughout the whole geographical map driven by the user in order
to display the information related to the sub-areas.

Furthermore the Marching Sphere provides a range of visual
aids and interactions techniques for supporting a variety of explo-
ration tasks:

e Visualize context: The information related to the areas
around the sphere’s current position can be shown along with
the actual information graph. Therefore graphs with reduced
complexity are determined and placed above the belonging
areas.

e Show history: The areas which have been explored previ-
ously can be highlighted in the map along with the naviga-
tion path of the sphere.

® Reveal details: The information graph can be enlarged and
rendered in a separate display area for revealing details.

o Change geographical resolution: The user can refine arbi-
trary areas of the map by selecting a more subtle geograph-
ical resolution. Along with that, the visualization of the re-
lated information is refined as well. (i.e, the information set
related to the area which has been selected for refinement
is split up into subsets whereby each of these subsets is as-
signed to the related sub-area of the selected area.)

Figure 13 illustrates the marching sphere applied to spatially
related health information of the federal state Mecklenburg Vor-
pommem in Germany. Geographical overview is provided by the
map which shows the different counties of the state. A county is
selected and the related information is visualized as 3-dimensional
graph which displays relations between certain diseases within
that area. The smaller spheres around the selected area depict in-
formation objects related to the neighboring counties. The line on
the map depicts the exploration history. In order to reveal further
details such as node labels, the graph is magnified and rendered in
a separate display area (c.f. Figure 13 upper right).

6. Conclusions and Future Work

This paper proposed a general framework for information vi-
sualization. The integration of preprocessing and visualization en-
ables exploration of large information space at different levels of
detail by providing an overview of the entire information space
which can be arbitrarily refined by the user.

One of the major components of our framework is a flexible
preprocessing pipeline. Several algorithms and similarity mea-
sures can be applied for structuring unorganized data and forming
manageable subsets of complex information spaces. Especially
the user controlled dynamic hierarchy computation is a suitable
method to achieve predictable representations of given data and to
support data analysis at arbitrary levels of detail.

We propose several new visualization techniques for display-
ing multi-dimensional and hierarchical information spaces. Fur-
thermore our framework contains a new paradigm for exploring
spatially referenced information structures.

However, there are still a number of challenges for future work.
First of all evaluation of the introduced techniques needs to be per-
formed to determine their effectiveness and to verify their applica-
bility in different application domains.

Further work has to be done in order to enhance both the pre-
processing and the introduced visualization techniques. In future
research we would like to speed up hierarchy computation. Adap-
tive labeling of the hierarchy tree depending on the current focus
area is desirable to avoid visual clutter through overlap of object
labels. The 3D arrangement problem of the dimension points in
ShapeVis has to be investigated as well. Furthermore we would
like to investigate animations for smoothly fading in and out infor-
mation graphs in the Marching Sphere.

7. Acknowledgements

The authors wish to thank Prof. Schiitt, Dr. Kolpatzik and
Dr. Herzog from Siemens AG Munich for their constant support.
Thanks also to Thomas Biirger, Thomas Nocke and Axel Oestere-
ich for developing parts of the source code.

References

[1] K. Andrews, J. Wolte, and M. Pichler. Information Pyramids
(TM): A new Approach to Visualizing Large Hierarchies. In
A. Varshney and D. S. Ebert, editors, LBHT IEEE Visualiza-

tion *97. IEEE, Oct. 1997.
[2] G. Andrienko and N. Andrienko. Interactive Maps for Vi-

sual Data Exploration. In ICA Commission on Visualization,
Warsaw, 1998. GMD - German National Research Center for

Information Technology, 1998.
[3] M. Ankerst, S. Berchthold, and D. Keim. Similarity Cluster-

ing for an Enhanced Visualization of Multidimensional Data.
In G. Wills and J. Dill, editors, IEEE Information Visualiza-

tion *98. IEEE, Oct. 1998. ISBN 0-8186-9093-3.
[4] S. Benford, D. Snowdon, R. I. C. Greenhalgh, 1. Knox,

and C. Brown. VR-VIBE: A Virual Environment for Co-
operative Information Retrieval. In H.-P. Seidel and P. J.
Wills, editors, Computer Graphics Forum, Vol. 14, Num-
ber 3, (Proceedings Eurographics ’95). Eurographics As-
socition, Aug. 1995. ISSN 0167-7055.

[5]1 L.Beudoin, M.-A. Parent, and L. Vroomen. Cheops: A com-
pact explorer for complex hierarchies. In R. Yagel and G. M.
Nielson, editors, IEEE Visualization *96. IEEE, Oct. 1996.
ISBN 0-89791-864-9.

[6] S. Card, G. Robertson, and J. Mackinlay. The Information
Visualizer - An Information Workspace. In ACM SIGCHI

35



Mecklenb. -Vorpommein

Figure 13. Marching Sphere applied to spatially related health information of the federal state Mecklenburg Vorpom-
mern

7
{8}

—

9
[10]

(11}

[12]

[13]

[14]

[15]

'91 Conference on Human Factors in Computing Systems.

ACM, 1991.
DEVise. An Environment for Data Exploration and Visual-

ization. http://www.cs.wisc.edu/~devis/devise.html, 1998.
M. Gross, T. Sprenger, and J. Finger. Visualizing Informa-

tion on a Sphere. In J. Dill and N. Gershon, editors, IEEE
Information Visualization ’97. IEEE, Oct. 1997. ISBN 0-

8186-8189-6.
M. Hemmje. LyberWorld - A 3D Graphical User Interface

for Fulltext Retrieval. In ACM SIGCHI ’95. ACM, 1995.
R. Hendley, N. Drew, A. Wood, and R.Beale. Narcissus:

Visualizing Information. In N. Gershon and S. Eick, editors,
IEEE Information Visualization ’95. IEE, Oct. 1995. ISBN

0-8186-7201-3.
P. Hoffmann, G. Grinstein, and E. I. Grosse. Dna Visual

and Analytic Data Mining. In R. Yagel and H. Hagen, edi-
tors, IEEE Visualization *97. IEEE, Oct. 1997. ISBN 0-8186-

8263-9.
A. Inselberg and B. Dimsdale. Parallel Coordinates: A Tool

for Visualizing Multidimensional Geometry. In IEEE Visu-

alization ’90. IEEE, Oct. 1990.
C. Jeong and A. Pang. Reconfigurable Disc Trees for visual-

izing Large Hierarchical Information Space. In G. Wills and
J. Dill, editors, IEEE Information Visualization *98. IEEE,

Oct. 1998. ISBN 0-8186-9093-3.
B. Johnson and B. Shneiderman. Tree-maps: A Space Filling

Approach to the Visualization of Hierarchical Information

Structures. In IEEE Visualization ’91. IEEE, 1991.
L. Kaufman and P. J. Roussew. Finding Groups in Data - An

Introduction to Cluster Analysis. Wiley-Science Publication
John Wiley & Sons Inc., Brussels, 1990.

[16]
(171

(18]

[19]
[20]
[21]

[22]
[23]

[24]

[25]

36

T. Kohonen. Self Organizing Maps. Springer Verlag, Berlin,
1995.

J. Lamping, R. Rao, and P. Pirolli. A Focus+Context Tech-
nique Based on Hyperbolic Geometry for Visualizing Large
Hierarchies. In ACM CHI'95. ACM, 1995.

J. Panyr, U. Preiser, and T. Fihring. Kontextuelle Visual-
isierung von Informationen. In 19. Oberhofer Kolloquium

iiber Information und Dokumentation, 1996.
E. Reingold and J. Tilford. Tidier Drawing of Trees. IEEE

Transaction on Software Engineering, 7(2):223-228, 1981.
M. Sarkar and M. Brown. Graphical fisheye views. Commu-

nications of the ACM, 12(37):73-84, Dec. 1994,
M. Spenke, C. Beilken, and T. Berlage. FOCUS: The Inter-

active Table for Product Comparison and Selection. In ACM

UIST *96. ACM, 1996.
J. Tesler and S. Strasnick. FSN: The 3D File System Naviga-

tor. Silicon Graphics Inc., ftp://sgi.sgi.com/sgi/fsn, 1992.
H. Theisel and M. Kreuseler. An Enhanced Spring Model

for Information Visualization. Computer Graphics Forum,

17(3), Sept. 1998.
J. A. Wise, J. Thomas, K. Pennock, D. Lantrip, M. Pottier,

A. Schur, and V. Crow. Visualizing the Non-Visual: Spatial
Analysis and Interaction with Information from Text Docu-
ments. In N. Gershon and S. Eick, editors, IEEE Information

Visualization *95. IEEE, Oct. 1995. ISBN 0-8186-7201-3.
V. Wiinsche. Concepts for information visualization. Com-

puter Science Reports University of Rostock, 21:113-132,
1998.



