Aus offentlich zugéanglichen Quellen (www.microsoft.com) im Februar 1995 in Einzeldokumenten geladen und am 7.9.1999 wieder

integriert. Die ursprungliche Quelle http://www.microsoft.com/win32dev/uiguide/default.htm ist durch Umorganisation nicht mehr
verfugbar.

Dies ist ein Pre-Release des Windows 95-Styleguides.

Microsoft Corporation: The Windows Interface Guideline for Software Design. Redmond (WA) [Microsoft Press], 1995, ISBN
1-55615-679

Die deutsche Fassung Microsoft Corp.: Die Windows Oberflache. Leitfaden zur Softwaregestaltung. Unterschlei3heim [Microsoft
Press], 1995, ISBN 3-86063-226-4 ist vergriffen

The Windows Interface
Guidelines — A Guide

for Designing Software

Microsofte Windowse

February 1995

This is a preliminary release of the documentation. It may be changed
substantially prior to final commercial release. This document is provided for
informational purposes only and Microsoft Corporation makes no warranties,
either expressed or implied, in this prerelease document.

Aktualisierungen siehe ggf.:
http://msdn.microsoft.com/Ul/default.asp und http://msdn.microsoft.com/Ul/winuidraft.asp [06.09.1999]

Uwe Haupt haupt@tzi.de

Universitat Bremen

Technologie-Zentrum Informatik

Institut fir Software-Ergonomie und Informationsmanagement 07.09.1999

Uwe Haupt
Aus öffentlich zugänglichen Quellen (www.microsoft.com) im Februar 1995 in Einzeldokumenten geladen und am 7.9.1999 wieder integriert. Die ursprüngliche Quelle http://www.microsoft.com/win32dev/uiguide/default.htm ist durch Umorganisation nicht mehr verfügbar.
Dies ist ein Pre-Release des Windows 95-Styleguides.
Microsoft Corporation: The Windows Interface Guideline for Software Design. Redmond (WA) [Microsoft Press], 1995, ISBN 1-55615-679
Die deutsche Fassung Microsoft Corp.: Die Windows Oberfläche. Leitfaden zur Softwaregestaltung. Unterschleißheim [Microsoft Press], 1995, ISBN 3-86063-226-4 ist vergriffen

Uwe Haupt
Aktualisierungen siehe ggf.:
http://msdn.microsoft.com/UI/default.asp und http://msdn.microsoft.com/UI/winuidraft.asp [06.09.1999]

Uwe Haupt haupt@tzi.de
Universität Bremen
Technologie-Zentrum Informatik
 Institut für Software-Ergonomie und Informationsmanagement 07.09.1999

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give you
any license to these patents, trademarks, copyrights, or other intellectual property rights.

Copyright © 1995 by Microsoft Corporation. All rights reserved.

Microsoft, MS, and MS-DOS, Windows, and the Windows logo are registered trademarks and Windows NT
is a trademark of Microsoft Corporation.

2/13/95

Contents

Introduction i e xiii
What's Newo xiii
How to Use This Guide e e Xiv
How to Apply the Guidelines Xiv
Notational Conventionsttt XV
Chapter 1 Design Principles and Methodology oo 1
User-Centered Design Principles. 1
User inCONtrolot 1
DIrectnesso ot 2
COMSISIENCY « o v v e e e et e e e e e e e e e e 2
FOrgivVeness . . . oot e 3
Feedback. 4
ASthetiCS . . .o oo 4
SIMPLCILY . . oottt e 4
Design Methodology 5
A Balanced Design Team. 5
The Design Cycle e e e e 5
Usability Assessment in the Design Process 8
Understanding USers 10
Design Tradeoffst 11
Chapter 2 Basic ConCeptsottt i i i e i et it st e e e 13
Data-Centered Design.o e 13
Objects as Metaphor. 13
Object CharaCteriStICSttt e 14
Relationships.o 14
(070) 10757013 15 () K 15
PersiStenCe. oo 15
Putting Theory into Practiceot 15
Chapter 3 The Windows Environment. i it ittt ennans 17
The DesSKIOP. . . . oottt 17
The Taskbar. 17
The Start Button. 18
Window BUHONSt 18
The Status Areaot 19

February 13, 1995

Contents Xi

LComs . oo 20
Windowso 22
Chapter 4 Input BasiCs.t i i i i it et s et e 23
Mouse Input. 23
Mouse POINETSot e 23
MOUSE ACHONS. . . ¢ vttt et et et e e e e e e e 24
Keyboard Input e 26
Xt KOy S . ottt ettt e 26
ACCesS KeyS . oottt 27
Mode Keyso 27
Shortcut Keyso 28
PenInput. oo 29
Pen Pointers. 32
Pen Gestureso 32
Pen Recognition. o e 33
Ink Input . . . oo 33
Tar@eting. . . . oottt et e e 34
Chapter 5 General Interaction Techniques i, 35
Navigation.ot 35
Mouse and Pen Navigation. e 35
Keyboard Navigation. e 35
Sl CtION . . . e e e e 37
Selection Feedbacko 37
Scope Of SeleCtion 38
Hierarchical Selection 38
MOUSE SEIECHONttt et e e 38
Pen Selection. 43
Keyboard Selection 44
Selection ShOTtCULS.o 45
Common Conventions for Supporting Operations ittt .. 46
Operations for a Multiple Selection. 46
Default Operations and Shortcut Techniques. 46
ViIew OPEIations oo vttt ettt e e e e e e e e e e e e e e e e e e 47
Editing Operationso 49
Editing TeXt. . . o oot 49
Handles. 51
TranSactionSo vttt ettt e e e e e e e e e e e e 51
Properties o e 53

February 13, 1995

Contents Xi

Pen-Specific Editing Techniques e 53

February 13, 1995

Contents Xi

Transfer Operationsot e e e 59
Command Method 60
Direct Manipulation Method. 63
Transfer Feedback o e 68
Specialized Transfer Commands. 70
Shortcut Keys for Transfer Operationst 70
SCTAPS .« v e 71

Creation Operationsttt 71
Copy Command.ottt 71
New Commandttt e 71
Insert Command e 71
Using CONLIOlS. . . . oottt et e 72
Using Templatesttt e 72

Operations on Linked ObjJeCtS. oo e 72

Chapter 6 WIindowst i i i i it it sttt et s it it e s 75

Common Types of Windows. 75

Primary Window Componentsttt 75
Window Frames.o 76
Title Bars.o e 76
Title Bar [cons. e 77
THtle TeXt. . . oot e 78
Title Bar Buttons e 80

Basic Window Operationst 81
Activating and Deactivating Windows 81
Opening and Closing Windows. e 82
Moving WIndoWSot 83
Resizing Windows. e 84
Scrolling WIndows. 86
Splitting Windowso e 92

Chapter 7 Menus, Controls,and Toolbarsttt ittt ienenens 97

MENUS . . .o 97
The Menu Bar and Drop-down Menus 97
Common Drop-down Menus e 99
Pop-up Menuso 101
Pop-up Menu Interaction e 102
Common Pop-up Menus. 103
Cascading Menus.ottt 107
Menu Titles oo 107

February 13, 1995

Contents Xi

Menu Itemso 108

February 13, 1995

Contents Xi

CONIOLS. « . .t 112
Buttons 113
List BOX@S . . . oottt 120
Text Fields.o e 127
Other General Controls e e e e e e 132
Pen-Specific Controls. 136

Toolbars and Status Bars e 139
Interaction with Controls in Toolbars and Status Bars 140
Support for User OPtions e 140
Common Toolbar Buttons e 142

Chapter 8 Secondary Windows.ci ittt i it e s i n s a e nnnnenenes 145

Characteristics of Secondary Windows i e 145
Appearance and Behavior. 145
Window Placement 148
Modeless vs. Modal o e 148
Default Buttons 148
Navigation in Secondary Windows. e 149
Validation of Input. e 151

Property Sheets and Inspectors 151
Property Sheet Interface. 151
Property Sheet Commands e 153
Closing a Property Sheet 154
Property InSpectors 155
Properties of a Multiple Selection. 156
Properties of a Heterogeneous Selection 156
Properties of Grouped Items. 156

Dialog BOXES . . . o vttt 157
Dialog Box Commands 157
Layout.o 157
Common Dialog Box Interfaces 158

Palette Windows 167

Message BOXES 169
Message BoX TyPeso v vt e 169
Command Buttons in Message Boxes. 171
Message Box Text. 173

Pop-up Windows e 174

February 13, 1995

Contents Xi

Chapter 9 Window Managemento ittt ittt et n e nnnnrnenenenes 175
Single Document Window Interface 175
Multiple Document Interface 176
Opening and Closing MDI Windowsttt 178
Moving and Sizing MDI Windows 178
Switching Between MDI Child Windows 180
MDI AErNatives oottt e 181
WOTKSPaCeS o oo 182
WoOrkbooKsSo e 184
PrOjeCtS . . 185
Selecting a Window Model. 186
Presentation of Objector Task 187
Display Layout e 188
Data-Centered Design i e 188
Combination of Alternatives. e 188
Chapter 10 Integrating withthe System.o i s 189
The Registryo 189
Registering Application State Information. 190
Registering Application Path Information 192
Registering File EXtensions e 193
Supporting Creation. v vttt e e e e e e e 199
Registering Iconso 200
Registering Commands 201
Enabling Printing. e e 202
Registering OLE 202
Registering Shell Extensions 202
Supporting the Quick View Command 204
Registering Sound Events. 205
Installation.o e 206
Copying Files e 206
Making Your Application Accessible 208
Designing Your Installation Program 208
Uninstalling Your Applicationt e 209
Installing Fonts 210
Installing Your ApplicationonaNetwork. 211
Supporting Auto Play. 211

February 13, 1995

Contents Xi

System Naming CONVENtionSttt ettt ettt e ettt e e 213
Taskbar Integration 214
Taskbar Window Buttons. 214
Status Notification oo e 214
Message Notification 215
Recycle Bin Integration 216
Control Panel Integrationt e 216
Adding Control Panel Objects 216
Adding to the Passwords Object. 217
Plug and Play Support e 217
System Settings and Notification. 218
Modeless Interaction 218
Chapter 11 Working with OLE Embedded and OLE Linked Objects 219
The Interaction Model e 219
Creating OLE Embedded and OLE Linked Objects 221
Transferring Objects ottt e 221
Inserting New ODbJectsottt e 225
Displaying ObJectS.ttt e 229
Selecting ObJECtS . . . o oo it e e e e e e e e e e e e e 232
Accessing Commands for Selected Objects. 234
Activating ObJeCtS . . o oottt e e 236
Outside-in ACHIVALION. e e e e e e e e e e e e e e e e e e 236
Inside-out ACHVALIONottt 237
Container Control of ACHVALIONttt e 237
OLE Visual Editing of OLE Embedded Objects. 238
The Active Hatched Border 243
Menu INtegration u it e 244
Keyboard Interface Integration. 247
Toolbars, Frame Adornments, and Palette Windows 248
Opening OLE Embedded Objects ot e e 251
Editing an OLE Linked Object 254
Automatic and Manual Updating 256
Operations and Links e 256
Typesand Links. 257
Link Management it 257
Accessing Properties of OLE Objects.ottt e 257
The Properties Command. 258
The Links Command 260

February 13, 1995

Contents Xi

CoNVErtiNg TYPeS. « o v ottt e e e e e e e e 262
Using Handles 263
Undo Operations for Active and Open Objects i, .. 264
Displaying MESSAZES v vttt e e e e e 266
Object Application MESSAZES oo e e e e e e e e e e e e 266
OLE Linked ODbject MESSAZES v v v vt ettt e e e e e e e 269
Status Line MeSSages . . . oo v vttt e e e e 271
Chapter12 User Assistancettt i i i it et it e e a e 273
Contextual User ASSISTANCE. vttt ettt e e 273
Context-Sensitive Help. 273
Guidelines for Writing Context-Sensitive Help 276
TOOItIPS . . e et e 277
Status Bar MESSaZeS. o e e e e e e e 277
Guidelines for Writing Status Bar Messages i 279
The Help Command Button e 279
Task Helpo 280
Task Topic WIndOWSottt e 280
Guidelines for Writing Task Help Topics 282
Shortcut BUttOnso 282
Reference Help 283
The Reference Help Window e 283
Guidelines for Writing Reference Help i 285
The Help Topics Browser. 286
The Help Topic Tabso oo e e e 286
Guidelines for Writing Help Contents Entries 290
Guidelines for Writing Help Index Keywords 290
WizZards . . o e 291
Wizard Buttons e 291
Guidelines for Writing Text for Wizards. i 291
Guidelines for Writing Text for Wizard Pages. 294
Chapter13 Visual Designt i sttt e s a s a e a e 295
Visual CommuniCation oottt et e 295
Composition and Organizationttt ittt e 295
COl0T. . o 297
BOnts . . o 299
Dimensionality 300

February 13, 1995

Contents Xi

Design of Visual Elements oot e 300
Basic Border Styles 300
Window Border Style. 302
Button Border Styles e 302
Field Border Style 303
Status Field Border Style 304
Grouping Border Style e 305
Visual States for Controls. 305

Layout.o 312
Fontand Size.o 312
Capitalizationottt 315
Grouping and SPacing 315
ALGNMENL oo e 316
Button Placement. 316

Design of Graphic Images. 317
Tcon Design oo 318
Pointer Design. 320

Selection APPEaranCeo e e e e e e e 322
Highlighting 322
Handles. 323

Transfer Appearancet 324

OPENn APPEATANCE. . . . o o oo e et e 325

ANIMAtion 325

Chapter 14 Special Design Considerations ittt i rnenenenes 327

SoUNd . . . e 327

Accessibility 328
Visual Disabilitieso e 329
Hearing Disabilities 330
Physical Movement Disabilities 330
Speech or Language Disabilities. e 330
Cognitive Disabilities. 330
Seizure DIiSOTders. e 330
Types of Accessibility Aidsttt e 331
Compatibility with Screen Review Utilities. 332
The User's Pointof Focus. 334
Timing and Navigational Interfaces 335
Keyboard and Mouse Interface. 337
Documentation, Packaging, and Support. 337
Usability Testingottt e 338

February 13, 1995

Contents Xi

Internationalization. e 338
. T 339
GraphiCs 340
Keyboardso e 341
Character SetSottt 341
Formats. 342
LAy OUL. . o 343
References to Unsupported Features 343

Network Computing.ottt 343
Leverage System Support.ttt e 343
Client-Server ApplicationsSottt 344
Shared Data Files. 344

Records Processingo e e 344

Telephony 345

Microsoft Exchange 346
Coexisting with Other Information Services 346
Adding Menu Items and Toolbar Buttons 347
Supporting CONNECHONSt e 347
Installing Information Services.t 348

Appendix A Mouse Interface Summary i i e e 349

Appendix B Keyboard Interface Summary.co i e 357

Appendix C Guidelines Summaryco ittt i ittt e e 361

General Design 361

Design Process. 362

Input and INteraction.ttt e 362

Windowso 362

Controls. 363

Integrating with the System e 364

USEr ASSISTANCE . . . o o ot ettt et ettt e et e e 364

Visual Design.o 365

SoUNd . . . e 365

Accessibility 365

International USeTS 366

NetwWOrk USEIS . . . o oot e e e 366

February 13, 1995

Contents Xi

Appendix D Supporting Windows 95 and Windows NT Version3.51. 367
Appendix E Localization Word Liststtt i i it e e ie i nans 369
Bibliography 377
General Design 377
Graphic Information Design e e 378
Usability 378
Object-Oriented Design e e e e 378
ACCeSSIDIIILY . ..o 379
OrganizationsS. oo oot e 380
L€ 10T LT 381

February 13, 1995

Xiii

Introduction

Welcome to The Windows Interface Guidelines—A Guide for Designing Software, an
indispensable guide to designing software that runs with the Microsoft®Windows®
operating system. The design of your software's interface, more than anything else,
affects how a user experiences your product. This guide promotes good interface
design and visual and functional consistency within and across Windows-based
applications.

What's New

Continuing the direction set by Microsoft OLE, the enhancements in the Windows
user interface provide a design evolution from the basic and graphical to the more
object oriented—that is, from an application-centered interface to a more data-
centered one. In response, developers and designers may need to rethink the interface
of their software—the basic components and the respective operations and properties
that apply to them. This is important because, from a user's perspective, applications
have become less the primary focus and more the engines behind the objects in the
interface. Users can now interact with data without having to think about applications,
allowing them to better concentrate on their tasks.

When adapting your existing Windows-based software, make certain you consider the
following important design aspects.

 Title bar text and icons

o Property sheets

¢ Transfer model (including drag and drop)

e Pop-up menus

o New controls

o Integration with the system

o Help interface

e OLE embedding and OLE linking

e Visual design of windows, controls, and icons
e Window management

e Presentation of minimized windows

These elements are covered in depth throughout this guide.

How to Use This Guide

This guide is intended for those who are designing and developing Windows-based

software. It may also be appropriate for those interested in a better understanding of
the Windows environment and the human-computer interface principles it supports.

The content of the guide covers the following areas.

February 13, 1995

Introduction XV

e Basic design principles and process—fundamental design philosophy,
assumptions about human behavior, design methodology, and concepts
embodied in the interface.

o Interface elements—descriptive information about the various components in
the interface as well as when and how to use them.

o Design details—specific information about the details of effective design and
style when using the elements of the interface.

¢ Additional information—summaries and tables of topics included in the guide
for quick reference, a bibliography of works related to interface design, a
comprehensive word list translated into 27 languages to assist in product
localization, a glossary of terms defined in the guide, and an index.

This guide focuses on the design and rationale of the user interface. Although an
occasional technical reference is included, this guide does not generally cover detailed
information about technical implementation or application programming interfaces
(APIs), because there are many different types of development tools that you can use
to develop software for Windows. The documentation included with the Microsoft®
Win32® Software Development Kit (SDK) is one source of information on specific
APIs.

How to Apply the Guidelines

This guide promotes visual and functional consistency within and across the Windows
operating system. Although following these guidelines is encouraged, you are free to
adopt the guidelines that best suit your software. However, you and your customers
will benefit if, by following these guidelines, you enable users to transfer their skills
and experience from one task to the next and to learn new tasks easily. The data-
centered design environment begins to break down the lines between traditional
application domains. Inconsistencies in the interface become more obvious and more
distracting to users.

Conversely, adhering to the design guidelines does not guarantee usability. The
guidelines are valuable tools, but they must be combined with other factors as part of
an effective software design process, such factors as application of design principles,
task analysis, prototyping, and usability evaluation.

You may extend these guidelines, provided that you do so in the spirit of the principles
on which they are based, and maintain a reasonable level of consistency with the
visual and behavioral aspects of the Windows interface. In general, avoid adding new
elements or behaviors unless the interface does not otherwise support them. More
importantly, avoid changing an existing behavior for common elements. A user builds
up expectations about the workings of an interface. Inconsistencies not only confuse
the user, they also add unnecessary complexity.

These guidelines supersede those issued for Windows version 3.1 and all previous
releases and are specific to the development of applications designed for Microsoft®
Windows® 95, Microsoft® Windows NT™ Workstation 3.51 (and Microsoft®
Windows NT Server 3.51), and later releases. There is no direct relationship between
these guidelines and those provided for other operating systems.

February 13, 1995

Introduction XV

Notational Conventions
The following notational conventions are used throughout this guide.

Convention Used for

SMALL CAPITAL LETTERS Names of keys on the keyboard—for example, SHIFT,
CTRL, or ALT.

KEY+KEY Key combinations for which the user must press and hold
down one key and then press another—for example,
CTRLA+P Or ALT+F4.

KEY,KEY Key sequences for which the user must press and release

Italic text
Bold text
Monospace text

[]

one key and then press and release another—for example,
ALT,SPACEBAR.

New terms and variable expressions, such as parameters.
Win32 API keywords.
Examples of registry entries.

Optional information.

Cross-references to related topics are shown in the margin. Special notes about

material are shown in line.

February 13, 1995

CHAPTER 1
Design Principles and Methodology

A well-designed user interface is built on principles and a development process that centers on users and their tasks.

This chapter summarizes the basic principles of the interface design for Microsoft Windows. It also includes

techniques and methodologies employed in an effective human-computer interface design process.
User-Centered Design Principles

The information in this section describes the design principles on which Windows and the guidelines in this book are

based. You will find these principles valuable when designing software for Windows.

User in Control

An important principle of user interface design is that the user should always feel in control of the software, rather
than feeling controlled by the software. This principle has a number of implications.

The first implication is the operational assumption that actions are started not by the computer or the software but by
the user, a user who plays an active, rather than reactive, role. Task automation and constraints are still possible, but
you should implement them in a balanced way that allows the user freedom of choice.

The second implication is that users, because of their widely varying skills and preferences, must be able to
customize aspects of the interface. The system software provides user access to many of these aspects. Your software
should reflect user settings for different system properties such as color, fonts, or other options.

The final implication is that your software should be as interactive and responsive as possible. Avoid modes
whenever possible. A mode is a state that excludes general interaction or otherwise limits the user to specific
interactions. When a mode is the only or the best design alternative—for example, for selecting a particular tool in a
drawing program—make certain the mode is obvious, visible, the result of an explicit user choice, and easy to
cancel.

For information about applying the design principle of user in control, see Chapter 4, "Input Basics," and Chapter 5,
"General Interaction Techniques." These chapters cover the basic forms of interaction your software should support.

Directness

Design your software so that users can directly manipulate software representations of information. Whether
dragging an object to relocate it or navigating to a location in a document, users should see how the actions they take
affect the objects on the screen. Visibility of information and choices also reduce the user's mental workload. Users
can recognize a command easier than they can recall its syntax.

Familiar metaphors provide a direct and intuitive interface to user tasks. By allowing users to transfer their
knowledge and experience, metaphors make it easier to predict and learn the behaviors of software-based
representations.

When using metaphors, you need not limit a computer-based implementation to its "real world" counterpart. For
example, unlike its paper-based counterpart, a folder on the Windows desktop can be used to organize a variety of
objects such as printers, calculators, and other folders. Similarly, a Windows folder can be more easily resorted. The
purpose of using metaphor in the interface is to provide a cognitive bridge; the metaphor is not an end in itself.

February 13, 1995

Chapter 1 Design Principles and Methodology 1

Metaphors support user recognition rather than recollection. Users remember a meaning associated with a familiar
object easier than they remember the name of a particular command.

For information about applying the principle of directness and metaphor, see Chapter 5, "General Interaction
Techniques," and Chapter 13, "Visual Design." These chapters cover, respectively, the use of directness in the
interface (including drag and drop) and the use of metaphors when designing icons or other graphical elements.

Consistency

Consistency allows users to transfer existing knowledge to new tasks, learn new things more quickly, and focus more
on tasks because they need not spend time trying to remember the differences in interaction. By providing a sense of
stability, consistency makes the interface familiar and predictable.

Consistency is important through all aspects of the interface, including names of commands, visual presentation of
information, and operational behavior. To design consistency into software, you must consider several aspects.

e Consistency within a product. Present common functions using a consistent set of commands and
interfaces. For example, do not provide a Copy command that immediately carries out an operation
in one situation but in another presents a dialog box that requires a user to type in a destination. As
a corollary to this example, use the same command to carry out functions that seem similar to the
user.

e Consistency within the operating environment. By maintaining a high level of consistency between
the interaction and interface conventions provided by
Windows, your software benefits from users' ability to apply interaction skills they have already
learned.

e Consistency with metaphors. If a particular behavior is more characteristic of a different object
than its metaphor implies, the user may have difficulty learning to associate that behavior with an
object. For example, an incinerator communicates a different model than a wastebasket for the
recoverability of objects placed in it.

Although applying the principle of consistency is the primary goal of this guide, the following chapters focus on the
elements common to all Windows-based software: Chapter 6, "Windows," Chapter 7, "Menus, Controls, and
Toolbars," and Chapter 8, "Secondary Windows." For information about closely integrating your software with the
Windows environment, see Chapter 10, "Integrating with the System," and Chapter 11, "Working with OLE
Embedded and OLE Linked Objects."

Forgiveness

Users like to explore an interface and often learn by trial and error. An effective interface allows for interactive
discovery. It provides only appropriate sets of choices and warns users about potential situations where they may
damage the system or data, or better, makes actions reversible or recoverable.

Even within the best designed interface, users can make mistakes. These mistakes can be both physical (accidentally
pointing to the wrong command or data) and mental (making a wrong decision about which command or data to
select). An effective design avoids situations that are likely to result in errors. It also accommodates potential user
errors and makes it easy for the user to recover.

For information about applying the principle of forgiveness, see Chapter 12, "User Assistance," which provides
information on supporting discoverability in the interface through the use of contextual, task-oriented, and reference

February 13, 1995

Chapter 1 Design Principles and Methodology 1

forms of user assistance. For information about designing for the widest range of users, see Chapter 14, "Special
Design Considerations."

Feedback

Always provide feedback for a user's actions. Visual, and sometimes audio, cues should be presented with every user
interaction to confirm that the software is responding to the user's input and to communicate details that distinguish
the nature of the action.

Effective feedback is timely, and is presented as close to the point of the user's interaction as possible. Even when the
computer is processing a particular task, provide the user with information regarding the state of the process and how
to cancel that process if that is an option. Nothing is more disconcerting than a "dead" screen that is unresponsive to
input. A typical user will tolerate only a few seconds of an unresponsive interface.

It is equally important that the type of feedback you use be appropriate to the task. Pointer changes or a status bar
message can communicate simple information; more complex feedback may require the display of a message box.

For information about applying the principle of visual and audio feedback, see Chapter 13, "Visual Design," and
Chapter 14, "Special Design Considerations."

Aesthetics

The visual design is an important part of a software's interface. Visual attributes provide valuable impressions as well
as communicate important cues to the interaction behavior of particular objects. At the same time, it is important to
remember that every visual element that appears on the screen potentially competes for the user's attention. Provide a
pleasant environment that clearly contributes to the user's understanding of the information presented. A graphics or
visual designer may be invaluable with this aspect of the design.

For information and guidelines related to the aesthetics of your interface, see Chapter 13, "Visual Design." This
chapter covers everything from individual element design to font use and window layout.

Simplicity
An interface should be simple (not simplistic), easy to learn, and easy to use. It must also provide access to all

functionality provided by an application. Maximizing functionality and maintaining simplicity work against each
other in the interface. An effective design balances these objectives.

One way to support simplicity is to reduce the presentation of information to the minimum required to communicate
adequately. For example, avoid wordy descriptions for command names or messages. Irrelevant or verbose phrases
clutter your design, making it difficult for users to easily extract essential information. Another way to design a
simple but useful interface is to use natural mappings and semantics. For example, arranging elements together
strengthens their association.

You can also help users manage complexity by using progressive disclosure. Progressive disclosure involves careful
organization of information so that it is shown only at the appropriate time. By "hiding" information presented to the
user, you reduce the amount of information to process. For example, clicking a menu displays its choices; the use of
dialog boxes can reduce the number of menu options.

Progressive disclosure does not imply using unconventional techniques for revealing information, such as requiring a

modifier key as the only way to access basic functions or forcing the user down a longer sequence of hierarchical
interaction. This can make an interface more complex and cumbersome.

February 13, 1995

Chapter 1 Design Principles and Methodology 1

For information about applying the principle of simplicity, see Chapter 7, "Menus, Controls, and Toolbars." This
chapter discusses progressive disclosure in detail and describes how and when to use the standard (system-supplied)
elements in your interface.

Design Methodology
Effective interface design is more than just following a set of rules. It requires a user-centered attitude and design
methodology. It also involves early planning of the interface and continued work through the software development
process.

A Balanced Design Team

An important consideration in the design of a product is the composition of the team that designs and builds it.
Always try to balance disciplines and skills, including development, visual design, writing, human factors, and
usability assessment. Rarely are these characteristics found in a single individual, so create a team of individuals who
specialize in these areas and who can contribute uniquely to the final design.

Ensure that the design team can effectively work and communicate together. Locating them in the same area of the
building or office space, or providing them with a common area to work out design details fosters better
communication and interaction.

The Design Cycle

An effective user-centered design process involves a number of important phases: designing, prototyping, testing,
and iterating. The following sections describe these phases.

Design

The initial work on a software's design can be the most critical because, during this phase, you decide the general
shape of your product. If the foundation work is flawed, it is difficult to correct afterwards.

This part of the process involves not only defining the objectives and features for your product, but understanding
who your users are and their tasks, intentions, and goals. This includes understanding factors such as their
background—age, gender, expertise, experience level, physical limitations, and special needs; their work
environment—equipment, social and cultural influences, and physical surroundings; and their current task
organization—the steps required, the dependencies, redundant activities, and the output objective. An order-entry
system may have very different users and requirements than an information kiosk.

At this point, begin defining your conceptual framework to represent your product with the knowledge and
experience of your target audience. Ideally, you want to create a design model that fits the user's conceptual view of
the tasks to be performed. Consider the basic organization and different types of metaphors that can be employed.
Often, observing users at their current tasks can provide ideas on effective metaphors to use.

Document your design. Committing your planned design to a written format not only provides a valuable reference
point and form of communication, but often helps make the design more concrete and reveals issues and gaps.
Prototype

After you have defined a design model, prototype some of the basic aspects of the design. This can be done with
"pencil and paper" models—where you create illustrations of your interface to which other elements can be attached;
storyboards—comic book-like sequences of sketches that illustrate specific processes; animations—movie-like
simulations; or operational software using a prototyping tool or normal development tools.

February 13, 1995

Chapter 1 Design Principles and Methodology 1

A prototype is a valuable asset in many ways. First, it provides an effective tool for communicating the design.
Second, it can help you define task flow and better visualize the design. Finally, it provides a low-cost vehicle for
getting user input on a design. This is particularly useful early in the design process.

The type of prototype you build depends on your goal. Functionality, task flow, interface, operation, and
documentation are just some of the different aspects of a product that need to be assessed. For example, pen and
paper models or storyboards may work when defining task organization or conceptual ideas. Operational prototypes
are usually best for the mechanics of user interaction.

Consider whether to focus your prototype on breadth or depth. The broader the prototype, the more features you
should try to include to gain an understanding about how users react to concepts and organization. When your
objective is focused more on detailed usage of a particular feature or area of the design, use depth-oriented
prototypes that include more detail for a given feature or task.

Test

User-centered design involves the user in the design process. Usability testing a design, or a particular aspect of a
design, provides valuable information and is a key part of a product's success. Usability testing is different than
quality assurance testing in that, rather than find programming defects, you assess how well the interface fits user
needs and expectations. Of course, defects can sometimes affect how well the interface will fit.

Usability testing provides you not only with task efficiency and success-or-failure data, it also can provide you with
information about the user's perceptions, satisfaction, questions, and problems, which may be just as significant as
the ability to complete a particular task.

When testing, it is important to use participants who fit the profile of your target audience. Using fellow workers
from down the hall might be a quick way to find participants, but software developers rarely have the same
experience as their customers. The following section, "Usability Assessment in the Design Process," provides details
about conducting a usability test.

There can be different reasons for testing. You can use testing to look for potential problems in a proposed design.
You can also focus on comparative studies of two or more designs to determine which is better, given a specific task
or set of tasks.

lterate

Because testing often uncovers design weaknesses, or at least provides additional information you will want to use,
repeat the entire process, taking what you have learned and reworking your design or moving onto reprototyping and
retesting. Continue this refining cycle through the development process until you are satisfied with the results.

During this iterative process, you can begin substituting the actual application for prototypes as the application code
becomes available. However, avoid delaying your design cycle waiting for the application code to be complete
enough; you can lose valuable time and input that you could have captured with a prototype. Moreover, by the time
most applications are complete enough for testing, it is difficult to consider significant changes. This happens for two
reasons: 1) it becomes easier to ignore usability defects because of the time and resources invested, and 2) it usually
delays the application's delivery schedule.

Usability Assessment in the Design Process

As described in the previous section, usability testing is a key part of the design process, but testing design
prototypes is only one part of the picture. Usability assessment begins in the early stages of product development,
where you can use it to gather data about how users do their work. You then roll your findings back into the design
process. As the design progresses, usability assessment continues to provide valuable input for analyzing initial

February 13, 1995

Chapter 1 Design Principles and Methodology 1

design concepts and, in the later stages of product development, can be used to test specific product tasks. Apply
usability assessment early and often.

Consider the user's entire experience as part of a product's usability. The usability assessment should include all of a
product's components. A software interface is more than just what shows up on the screen or in the documentation.
Usability Testing Techniques

Usability testing involves a wide range of techniques and investment of resources, including trained specialists
working in sound-proofed labs with one-way mirrors and sophisticated recording equipment. However, even the
simplest investment of an office or conference room, tape recorder, stopwatch, and notepad can produce benefits.
Similarly, all tests need not involve great numbers of subjects. More typically, quick, iterative tests with a small,
well-targeted sample, 610 participants, can identify 80 to 90 percent of most design problems. You can achieve that
level with as few as 3—4 users if you only target a single skill level of users, such as novices or immediate level
users.

Like the design process itself, usability testing begins with defining the target audience and test goals. When
designing a test, focus on tasks, not features. Even if your goal is testing specific features, remember that your
customers will use them within the context of particular tasks. It is also a good idea to run a pilot test to work out the
bugs of the tasks to be tested and make certain the task scenarios, prototype, and test equipment work smoothly.

February 13, 1995

Chapter 1 Design Principles and Methodology 1

When conducting the usability test, provide an environment comparable to the target setting; usually a quiet location,
free from distractions, is best. Make participants feel comfortable. It often helps to emphasize that you are testing the
software, not the participants. If they become confused or frustrated, it is not a reflection upon them. Unless you have
participated yourself, you may be surprised by the pressure many test participants feel. You can alleviate some
pressure by explaining the testing process and equipment to the participants.

Allow the user reasonable time to try and work through a difficult situation they encounter. Although it is generally
best to not interrupt participants during a test, they may get stuck or end up in situations that require intervention.
This need not necessarily disqualify the test data, as long as the test coordinator carefully guides or hints around a
problem. Begin with general hints before moving to specific advice. For more difficult situations, you may need to
stop the test and make adjustments; Keep in mind that less intervention usually yields better results. Always record
the techniques and search patterns that users employ when attempting to work through a difficulty, and the number
and type of hints you have to provide them.

Ask subjects to think aloud as they work, so you can hear what assumptions and inferences they are making. As the
participants work, record the time they take to perform a task as well as any problems they encounter. You may also
want to follow up the session with a questionnaire that asks the participants to evaluate the product or tasks they
performed.

Record the test results using a portable tape recorder, or better, a video camera. Since even the best observer can miss
details, reviewing the data later will prove invaluable. Recorded data also allows more direct comparisons between
multiple participants. It is usually risky to base conclusions on observing a single subject. Recorded data also allows
all the design team to review and evaluate the results.

February 13, 1995

Chapter 1 Design Principles and Methodology 1

Whenever possible, involve all members of the design team in observing the test and reviewing the results. This
ensures a common reference point and better design solutions as team members apply their own insights to what they
observe. If direct observation is not possible, make the recorded results available to the entire team.

Other Assessment Techniques

There are many techniques you can use to gather usability information. In addition to those already mentioned,
"focus groups" are helpful for generating initial ideas or trying out ideas. A focus group requires a moderator who
directs the discussion about aspects of a task or design, but allows participants to freely express their opinions. You
can also conduct demonstrations, or "walkthroughs," in which you take the user through a set of sample scenarios
and ask about their impressions along the way. In a so-called "Wizard of Oz" technique, a testing specialist simulates
the interaction of an interface. Although these latter techniques can be valuable, they often require a trained,
experienced test coordinator.

Understanding Users
The design and usability techniques described in the previous sections have been used in the development of
Windows and in many of the guidelines included in this book. That process has yielded the following general
characteristics about users. Consider these characteristics in the design of your software.

e Beginning Windows users often have difficulty with the mouse. For example, dragging and
double-clicking are skills that may take time for beginning mouse users to master. Dragging may
be difficult because it requires continued pressure on the mouse button and involves properly
targeting the correct destination. Double-clicking is not the same as two separate clicks, so many
beginning users have difficulty handling the timing necessary to distinguish these two actions, or
they overgeneralize the behavior to assume that everything needs double-clicking. Design your
interface so that double-clicking and dragging are not the only ways to perform basic tasks; allow
the user to conduct the task using single click operations.

February 13, 1995

Chapter 1 Design Principles and Methodology 1

e Beginning users often have difficulty with window management. They do not always realize that
overlapping windows represent a three-dimensional space. As a result, when a window is hidden
by another, a user may assume it no longer exists.

e Beginning users often have difficulty with file management. The organization of files and folders
nested more than two levels is more difficult to understand because it is not as obvious in the real
world.

e Intermediate users may understand file hierarchies, but have difficulty with other aspects of file
management—such as moving and copying files. This may be because most of their experience
working with files is often from within an application.

e Advanced, or "power," users want efficiency. The challenge in designing for advanced users is
providing for efficiency without introducing complexity for less-experienced users. (Shortcut
methods are often useful for supporting these users.) In addition, advanced users may be dependent
upon particular interfaces, making it difficult for them to adapt to significant rearrangement or
changes in an interface.

e To develop for the widest audience, consider international users and users with disabilities.
Including these users as part of your planning and design cycle is the best way to ensure that you
can accommodate them.
Design Tradeoffs
A number of additional factors may affect the design of a product. For example, competition may require you to
deliver a product to market with a minimal design process, or comparative evaluations may force you to consider
additional features. Remember that additional features and shortcuts can affect the product. There is no simple
equation to determine when a design tradeoff is appropriate. So in evaluating the impact, consider the following.

e Every additional feature potentially affects performance, complexity, stability, maintenance, and
support costs of an application.

e Itis harder to fix a design problem after the release of a product because users may adapt, or even
become dependent on, a peculiarity in the design.

February 13, 1995

Chapter 1 Design Principles and Methodology 1

Simplicity is not the same as being simplistic. Making something simple to use often requires a
good deal of work and code.

Features implemented by a small extension in the application code do not necessarily have a
proportional effect in a user interface. For example, if the primary task is selecting a single object,
extending it to support selection of multiple objects could make the frequent, simple task more
difficult to carry out.

February 13, 1995

11

CHAPTER 2

Basic Concepts
Microsoft Windows supports the evolution and design of software from a basic graphical user interface to a data-
centered interface that is better focused on users and their tasks. This chapter outlines the fundamental concepts of
data-centered design. It covers some of the basic definitions used throughout this guide and provides the fundamental
model for how to define your interface to fit well within the Windows environment.

Data-Centered Design
Data-centered design means that the design of the interface supports a model where a user can browse for data and
edit it directly instead of having to first locate an appropriate editor or application. As a user interacts with data, the
corresponding commands and tools to manipulate the data or the view of the data automatically become available to
the user. This frees a user to focus on the information and tasks rather than on applications and how applications
interact.

In this data-centered context, a document is a common unit of data used in tasks and exchanged between users. The
use of the term document is not limited to the output of a word-processing or spreadsheet application, however. The
emphasis is on the data, not the software.

Objects as Metaphor
A well-designed user interface provides an understandable, consistent framework in which users can work, without
being confounded by the details of the underlying technology. To help accomplish this, the design model of the
Windows user interface uses the metaphor of objects. This is a natural way we interpret and interact with the world
around us. In the interface, objects not only describe files or icons, but any unit of information, including cells,
paragraphs, characters, and circles, and the documents in which they reside.

Object Characteristics

Objects, whether real-world or computer representations, have certain characteristics that help us understand what
they are and how they behave. The following concepts describe the aspects and characteristics of computer
representations:

e Properties — Objects have certain characteristics or attributes, called properties, that define their
appearance or state—for example, color, size, and modification date. Properties are not limited to
the external or visible traits of an object. They may reflect the internal or operational state of an
object, such as an option in a spelling check utility that automatically suggests alternative spellings.

e Operations — Things that can be done with or to an object are considered its operations. Moving
or copying an object are examples of operations. You can expose operations in the interface
through a variety of mechanisms, including commands and direct manipulation.

e Relationships — Objects always exist within the context of other objects. The context, or
relationships, that an object may have often affects the way the object appears or behaves. The
most common relationships are collection, constraint, and composite.

Relationships

The simplest relationship is collection, in which objects in a set share a common aspect. The results of a query or a
multiple selection of objects are examples of a collection. The significance of a collection is that it enables operations
to be applied to the set.

February 13, 1995

Chapter 2 Basic Concepts 13

A constraint is a stronger relationship between a set of objects in that changing an object in the set affects some other
object in the set. The way a text box streams text, the way a drawing application layers its objects, and even the way
a word-processing application organizes a document into pages are all examples of constraints.

When a relationship between objects becomes so significant that the aggregation can be identified as an object itself
with its own set of properties and operations, the relationship is called a composite. A range of cells, a paragraph, and
a grouped set of drawing objects are examples of composites.

Another common kind of relationship found in the interface is containment. A container is an object that is the place
where other objects exist, such as text in a document or documents in a folder. A container often influences the
behavior of its content. It may add or suppress certain properties or operations of an object placed in it. In addition, a
container controls access to its content as well as what kind of object it will accept as its content. This may affect the
results when transferring objects from one container to another.

All these aspects contribute to an object's ype, a descriptive way of distinguishing or classifying objects. Objects of a
common type have similar traits and behaviors.

Composition

As in the natural world, the metaphor of objects implies a constructed environment. Objects are compositions of
other objects. You can define most tasks supported by applications as a specialized combination or set of
relationships between objects. A text document is a composition of text, paragraphs, footnotes, or other items. A
table is a combination of cells, a chart, or a particular organization of graphics. When you define user interaction
with objects to be as consistent as possible at any level, you can produce complex constructions while maintaining a
small, basic set of conventions. These conventions can apply throughout the interface, increasing ease of use. In
addition, using composition to model tasks encourages modular, component-oriented design. This allows objects to
be potentially adapted or recombined for other uses.

Persistence

In the natural world, objects persist in their existing state unless changed or destroyed. When you use a pen to write a
note, you need not invoke a command to ensure that the ink is preserved on the paper. The act of writing implicitly
preserves the information. This is the long term direction for objects in the interface as well. Although it is still
appropriate to design software that requires explicit user actions to preserve data, consider whether data can be
preserved automatically. In addition, view state information, such as cursor position, scroll position, and window size
and location, should be preserved so it can be restored when an object's view is reopened.

Putting Theory into Practice
Using objects in an interface design does not guarantee usability. But applying object-based concepts does offer
greater potential for a well-designed interface. As with any good user interface design, a good user-centered design
process ensures the success and quality of the interface.

The first step to object-based design should begin as any good design with a thorough understanding of what users'
objectives and tasks are. When doing the task analysis, identify the basic components or objects used in those tasks
and the behavior and the characteristics that differentiate each kind of object, including the relationships of the
objects to each other and to the user. Also identify the actions that are performed, the objects to which they apply,
and the state information or attributes that each object in the task must preserve, display, and allow to be edited.

Once the analysis is complete, you can start identifying the user interfaces for the objects. Define how the objects
you identified are to be presented, either as icons or data elements in a form. Use icons primarily for representing
composite or container objects that need to be opened into their own windows. Attribute or state information should
typically be presented as properties of the associated object, most often using property sheets. Map behaviors and

February 13, 1995

Chapter 2 Basic Concepts 13

operations to specific kinds of interaction, such as menu commands, direct manipulation, or both. Make these
accessible when the object is selected by the user. The information in this guide will help you define how to apply
the interfaces provided by the system.

Porting an existing Windows 3.1-based application to a more data-centered interface need not require an immediate,
complete overhaul. You can begin the evolution by adding contextual interfaces such as pop-up menus, property
sheets, and OLE drag-and-drop and by following the recommendations for designing your window title bars and
icons.

February 13, 1995

15

CHAPTER 3

The Windows Environment
This chapter provides a brief overview of some of the basic elements included in the Microsoft Windows operating
system that allow the user to control the environment (sometimes collectively referred to as the shell). These
elements provide not only the backdrop for a user's environment, but can be landmarks for the user's interaction with
your application as well.

The Desktop
The desktop represents a user's primary work area; it fills the screen and forms the visual background for all
operations. However, the desktop is more than just a background. It can also be used as a convenient location to
place objects that are stored in the file system. In addition, for a computer connected to a network, the desktop also
serves as a private work area through which a user can still browse and access objects remotely located on the
network.

The Taskbar
The taskbar, as shown in Figure 3.1, is a special component of the desktop that can be used to switch between open
windows and to access global commands and other frequently used objects. As a result, it provides a home base—an
operational anchor for the interface.

i Start | 3 My Falder ” g Diocument .. @ Ex=plaring - C:h | 12:45 P |

Figure 3.1 The taskbar

Like most toolbars, the taskbar can be configured. For example, a user can move the taskbar from its default location
and relocate it along another edge of the screen. The user can also configure display options of the taskbar.

The taskbar can provide the user access to your application. It can also be used to provide status information even
when your application is not active. Because the taskbar is an interface shared across applications, be sure to follow
the conventions and guidelines covered in this guide.

For more information about integrating your application with the taskbar, see Chapter 10, "Integrating with the
System."

The Start Button

The Start button at the left side of the taskbar displays a special menu that includes commands for opening or finding
files. The Program menu entry automatically includes the Program Manager entries when the system is installed over
Windows 3.1. When installing your Windows application, you also can include an entry for your application by
placing a shortcut icon in the system's Programs folder.

Window Buttons

Whenever the user opens a primary window, a button is placed in the taskbar for that window. This button provides
the user access to the commands of that window and a convenient interface for switching to that window. The
taskbar automatically adjusts the size of the buttons to accommodate as many buttons as possible. When the size of
the button requires that the window's title be abbreviated, the taskbar also automatically supplies a tooltip for the
button.

February 13, 1995

Chapter 3 The Windows Environment 21

When a window is minimized, the window's button remains in the taskbar, but is removed when the window is
closed.

Taskbar buttons can also be used as drag and drop destinations. When the user drags over a taskbar button, the
system activates the associated window, allowing the user to drop within that window.

For more information about drag and drop, see Chapter 5, "General Interaction Techniques."
The Status Area

On the opposite side of the taskbar from the Start menu is a special status area. Your application can place special
status or notification indicators here, even when it is not active.

February 13, 1995

Chapter 3 The Windows Environment 21

Icons
Icons may appear on the desktop and in windows. Icons are pictorial representations of objects. This is different than
the use of icons in Windows 3.1, which also represented minimized windows. Your software should provide and
register icons for its application file and any of its associated document or data files.

For more information about the use of icons, see Chapter 10, "Integrating with the System." For information about
the design of icons, see Chapter 13, "Visual Design."

Windows includes a number of icons that represent basic objects, such as the following.

Table 3.1 Icons
Icon Type Function

E Computer Provides access to a user's private storage.
ky Cormputer

m Network Provides access to the network.

=

Metwork,
M eighborhood
ﬁ, Folder Provides organization of files and folders.

Faolder

February 13, 1995

Chapter 3 The Windows Environment 21

Table 3.1 Icons (continued)
Icon Type Function

Shortcut Provides access to other objects.
(Typically, shortcut icons are links used for
providing convenient access to objects that may be
stored elsewhere.)

o

Shorbzut to
by Favarite Folder

Saved Search Locates files or folders.

)

Al Files

Windows Explorer Allows browsing of the content of a user's computer
or the network.

&

E=plarer
@ Recycle Bin Stores deleted icons.
Recycle Bin
Control Panel Provides access to properties of installed devices
Gﬁ and resources (for example, fonts, displays, and
keyboards).

Control Panel

February 13, 1995

Chapter 3 The Windows Environment 21

Windows
You can open icons into windows. Windows provides a means of viewing and editing information, and viewing the
content and properties of objects. You can also use windows to display parameters to complete commands, palettes
of controls, or messages informing a user of a particular situation. Figure 3.2 demonstrates some of the different uses
for windows.

EY Exploring - Public [D:]
Edit View TIook Help
Cormmand ,l | ;E
v Check Box | Contents of 'Public [D:]'

Check Box =] : : : =

» [ption Button
O ptior B utton Backup Bitmaps Brnp

Default Item Sample Dialog Box EE

I e ailatledtenm Drop-down label:

Cazcade Item k
Carve I j oK I
Group bow Cancel |

[: ' Selected optioh button label
™ Dption button label

Help

Figure 3.2 Different uses of windows

For more information about windows, see Chapter 6, "Windows," and Chapter 8, "Secondary Windows."

February 13, 1995

23

CHAPTER 4

Input Basics

A user can interact with objects in the interface using different types of input devices. The most common input
devices are the mouse, the keyboard, and the pen. This chapter covers the basic behavior for these devices; it does

not exclude other forms of input.

Mouse Input

The mouse is a primary input device for interacting with objects in the Microsoft Windows interface. Other types of

pointing devices that emulate a mouse, such as trackballs, fall under the general use of the term "mouse."

For more information about interactive techniques such as navigation, selection, viewing, editing, transfer, and

creating new objects, see Chapter 5, "General Interaction Techniques."

Mouse Pointers

The mouse is operationally linked with a graphic on the screen called the pointer (also referred to as the cursor). By

positioning the pointer and clicking the buttons on the mouse, a user can select objects and their operations.

As a user moves the pointer across the screen, its appearance can change to provide feedback about a particular

location, operation, or state. Table 4.1 lists common pointer shapes and their uses.

Table 4.1 Common Pointers

Shape Screen location

Indicates available or current action

Over most objects

Over text

g Over any object or location
% Over any screen location

%Q Over most objects

% Inside a window
4_|_, Along column gridlines
Along row gridlines

Over split box in vertical scroll bar

A+
==

Over split box in horizontal scroll
bar

4p

February 13, 1995

Pointing, selecting, moving, resizing.

Selecting text.
Processing an operation.

Processing in the background (application

loading), but the pointer is still interactive.

Contextual Help mode.
Zooming a view.
Resizing a column.
Resizing a row.

Splitting a window (or adjusting a split)
horizontally.

Splitting a window (or adjusting a split)
vertically.

Chapter 4 Input Basics 33

® Over any object Not available.

Your software can define additional pointers, as needed.

Each pointer has a particular point—called a hot spot—that defines the exact screen location of the mouse. The hot
spot determines what object is affected by mouse actions. Screen objects can additionally define a hot zone; the hot
zone defines the area the hot spot must be within to be considered over the object. Typically, the hot zone coincides
with the borders of an object, but it may be larger, or smaller, to make user interaction easier.

Mouse Actions

All basic mouse actions in the interface use either mouse button 1 or button 2. By default, button 1 is the leftmost
mouse button and button 2 is the rightmost button. The system allows the user to swap the mapping of the buttons.

Note For a mouse that supports three buttons, button 2 is the rightmost button, not the center
button.

The following are the common behaviors performed with the mouse.

Action Description

Pointing Positioning the pointer so it "points to" a particular object on the screen
without using the mouse button. Pointing is usually part of preparing for
some other interaction, because the mouse pointing action is often an
opportunity to provide visual cues or other feedback to a user.

Clicking Positioning the pointer over an object and then pressing and releasing the
mouse button. Generally, the mouse is not moved during the click, and the
mouse button is quickly released after it is pressed. Clicking identifies
(selects) or activates objects.

Double-clicking Positioning the pointer over an object and pressing and releasing the
mouse button twice in rapid succession. Double-clicking an object
typically invokes its default operation.

Pressing Positioning the pointer over an object and then holding down the mouse
button. Pressing is often the beginning of a click or drag operation.

Dragging Positioning the pointer over an object, pressing down the mouse button
while holding the mouse button down, and moving the mouse. Use
dragging for actions such as selection and direct manipulation of an
object.

For most mouse interactions, pressing the mouse button only identifies an operation. User feedback is usually
provided at this point. Releasing the mouse button activates (carries out) the operation. An operation that
automatically repeats is an exception—for example, pressing a scroll arrow.

February 13, 1995

Chapter 4 Input Basics 33

This guide does not cover other mouse behaviors such as chording (pressing multiple mouse buttons simultaneously)
and multiple-clicking (triple- or quadruple-clicking). Because these behaviors require more user skill, they are not
generally recommended for basic operations.

Because not all mouse users have a third button, there is no basic action defined for a third (generally the middle)
mouse button. It is best to limit the assignment of operations to this button to those environments where the
availability of a third mouse button can be assumed, and for providing redundant or shortcut access to operations
adequately supported elsewhere in the interface. When assigning actions to the button, you need to define the
behaviors for the actions already described (pointing, clicking, dragging, and double-clicking) for this button.
Keyboard Input
The keyboard is a primary means of entering or editing text information. However, the Windows interface also uses
keyboard input to navigate, toggle modes, modify input, and, as a shortcut, to invoke certain operations.

For more information about navigation, toggling modes, modifying input, shortcuts, and selection, see Chapter 5,
"General Interaction Techniques."

Following are the common interactive behaviors performed with the keyboard.

Action Description

Pressing Pressing and releasing a key. Unlike mouse interaction, keyboard interaction
occurs upon the down transition of the key. Pressing typically describes the
keyboard interaction for invoking particular commands or for navigation.

Holding Pressing and holding down a key. Holding typically describes interaction with
keys such as ALT, SHIFT, and CTRL that modify the standard behavior of other
input—for example, another key press or mouse action.

Typing Typing input of text information from the keyboard.

Text Keys
Text keys include the following:

e Alphanumeric keys (a—z, A—Z, 0-9)
e Punctuation and symbol keys
e TAB and ENTER keys

e The SPACEBAR

In text-entry contexts, pressing a text key enters the corresponding character and typically displays that character on
the screen. Except in special views, the characters produced by the TAB and ENTER keys are not usually visible.

Note These keys can also be used for navigation or for invoking specific operations.

Most keyboards include two keys labeled ENTER: one on the main keyboard, one on the numeric keypad. Because
these keys have the same label (and on some keyboards the latter may not be available), assign both keys the same
functionality.

February 13, 1995

Chapter 4 Input Basics 33

Access Keys

An access key is an alphanumeric key—sometimes referred to as a mnemonic—that when used in combination with
the ALT key navigates to and activates a control. The access key matches one of the characters in the text label of the
control. For example, pressing ALT+O activates a control whose label is "Open" and whose assigned access key is
"O". Typically, access keys are not case sensitive. The effect of activating a control depends on the type of control.

Assign access key characters to controls using the following guidelines (in order of choice):

1. The first letter of the label for the control, unless another letter provides a better mnemonic
association.

2. A distinctive consonant in the label.
3. A vowel in the label.

Nonunique access key assignments within the same scope access the first control. Depending on the control, if the
user presses the access key a second time, it may or may not access another control with the same assignment.
Therefore, define an access key to be unique within the scope of its interaction—that is, the area in which the control
exists and to which keyboard input is currently being directed.

Controls without explicit labels can use static text to create labels with assigned access keys. Software that supports a
nonroman writing system (such as Kanji), but that runs on a standard keyboard, can prefix each control label with an
alphabetic (roman) character as its access key.

For more information about static text controls, see Chapter 7, "Menus, Controls, and Toolbars."

Mode Keys

Mode keys change the actions of other keys (or other input devices). There are two kinds of mode keys: toggle keys
and modifier keys.

A toggle key turns a particular mode on or off each time it is pressed. For example, pressing the CAPS LOCK key

toggles uppercase alphabetic keys; pressing the NUM LOCK key toggles between numeric and directional input using
the keypad keys.

February 13, 1995

Chapter 4 Input Basics 33

Modifier keys include the SHIFT, CTRL, and ALT keys. Like toggle keys, modifier keys change the actions of normal
input. Unlike toggle keys, however, modifier keys establish modes that remain in effect only while the modifier key
is held down. Such a "spring-loaded" mode is often preferable to a "locked" mode because it requires the user to
continuously activate it, making it a conscious choice and allowing the user to easily cancel the mode by releasing
the key.

Because it can be difficult for a user to remember multiple modifier assignments, avoid using multiple modifier keys
as the primary means of access to basic operations. In some contexts, such as pen-input—specific environments, the
keyboard may not be available. Therefore, use modifier-based actions only for quick access to operations that are
supported adequately elsewhere in the interface.

Shortcut Keys

Shortcut keys (also referred to as accelerator keys) are keys or key combinations that, when pressed, provide quick
access to frequently performed operations. CTRL+/efter combinations and function keys (F1 through F12) are usually
the best choices for shortcut keys. By definition, a shortcut key is a keyboard equivalent of functionality that is
supported adequately elsewhere in the interface. Therefore, avoid using a shortcut key as the only way to access a
particular operation.

When defining shortcut keys, observe the following guidelines:

e Assign single keys where possible because these keys are the easiest for the user to perform.
e Make modified-letter key combinations case insensitive.

e Use SHIFT+key combinations for actions that extend or complement the actions of the key or key
combination used without the SHIFT key. For example, ALT+TAB switches windows in a top-to-
bottom order. SHIFT+ALT+TAB switches windows in reverse order. However, avoid SHIFT+text
keys, because the effect of the SHIFT key may differ for some international keyboards.

e Use CTRL+key combinations for actions that represent a larger scale effect. For example, in text
editing contexts, HOME moves to the beginning of a line, and CTRL+HOME moves to the beginning
of the text. Use CTRL+key combinations for access to commands where a letter key is used—for
example, CTRL+B for bold. Remember that such assignments may be meaningful only for English-
speaking users.

e Avoid ALT+key combinations because they may conflict with the standard keyboard access for
menus and controls. The ALT+key combinations—ALT+TAB, ALT+ESC, and ALT+SPACEBAR—are
reserved for system use. ALT+number combinations enter special characters.

e Avoid assigning shortcut keys defined in this guide to other operations in your software. That is, if
CTRLAC is the shortcut for the Copy command and your application supports the standard copy
operation, don't assign CTRL+C to another operation.

e Provide support for allowing the user to change the shortcut key assignments in your software,
when possible.

e Use the ESC key to stop a function in process or to cancel a direct manipulation operation. It is also
usually interpreted as the shortcut key for a Cancel button.

Note Function key and modified function key combinations may be easier for international users
because they have no mnemonic relationship. However, there is a tradeoff because function keys

February 13, 1995

Chapter 4 Input Basics 33

are often more difficult to remember and to reach. For a list of the most common shortcut key
assignments, see Appendix B, "Keyboard Interface Summary."

Some keyboards also support three new keys, the Application key and the two Windows keys. The primary use for
the Application key is to display the pop-up menu for current selection (same as SHIFT+F10). You may also use it
with modifier keys for application-specific functions. Pressing either of the Windows keys—Ieft or right—displays
the Start button menu. These keys are also used by the system as modifiers for system-specific functions. Do not use
these keys as modifiers for non—system-level functions.

For more information about pop-up menus, see Chapter 7, "Menus, Controls, and Toolbars."

Pen Input
Systems with a Windows pen driver installed support user input using tapping or writing on the surface of the screen
with a pen, and in some cases with a finger. Your software can determine whether Windows pen extensions have
been installed by checking the SM_PENWINDOWS constant using the GetSystemMetrics function.

For more information about the SM_PENWINDOWS constant and the GetSystemMetrics function, see the
Microsoft Win32 Programmer's Reference.

February 13, 1995

Chapter 4 Input Basics 33

Depending on where the pen is placed, you can use it for both pointing and writing. For example, if you move the
pen over menus or most controls, it acts as a pointing device. Because of the pointing capabilities of the pen, the user
can perform most mouse-based operations. When over a text entry or drawing area, the pen becomes a writing or
drawing tool; the pointer changes to a pen shape to provide feedback to the user. When the tip of the pen touches the
screen, the pen starts inking—that is, tracing lines on the screen. The user can then draw shapes, characters, and other
patterns; these patterns remain on the screen exactly as drawn or can be recognized, interpreted, and redisplayed.

The pen can retain the functionality of a pointing device (such as a mouse) even in contexts where it would normally
function as a writing or drawing tool. For example, you can use timing to differentiate operations; that is, if the user
holds the pen tip in the same location for a predetermined period of time, a different action may be inferred. This
method is often unreliable or inefficient for many operations, however, so it may be better to use toolbar buttons to
switch to different modes of operation. Choosing a particular button allows the user to define whether to use the pen
for entering information (writing or drawing) or as a pointing device.

You can also provide the user with access to other operations using an action handle. An action handle can be used to
support direct manipulation operations or to provide access to pop-up menus.

For more information about action handles, see Chapter 7, "Menus, Controls, and Toolbars."

Note When designing for pen input, it is more important to make the interface easy to use than to
assume all actions should be based on handwriting recognition or gestural interfaces. Often, the
pen can be more effective as a pointing device than as a text-entry device.

Following are the fundamental behaviors defined for a pen.

Action Description

Pressing Positioning the pen tip over the screen and pressing the tip to the screen. A
pen press is equivalent to a mouse press and typically identifies a
particular pen action.

Tapping Pressing the pen tip on the screen and lifting it without moving the pen. In
general, tapping is equivalent to clicking mouse button 1. Therefore, this
action typically selects an object, setting a text insertion point or activating
a button

Double-tapping Pressing and lifting the pen tip twice in rapid succession. Double-tapping
is usually interpreted as the equivalent to double-clicking mouse button 1.

Dragging Pressing the pen tip on the screen and keeping it pressed to the screen
while moving the pen. In inking contexts, you can use dragging for the
input of pen strokes for writing, drawing, gestures, or for direct
manipulation, depending on which is most appropriate for the context. In
noninking contexts, it is the equivalent of a mouse drag.

Some pens include buttons on the pen barrel that can be pressed. For pens that support barrel buttons, the following
behaviors may be supported.

February 13, 1995

Chapter 4 Input Basics 33

Action Description

Barrel-tapping Holding down the barrel button of the pen while tapping. Barrel-tapping is
equivalent to clicking with mouse button 2.

Barrel-dragging Holding down the barrel button of the pen while dragging the pen. Barrel-
dragging is equivalent to dragging with mouse button 2.

Note Because not all pens support barrel buttons, any behaviors that you support using a barrel button
should also be supported by other techniques in the interface.

Pen input is delimited, either by the lifting of the pen tip, an explicit termination tap (such as tapping the pen on
another window or as the completion of a gesture), or a time-out without further input. You can also explicitly define
an application-specific recognition time-out.

February 13, 1995

Chapter 4 Input Basics 33

Proximity is the ability to detect the position of the pen without it touching the screen. While Windows provides
support for pen proximity, avoid depending on proximity as the exclusive means of access to basic functions,
because not all pen hardware supports this feature. Even pen hardware that does support proximity may allow other
non-pen input, such as touch input, where proximity cannot be supported.

Pen Pointers

Because the pen (unlike the mouse) points directly at the screen, graphical onscreen pointers may seem superfluous;
however, they do have an important role to play. Pointers help the pen user select small targets faster. Moreover,
changes from one pointer to another provide useful feedback about the actions supported by the object under the pen.
For example, when the pen moves over a resizable border, the pointer can change from a pen (indicating that writing
is possible) to a resizing pointer (indicating that the border can be dragged to resize the object). Whenever possible,
include this type of feedback in pen-enabled applications to help users understand the kinds of supported actions.

Following are two common pointers used with the pen.

Table 4.2 Pen Pointers

Shape Common usage

Pointing, selecting, moving, and resizing

N Writing and drawing

Because a pointer may be partially obscured by the pen or by the user's hand, consider including other forms of
feedback, such as toolbar button states or status bar information.

Pen Gestures

When using the pen for writing, keep in mind that certain ink patterns are interpreted as gestures. Using one of these
specially drawn symbols invokes a particular operation, such as deleting text, or produces a nonprinting text
character, such as a carriage return or a tab. For example, an X shape is equivalent to the Cut command. After the
system interprets a gesture, the gesture's ink is removed from the display.

For more information about common gestures and their interpretation, see Chapter 5, "General Interaction
Techniques."

All gestures include a circular stroke to distinguish them from ordinary characters. Most gestures also operate
positionally; in other words, they act upon the objects on which they are drawn. Determining the position of the
specific gesture depends on either the area surrounded by the gesture or a single point—the hot spot of the gesture.

Pen gestures usually cannot be combined with ink (writing or drawing actions) within the same recognition
sequence. For example, the user cannot draw a few characters, immediately followed by a gesture, followed by more
characters.

The rapidity of gestural commands is one of the key advantages of the pen. Do not rely on gestures as the only or
primary way to perform commands, however, because gestures require memorization by users. Regard gestures as a
quick access, shortcut method for operations adequately supported elsewhere in the interface, such as in menus or
buttons. If the pen extensions are installed, you can optionally place a bitmap of the gesture next to the corresponding
command (in place of the keyboard shortcut text) to help the user learn particular gestures.

February 13, 1995

Chapter 4 Input Basics 33

In addition, avoid using gestures when they interfere with common functionality or making operations with parallel
input devices, such as the mouse or keyboard, more cumbersome. For example, although writing a character gesture
in a list box could be used as a way to scroll automatically within the list, it would interfere with the basic and more
frequent user action of selecting an item in the list. A better technique is to provide a text input field where the user
can write and, based on the letters entered, scroll the list.

Pen Recognition

Recognition is the interpretation of pen strokes into some standardized form. Consider recognition as a means to an
end, not an end in itself. Do not use recognition if it is unnecessary or if it is not the best interface. For example, it
may be more effective to provide a control that allows a user to select a date, rather than requiring the user to write it
in just so your software can recognize it.

Where it is appropriate to do so, you can improve recognition by using context and constraints. For example, a
checkbook application can constrain certain fields to contain only numbers.

Accurate recognition is difficult to achieve, but you can greatly improve your recognition interface by providing a
fast, easy means to correct errors. For example, if you allow users to overwrite characters or choose alternatives, they
will be less frustrated and find recognition more useful.

Ink Input

In some cases—for example, signatures—recognition of pen input may be unnecessary; the ink is a sufficient
representation of information. Ink is a standard data type supported by the Clipboard. Consider supporting ink entries
as input wherever your software accepts normal text input, unless the representation of that input needs to be
interpreted for other operations, such as searching or sorting.

February 13, 1995

Chapter 4 Input Basics 33

Targeting

Targeting, or determining where to direct pen input, is an important design factor for pen-enabled software. For

example, if the user gestures over a set of objects, which objects should be affected? If the user writes text that spans

several writing areas, which text should be placed in which area? In general, you use the context of the input to

determine where to apply pen input. More specifically, use the following guidelines for targeting gestures on objects.
e If the user draws the gesture on any part of a selection, apply the gesture to the selection.

e If the user draws the gesture on an object that is not selected, select that object, and the gesture is
applied to that object.

e If the user does not draw the gesture on any object or selection, but there is a selection, apply the
gesture to that selection.

If none of these guidelines applies, ignore the gesture.

For handwriting, the context also determines where to direct the input. Figure 4.1 demonstrates how the proximity of
the text to the text boxes determines the destination of the written text.

Share Marme: Eﬁi E:i_s' DI SE
LComment; le hﬂf‘d Df‘fh'e.

Figure 4.1 Targeting Handwritten input

The system's pen services provide basic support for targeting, but your application can also provide additional
support. For example, your application can define a larger inking rectangle than the control usually provides. In
addition, because your application often knows the type of input to expect, it can use this information to better
interpret where to target the input.

February 13, 1995

35

CHAPTER 5

General Interaction Techniques

This chapter covers basic interaction techniques, such as navigation, selection, viewing, editing, and creation. Many
of these techniques are based on an object-action paradigm in which a user identifies an object and an action to apply
to that object. By maintaining these techniques consistently, you enable users to transfer their skills to new tasks.

Where applicable, support the basic interaction techniques for the mouse, keyboard, and pen. When adding or
extending these basic techniques, consider how the feature or function can be supported across input devices.
Techniques for a particular device need not be identical for all devices. Instead, tailor techniques to optimize the
strengths of a particular device. In addition, make it easy for the user to switch between devices so that an interaction
started with one device can be completed with another.

Navigation
One of the most common ways of identifying or accessing an object is by navigating to it. The following sections
include information about mouse, pen, and keyboard techniques.

Mouse and Pen Navigation

Navigation with the mouse is simple; when a user moves the mouse left or right, the pointer moves in the
corresponding direction on the screen. As the mouse moves away from or toward the user, the pointer moves up or
down. By moving the mouse, the user can move the pointer to any location on the screen. Pen navigation is similar to
mouse navigation, except that the user navigates by moving the pen across the display without touching the screen.

Keyboard Navigation

Keyboard navigation requires a user to press specific keys and key combinations to move the input focus—the
indication of where the input is being directed—to a particular location. The appearance of the input focus varies by
context; in text, it appears as a text cursor or insertion point.

For more information about the display of the input focus, see Chapter 13, "Visual Design."

Basic Navigation Keys

The navigation keys are the four arrow keys and the HOME, END, PAGE UP, PAGE DOWN, and TAB keys. Pressed in
combination with the CTRL key, a navigation key increases the movement increment. For example, where pressing
RIGHT ARROW moves right one character in a text field, pressing CTRL+RIGHT ARROW moves right one word in the
text field. Table 5.1 lists the common navigation keys and their functions. You can define additional keys for
navigation.

Table 5.1 Basic Navigation Keys

Key Moves cursor to... CTRL+key moves cursor to...
LEFT ARROW Left one unit. Left one (larger) unit.

RIGHT ARROW Right one unit. Right one (larger) unit.

UP ARROW Up one unit or line. Up one (larger) unit.

DOWN ARROW Down one unit or line. Down one (larger) unit.

February 13, 1995

Chapter 5 General Interaction Techniques 73

HOME Beginning of line. Beginning of data or file (topmost

position).

END End of line. End of data or file (bottommost

position).

PAGE UP Up one screen (previous Left one screen (or previous unit,
screen, same position). if left is not meaningful).

PAGE DOWN Down one screen Right one screen (or next unit, if
(next screen, same right is not meaningful).
position).

TAB Next field. (SHIFT+TAB Next larger field.

moves in reverse order).

Unlike mouse and pen navigation, keyboard navigation typically affects existing selections. Optionally, though, you
can support the SCROLL LOCK key to enable scrolling navigation without affecting existing selections. If you do so,
the keys will scroll the appropriate increment.

For more information about keyboard navigation in secondary windows such as dialog boxes, see Chapter 8,
"Secondary Windows."

Selection
Selection is the primary means by which the user identifies objects in the interface. Consequently, the basic model
for selection is one of the most important aspects of the interface.

Selection typically involves an overt action by the user to identify an object. This is known as an explicit selection.
Once the object is selected, the user can specify an action for the object.

There are also situations where the identification of an object can be derived by inference or implied by context. An
implicit selection works most effectively where the association of object and action is simple and visible. For
example, when the user drags a scroll box, the user establishes selection of the scroll box and the action of moving at
the same time. Implicit selection may result from the relationships of a particular object. For example, selecting a
character in a text document may implicitly select the paragraph of which the character is a part.

A selection can consist of a single object or multiple objects. Multiple selections can be contiguous—where the
selection set is made up of objects that are logically adjacent to each other, also known as a range selection. A
disjoint selection set is made up of objects that are spatially or logically separated.

Multiple selections may also be classified as homogeneous or heterogeneous, depending on the type or properties of
the selected objects. Even a homogeneous selection might have certain aspects in which it is heterogeneous. For
example, a text selection that includes bold and italic text can be considered homogeneous with respect to the basic
object type (characters), but heterogeneous with respect to the values of its font properties. The homogeneity or
heterogeneity of a selection affects the access of the operations or properties of the objects in the selection.

Selection Feedback

Always provide visual feedback as a selection is made, so that the user can tell the effect of the selection operation.
Display the appropriate selection appearance for each object included in the selection set. The form of selection
appearance depends on the object and its context.

February 13, 1995

Chapter 5 General Interaction Techniques 73

For more information about how to visually render the selection appearance of an object, see Chapter 13, "Visual
Design." Chapter 11, "Working with OLE Embedded and OLE Linked Objects," also includes information about
how the context of an object can affect its selection appearance.

Scope of Selection

The scope of a selection is the area, extent, or region in which, if other selections are made, they will be considered
part of the same selection set. For example, you can select two document icons in the same folder window. However,
the selection of these icons is independent of the selection of the window's scroll bar, a menu, the window itself, or
selections made in other windows. So, the selection scope of the icons is the area viewed through that window.
Selections in different scopes are independent of each other. The scope of a selection is important because you use it
to define the available operations for the selected items and how the operations are applied.

Hierarchical Selection

Range selections typically include objects at the same level. However, you can also support a user’s elevating a
range selection to the next higher level if it extends beyond the immediate containment of the object (but within the
same window). When the user adjusts the range back within the containment of the start of the range, return the
selection to the original level. For example, extending a selection from within a cell in a table to the next cell, as
shown in Figure 5.1, should elevate the selection from the character level to the cell level; adjusting the selection
back within the cell should reset the selection to the character level.

Telephone

. Telephone

Telephone

Figure 5.1 Hierarchical selection

Mouse Selection

Selection with the mouse relies on the basic actions of clicking and dragging. In general, clicking selects a single
item or location, and dragging selects a single range consisting of all objects logically included from the button-down
to the button-up location. If you also support dragging for object movement, use keyboard-modified mouse selection
or region selection to support multiple selection.

Selection with the Mouse

Support user selection using either mouse button. When the user presses the mouse button, establish the starting
point, or anchor point, of a selection. If, while pressing the mouse button, the user drags the mouse, extend the
selection to the object nearest the hot spot of the pointer. If, while holding the mouse button down, the user drags the
mouse within the selection, reduce the selection to the object now nearest the pointer. Tracking the selection with the
pointer while the mouse button continues to be held down allows the user to adjust a range selection dynamically.
Use appropriate selection feedback to indicate the objects included in the selection.

For more information about selection feedback appearance, see Chapter 13, "Visual Design."

February 13, 1995

Chapter 5 General Interaction Techniques 73

The release of the mouse button ends the selection operation and establishes the active end of the selection. Support
selection adjustment with subsequent selection operations using the SHIFT and CTRL keys. If the user presses mouse

button 2 to make a selection, display the contextual pop-up menu for the selected objects when the user releases the
mouse button.

For more information about pop-up menus, see Chapter 7, "Menus, Controls, and Toolbars."

The most common form of selection optimizes for the selection of a single object or a single range of objects. In such
a case, creating a new selection within the scope of an existing selection (for example, within the same area of the
window) cancels the selection of the previously selected objects. This allows simple selections to be created quickly
and easily.

When using this technique, reset the selection when the user presses the mouse button and the pointer (hot spot) is
outside (not on) any existing selection. If the pointer is over a selected item, however, don’t cancel the former
selection. Instead, determine the appropriate result according to whether the user pressed mouse button 1 or 2.

If the user presses mouse button 1 and the pointer does not move from the button down point, the effect of the release
of the mouse button is determined by the context of the selection. You can support whichever of the following best
fits the nature of the user's task.

e The result may have no effect on the existing selection. This is the most common and safest effect.

e The object under the pointer may receive some special designation or distinction; for example,
become the next anchor point or create a subselection.

e The selection can be reset to be only the object under the pointer.

If the user pressed mouse button 2, the selection is not affected, but you display a pop-up menu for selection.

Although selection is typically done by positioning the pointer over an object, it may be inferred based on the logical
proximity of an object to a pointer. For example, when selecting text, the user can place the pointer on the blank area
beyond the end of the line and the resulting selection is inferred as being the end of the line.

Selection Adjustment

Selections are adjusted (elements added to or removed from the selection) using keyboard modifiers with the mouse.
The CTRL key is the disjoint, or toggle, modifier. If the user presses the CTRL key while making a new selection,
preserve any existing selection within that scope and reset the anchor point to the new mouse button-down location.
Toggle the selection state of the object under the pointer—that is, if it is not selected, select it; if it is already
selected, unselect it.

If a selection modified by the CTRL key is made by dragging, the selection state is applied for all objects included by
the drag operation (from the anchor point to the current pointer location). This means if the first item included during
the drag operation is not selected, select all objects included in the range. If the first item included was already
selected, unselect it and all the objects included in the range regardless of their original state. For example, the user
selects the first two items in the list by dragging.

February 13, 1995

Chapter 5 General Interaction Techniques 73

The user must press the CTRL key before using the mouse button for a disjoint (toggle) selection. After a disjoint
selection is initiated, it continues until the user releases the mouse button (even if the user releases the CTRL key
before the mouse button).

The SHIFT key adjusts (or extends) a single selection or range selection. When the user presses the mouse button
while holding down the SHIFT key, reset the active end of a selection from the anchor point to the location of the
pointer. Continue tracking the pointer, resetting the active end as the user drags, similar to a simple range drag
selection. When the user releases the mouse button, the selection operation ends. You should then set the active end
to the object nearest to the mouse button release point. Do not reset the anchor point. It should remain at its current
location.

Only the selection made from the current anchor point is adjusted. Any other disjoint selections are not affected
unless the extent of the selection overlaps an existing disjoint selection.

The effect on the selection state of a particular object is based on the first item included in the selection range. If the
first item is already selected, select (not toggle the selection state of) all objects included in the range; otherwise,
unselect (not toggle the selection state of) the objects included.

The user must press and hold down the SHIFT key before pressing the mouse button for the action to be interpreted as
adjusting the selection. When the user begins adjusting a selection by pressing the SHIFT key, continue to track the
pointer and adjust the selection (even if the user releases the modifier key) until the user releases the mouse button.

Pressing the SHIFT modifier key always adjusts the selection from the current anchor point. This means the user can
always adjust the selection range of a single selection or CTRL key—modified disjoint selection. For example, the user
could select the following items by making a range selection by dragging.

Iterm 1
[term
[tem
[tem

[tem
[tem
Item 7

[p s A

The user can accomplish this same result by making an initial selection.

February 13, 1995

Chapter 5 General Interaction Techniques 73

[tem 1

[tem 2

[tem 4
[tem &
[tem B
[tem 7

The user can then adjust the selection with the SHIFT key and dragging.

Iterm 1
[tem 2
[tem 3
[tem 4

[tem &
[tem &
Item 7

The following sequence illustrates how the user can use the SHIFT key and dragging to adjust a disjoint selection. The
user makes the initial selection by dragging.

[tem 1
[tem 2

[term 3
[tem 4
[tem &
[tem &
[tem 7

The user then presses the CTRL key and drags to create a disjoint selection.

[term 1
[ter 2

[tem 4

[term B
[tem 7

The user can then extend the disjoint selection using the SHIFT key and dragging. This adjusts the selection from the
anchor point to the button down point and tracks the pointer to the button up point.

February 13, 1995

Chapter 5 General Interaction Techniques 73

[tem &
[tem B
[tem 7

February 13, 1995

Chapter 5 General Interaction Techniques 73

The following summarizes the mouse selection operations.

Operation Mouse action
Select object (range of objects) Click (drag)
Disjoint selection state of noncontiguous CTRL+click (drag)

object (range of objects)

Adjust current selection to object (or range of ~ SHIFT+click (drag)
objects)

For more information about the mouse interface, including selection behavior, see Appendix A, "Mouse Interface
Summary."

Region Selection

In Z-ordered, or layered, contexts, in which objects may overlap, user selection can begin on the background
(sometimes referred to as white space). To determine the range of the selection in such cases, a bounding outline
(sometimes referred to as a marquee) is drawn. The outline is typically a rectangle, but other shapes (including
freeform outline) are possible.

When the user presses the mouse button and moves the pointer (a form of selection by dragging), display the
bounding outline. You set the selection state of objects included by the outline using the selection guidelines
described in the previous sections, including operations that use the SHIFT and CTRL modifier keys.

You can use the context of your application and the user's task to determine whether an object must be totally
enclosed or only intersected by the bounding region to be affected by the selection operation. Always provide good
selection feedback during the operation to communicate to the user which method you support. When the user
releases the mouse button, remove the bounding region, but retain the selection feedback.

Pen Selection

When the pen is being used as the pointing device, you can use the same selection techniques defined for the mouse.
For example, in text input controls, you support user selection of text by dragging through it. Standard pen interfaces
also support text selection using a special pen selection handle. In discrete object scenarios, like drawing programs,
you support selection of individual objects by tapping or by performing region selection by dragging.

For more information about selection support in pen-enabled controls, see the "Pen-Specific Editing Techniques"
section later in this chapter.

In some contexts, you can also use the lasso-tap gesture to support selection of individual objects or ranges of
objects. However, avoid implementing this gesture when it might interfere with primary operations such as direct

manipulation.

Lasso-tap involves making a circular gesture around the object, then tapping within the gesture. For example, in
Figure 5.2, making the lasso-tap gesture selects the word "controversial."

February 13, 1995

Chapter 5 General Interaction Techniques 73

The prezsident today

signed jrkmam &
iII that

would make it illegal

Figure 5.2 A lasso-tap gesture

In text contexts, base the selection on the extent of the lasso gesture and the character-word-paragraph granularity of
the text elements covered. For example, if the user draws the lasso around a single character, select only that
character. If the user draws the lasso around multiple characters within a word, select the entire word. If the gesture
encompasses characters in multiple words, select the range of words logically included by the gesture. This reduces
the need for the user to be precise.

Keyboard Selection

Keyboard selection relies on the input focus to define selected objects. The input focus can be an insertion point, a
dotted outline box, or some other cursor or visual indication of the location where the user is directing keyboard
input.

For more information about input focus, see Chapter 13, "Visual Design."

In some contexts, selection may be implicit with navigation. When the user presses a navigation key, you move the
input focus to the location (as defined by the key) and automatically select the object at that location.

In other contexts, it may be more appropriate to move the input focus and require the user to make an explicit
selection with the Select key. The recommended keyboard Select key is the SPACEBAR, unless this assignment
directly conflicts with the specific context—in which case, you can use CTRL+SPACEBAR. (If this conflicts with your
software, define another key that best fits the context.) In some contexts, pressing the Select key may also unselect
objects; in other words, it will toggle the selection state of an object.

Contiguous Selection

In text contexts, the user moves the insertion point to the desired location using the navigation keys. Set the anchor
point at this location. When the user presses the SHIFT key with any navigation key (or navigation key combinations,
such as CTRL+END), set that location as the active end of the selection and select all characters between the anchor
point and the active end. (Do not move the anchor point.) If the user presses a subsequent navigation key, cancel the
selection and move the insertion point to the appropriate location defined by the key. If the user presses LEFT ARROW
or RIGHT ARROW keys, move the insertion point to the end of the former selection range. If UP ARROW or DOWN
ARROW are used, move the insertion point to the previous or following line at the same relative location.

You can use this technique in other contexts, such as lists, where objects are logically contiguous. However, in such
situations, the selection state of the objects logically included from the anchor point to the active end depend on the
selection state of the object at, or first traversed from, the anchor point. For example, if the object at the anchor point
is selected, then select all the objects in the range regardless of their current state. If the object at the anchor point is
not selected, unselect all the items in the range.

Disjoint Selection

Use the Select key for supporting disjoint selections. The user uses navigation keys or navigation keys modified by
the SHIFT key to establish the initial selection. The user can then use navigation keys to move to a new location and
subsequently use the Select key to create an additional selection.

In some situations, you may prefer to optimize for selection of a single object or single range. In such cases, when
the user presses a navigation key, reset the selection to the location defined by the navigation key. Creating a disjoint

February 13, 1995

Chapter 5 General Interaction Techniques 73

selection requires supporting the Add mode key (SHIFT+FS8). In this mode, you move the insertion point when the
user presses navigation keys without affecting the existing selections or the anchor point. When the user presses the
Select key, toggle the selection state at the new location and reset the anchor point to that object. At any point, the
user can use the SHIFT+navigation key combination to adjust the selection from the current anchor point.

When the user presses the Add mode key a second time, you toggle out of the mode, preserving the selections the
user created in Add mode. But now, if the user makes any new selections within that selection scope, you return to
the single selection optimization—canceling any existing selections—and reset the selection to be only the new
selection.

Selection Shortcuts

Double-clicking with mouse button 1 and double-tapping—its pen equivalent—is a shortcut for the default operation
of an object. In text contexts, it is commonly assigned as a shortcut to select a word. When supporting this shortcut,
select the word and the space following the word, but not the punctuation marks.

Note Double-clicking as a shortcut for selection generally applies to text. In other contexts, it may
perform other operations.

You can define additional selection shortcuts or techniques for specialized contexts. For example, selecting a column
label may select the entire column. Because shortcuts cannot be generalized across the user interface, however, do
not use them as the only way to perform a selection.

Common Conventions for Supporting Operations
There are many ways to support operations for an object, including direct manipulation of the object or its control
point (handle), menu commands, buttons, dialog boxes, tools, or programming. Support for a particular technique is
not exclusive to other techniques. For example, the user can size a window by using the Size menu command as well
as by dragging its border.

Design operations or commands to be contextual, or related to, the selected object to which they apply. That is,
determine which commands or properties, or other aspects of an object, are made accessible by the characteristics of
the object and its context (relationships). Often the context of an object may add to or suppress the traits of the
object. For example, the menu for an object may include commands defined by the object's type as well as
commands supplied by the object's current container.

Operations for a Multiple Selection

When determining which operations to display for a multiple selection, use an intersection of the operations that
apply to the members of that selection. The selection's context may add to or filter out the available operations or
commands displayed to the user.

It is also possible to determine the effect of an operation for a multiple selection based upon a particular member of
that selection. For example, when the user selects a set of graphic objects and chooses an alignment command, you
can make the operation relative to a particular item identified in the selection.

Limit operations on a multiple selection to the scope of the selected objects. For example, deleting a selected word in
one window should not delete selections in other windows (unless the windows are viewing the same selected
objects).

Default Operations and Shortcut Techniques

An object can have a default operation; a default operation is an operation that is assumed when the user employs a
shortcut technique, such as double-clicking or drag and drop. For example, double-clicking a folder displays a

February 13, 1995

Chapter 5 General Interaction Techniques 73

window with the content of the folder. For other objects, such as the Mouse object in the Control Panel, double-
clicking displays the properties of the object, or, in text editing situations, selects the word. The behavior differs
because the default commands in each case differ: for a folder, the default command is Open; for a device object
such as a mouse, the command is Properties; and for text, it is Select Word.

Similarly, when the user drags and drops an object at a new location with mouse button 1, there must be a default
operation defined to determine the result of the operation. Dragging and dropping to some locations can be
interpreted as a move, copy, link, or some other operation. In this case, the drop destination determines the default
operation.

For more information about supporting default operations for drag and drop, see the "Transfer Operations" section in
this chapter; also see Chapter 11, "Working with OLE Embedded and OLE Linked Objects."

Shortcut techniques for default operations provide greater efficiency in the interface, an important factor for more
experienced users. However, because they typically require more skill or experience and because not all objects may
have a default operation defined, avoid shortcut techniques as the exclusive means of performing a basic operation.
For example, even though double-clicking opens a folder icon, the Open command appears on its menu.

View Operations

Following are some of the common operations associated with viewing objects. Although these operations may not
always be used with all objects, when supported, they should follow similar conventions.

Operation Action

Open Opens a primary window for an object. For container objects, such as
folders and documents, this window displays the content of the
object.

Close Closes a window.

Properties Displays the properties of an object in a window, typically in a

property sheet window.

Help Displays a window with the contextual Help information about an
object.

When the user opens a new window, you should display it at the top of the Z order of its peer windows and activate
it. Primary windows are typically peers. Display supplemental or secondary windows belonging to a particular
application at the top of their local Z order— that is, the Z order of the windows of that application, not the Z order
of other primary windows.

If the user interacts with another window before the new window opens, the new window does not appear on top;
instead, it appears where it would usually be displayed if the user activated another window. For example, if the user
opens window A, then opens window B, window B appears on top of window A. If the user clicks back in window A
before window B is displayed, however, window A remains active and at the top of the Z order; window B appears
behind window A.

Whether opening a window allows the user to also edit the information in that window's view depends on a number
of factors. These factors can include who the user is, the type of view being used, and the content being viewed.

February 13, 1995

Chapter 5 General Interaction Techniques 73

After the user opens a window, re-executing the command that opened the window should activate the existing
window, instead of opening another instance of the window. For example, if the user chooses the Properties
command for an selected object whose property sheet is already open, the existing property sheet is activated, rather
than a second window opened.

For more information about opening windows, property sheets, and Help windows, see Chapter 6, "Windows,"
Chapter 8, "Secondary Windows," and Chapter 12, "User Assistance," respectively.

Note This guideline applies per user desktop. Two users opening a window for the same object on
a network can each see separate windows for the object from their individual desktops.

Closing a window does not necessarily mean quitting the processes associated with the object being viewed. For
example, closing a printer's window does not cancel the printing of documents in its queue. So even though exiting
an application closes its windows, closing a window does not necessarily exit an application. Similarly, you can use
other commands in secondary windows which result in closing the window—for example, OK and Cancel. However,
the effect of closing the window with a Close command depends on the context of the window. Avoid assuming that
the Close command is always the equivalent of the Cancel command.

If there are changes transacted in a window that have not yet been applied and the user chooses the Close command,
and those changes will be lost if not applied, display a message asking whether the user wishes to apply or discard
the changes or cancel the Close operation. If there are no outstanding changes or if pending changes are retained for
the next time the window is opened, remove the window.

February 13, 1995

Chapter 5 General Interaction Techniques 73

View Shortcuts
Following are the recommended shortcut techniques for the common viewing commands.
Shortcut Operation
CTRL+0 Opens a primary window for an object. For container objects,

such as folders and documents, this window displays the
content of the object.

ALT+F4 Closes a window.

Fl Displays a window with contextual Help information.
SHIFT+F1 _ Starts context-sensitive Help mode.

Starts context-sensitive

Help mode.

Double-click Carries out the default command.

(button 1) or ENTER
Carries out the default

command.
ALT+double-click Displays the properties of an object in a window, typically in
Or ALT+ENTER a property sheet window.

For more information on reserved and recommended shortcut keys, see Appendix B, "Keyboard Interface
Summary."

Use double-clicking and the ENTER key to open a view of an object when that view command is the default command
for the object. For example, double-clicking a folder opens the folder's primary window. But double-clicking a
mouse object displays its property sheet; this is because the Open command is the default command for folders, and
the Properties command is the default command for device objects.

Editing Operations
Editing involves changing (adding, removing, replacing) some fundamental aspect about the composition of an
object. Not all changes constitute editing of an object, though. For example, changing the view of a document to an
outline or magnified view (which has no effect on the content of the document) is not editing. The following sections
cover some of the common interface techniques for editing objects.

Editing Text

Editing text requires that you target the input focus at the text to be edited. For mouse input, the input focus always
coincides with the pointer (button down) location. For the pen, it is the point where the pen touches the screen. For
the keyboard, the input focus is determined with the navigation keys. In all cases, the visual indication that a text
field has the input focus is the presence of the text cursor, or insertion point.

Inserting Text

Inserting text involves the user placing the insertion point at the appropriate location and then typing. For each
character typed, your application should move the insertion point one character to the right (or left, depending on the
language).

If the text field supports multiple lines, wordwrap the text; that is, automatically move text to the next line as the
textual input exceeds the width of the text-entry area.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Overtype Mode
Overtype is an optional text-entry behavior that operates similarly to the insertion style of text entry, except that you
replace existing characters as new text is entered—with one character being replaced for each new character entered.

Use a block cursor that appears at the current character position to support overtype mode, as shown in Figure 5.3.
This looks the same as the selection of that character and provides the user with a visual cue about the difference
between the text-entry modes.

The 1@93 statiztics are complete.

Figure 5.3 An overtype cursor

Use the INSERT key to toggle between the normal insert text-entry convention and overtype mode.
Deleting Text

The DELETE and BACKSPACE keys support deleting text. The DELETE key deletes the character to the right of the text
insertion point. BACKSPACE removes the character to the left. In either case, move text in the direction of the deletion
to fill the gap—this is sometimes referred to as auto-joining. Do not place deleted text on the Clipboard. For this
reason, include at least a single-level undo operation in these contexts.

For a text selection, when the user presses DELETE or BACKSPACE, remove the entire block of selected text. Delete
text selections when new text is entered directly or by a transfer command. In this case, replace the selected text by

the incoming input.

For more information about transfer operations, see the "Transfer Operations" section later in this chapter.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Handles

Objects may include special control points, called handles; handles facilitate certain types of operations, such as
moving, sizing, scaling, cropping, shaping, or auto-filling. The type of handle you use depends on the type of object.
For example, for windows the title bar acts as a "move handle." The borders of the window act as "sizing handles."
For icons, the selected icon acts as its own "move handle." In pen-enabled controls, special handles may appear for
selection and access to the operations available for an object.

For more information about these handles, see the "Pen-Specific Editing Techniques" section later in this chapter.

A common form of handle is a square box placed at the edge of an object, as shown in Figure 5.4.

Figure 5.4 Handles

When the handle's interior is solid, the handle implies that it can perform a certain operation, such as sizing,
cropping, or scaling. If the handle is "hollow," the handle does not currently support an operation. You can use such
an appearance to indicate selection even when an operation is not available.

For more information about the design of handles, see Chapter 13, "Visual Design."

Transactions

A transaction is a unit of change to an object. The granularity of a transaction may span from the result of a single
operation to that of a set of multiple operations. In an ideal model, transactions are applied immediately, and there is
support for “rolling back,” or undoing, transactions. Because there are times when this is not practical, specific
interface conventions have been established for committing transactions. If there are pending transactions in a
window when it is closed, always prompt the user to ask whether to apply or discard the transactions.

Transactions can be committed at different levels, and a commitment made at one level may not imply a permanent
change. For example, the user may change font properties of a selection of text, but these text changes may require
saving the document file before the changes are permanent.

Use the following commands for committing transactions at the file level.

Command Function

Save Saves all interim edits, or checkpoints, to disk and begins a new editing
session.
Close Prompts the user to save any uncommitted edits. If confirmed, the interim

edits are saved and the window is removed.

Note Use the Save command in contexts where committing file transactions applies to transactions
for an entire file, such as a document, and are committed at one time. It may not necessarily apply
for transactions committed on an individual basis, such as record-oriented processing.

February 13, 1995

Chapter 5 General Interaction Techniques 73

On a level with finer granularity, you can use the following commands for common handling transactions within a
file.

Command Function
Repeat Duplicates the last/latest user transaction.

Undo Reverses the last, or specified, transaction.

Reverses the

last, or

specified,

transaction.

Redo Restores the most recent, or specified, "undone" transaction.
Restores the

most recent,

or specified,

"undone"

transaction.

Apply Commits any pending transactions, but does not remove the window.
Commits

any pending

transactions,

but does not

remove the

window.

Cancel Discards any pending transactions and removes the window.

Following are the recommended commands for handling process transactions.

Command Function
Pause Suspends a process.

Resume Resumes a suspended process.
Resumes a

suspended

process.

Stop Halts a process.

Halts a

process.

Note Although you can use the Cancel command to halt a process, Cancel implies that the state
will be restored to what it was before the process was initiated.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Properties

Defining and organizing the properties of an application's components are a key part of evolving toward a more data-
centered design. Commands such as Options, Info, Summary Info, and Format often describe features that can be
redefined as properties of a particular object (or objects). The Properties command is the common command for
accessing the properties of an object; when the user chooses this command, you typically display the property sheet
for the selection.

For more information about property sheets, see Chapter 8, "Secondary Windows."

Defining how to provide access to properties for visible or easily identifiable objects, such as a selection of text,
cells, or drawing objects, is straightforward. It may be more difficult to define how to access properties of less
tangible objects, such as paragraphs. In some cases, you can include these properties by implication. For example,
requesting the properties of a text selection can also provide access to the properties of the paragraph in which the
text selection is included.

Another way to provide access to an object's properties is to create a representation of the object. For example, the
properties of a page could be accessed through a graphic or other representation of the page in a special area (for
example, the status bar) of the window.

Yet another technique to consider is to include specific property entries on the menu of a related object. For example,
the pop-up menu of a text selection could include a menu entry for a paragraph. Or consider using the cascading
submenu of the Properties command for individual menu entries, but only if the properties are not easily made
accessible otherwise. Adding entries for individual properties can easily end up cluttering a menu.

The Properties command is not the exclusive means of providing access to the properties of an object. For example,
folder views display certain properties of objects stored in the file system. In addition, you can use toolbar controls to
display properties of selected objects.

Pen-Specific Editing Techniques

A pen is more than just a pointing device. When a standard pen device is installed, the system provides special
interfaces and editing techniques.

Editing in Pen-Enabled Controls

If a pen is installed, the system automatically provides a special interface, called the writing tool button, to make text
editing as easy as possible, enhance recognition accuracy, and streamline correction of errors. The writing tool
interface, as shown in Figure 5.5, adds a button to your standard text controls. Because this effectively reduces the
visible area of the text box, take this into consideration when designing their size.

I&I Text

Figure 5.5 A standard text box with writing tool button

Figure 5.6 shows how you can also add writing tool support for any special needs of your software.

February 13, 1995

Chapter 5 General Interaction Techniques

73

When the text box control has the focus, a selection handle appears. The user can drag this handle to make a

selection.

Tapping the writing tool button with a pen (or clicking it with a mouse) presents a special text editing window, as

Al

14 Main 5t.
Springfield

Figure 5.6 Adding the writing tool button

I&I Sales Tl:ut

shown in Figure 5.7. Within this window, the user can write text that is recognized automatically.

le.a.l.e.s. .T.u.t.a.l.s%"l

i
bl

@ | oo | @ | | o [T]

1.4, Main, St.. .o .3
|S.p.r.i.n.g.f.i.e.l.d“.“."l

-

Cancel |

Figure 5.7 Single and multiline text editing windows

February 13, 1995

Chapter 5 General Interaction Techniques 73

In the writing tool editing window, each character is displayed within a special cell. If the user selects text in the
original text field, the writing tool window reflects that selection. The user can reset the selection to an insertion
point by tapping between characters. This also displays a special selection handle that can be dragged to select
multiple characters, as shown in Figure 5.8.

ds.ales,
Unda 3]

Figure 5.8 Selecting text with the selection handle

The user can select a single character in its cell by tapping, or double-tapping to select a word. When the user taps a
single character, an action handle displays a list of alternative characters, as shown in Figure 5.9.

az
le.ﬂ.l.E.S. T, o t a l |M
Undo <¥] - e

[Apla) B]

[Blank]
wéordlist. ..

Figure 5.9 An action handle with a list of alternatives

Choosing an alternative replaces the selected character and removes the list. Writing over a character or tapping
elsewhere also removes the list. The new character replaces the existing one and resets the selection to an insertion
point placed to the left of the new character.

The list also includes an item labeled Wordlist. When the user selects this choice, the word that contains the
character becomes selected and a list of alternatives is displayed, as shown in Figure 5.10. This list also appears
when the user selects a complete word by double-tapping. Choosing an alternative replaces the selected word.

Figure 5.10 Tapping displays a list of Alternatives

When a selection exists in the window, an action handle appears; the user can use it to perform other operations on
the selected items. For example, using the action handle moves or copies the selection by dragging, or the pop-up
menu for the selection can be accessed by tapping on the handle, as shown in Figure 5.11.

For more information about pop-up menus, see Chapter 7, "Menus, Controls, and Toolbars."

February 13, 1995

Chapter 5 General Interaction Techniques 73

ﬂls.a.l.e.s. Undo
B | e | @ | Cut

Copy
Easfe
Delete

Select Al

Imserk Kepstiokes k
Fevbmard...
Choices...

Figure 5.11 Tapping on the handle displays a pop-up menu

The buttons on the writing tool window provide for scrolling the text as well as common functions such as Undo,
Backspace, Insert Space, Insert Period, and Close (for closing the text window). A multiline writing tool window
includes Insert New Line.

The writing tool window also provides a button for access to an onscreen keyboard as an alternative to entering
characters with the pen, as shown in Figure 5.12. The user taps the button with the corresponding keyboard glyph on
it and the writing tool onscreen keyboard pop-up window replaces the normal writing tool window.

Enter Text:

Imemu:utu:ue
emotional I employees | empky | emphasiz |
N R 2 Y I S 2
2| 3] 4] s|s]7]8]s]o] ®]
ol o] o]] ul] e el
R O Y 0 S O
_o | ILILILILILILIEITIJLI

Space |

abel | [e ws | ok |

Figure 5.12 The writing toolpop-up window

The writing tool "remembers" its previous use—for text input or as an onscreen keyboard—and opens in the
appropriate editing window when subsequently used. In addition, note that when the user displays a writing tool
window, it gets the input focus, so avoid using the loss of input focus to a field as an indication that the user is
finished with that field or that all text editing occurs directly within a text box.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Pen Editing Gestures

The pen, when used as a pointing device, supports editing techniques defined for the mouse; the pen also supports
gestures for editing. Gestures (except for Undo) operate positionally, acting on the objects on which they are drawn.
If the user draws a gesture on an unselected object, it applies to that object, even if a selection exists elsewhere
within the same selection area. Any pending selections become unselected. If a user draws a gesture over both
selected and unselected objects, however, it applies only to the selected ones. If a gesture is drawn over only one
element of the selection, it applies to the entire selection. If the gesture is drawn in empty space (on the background),
it applies to any existing selection within that selection scope. If no selection exists, the gesture has no effect.

For most gestures, the hot spot of the gesture determines specifically which object the gesture applies to. If the hot
spot occurs on any part of a selection, it applies to the whole selection.

Table 5.2 lists the common pen editing gestures. For these gestures, the hot spot of the gesture is the area inside the
circle stroke of the gesture.

Table 5.2 Basic Navigation Keys

Gesture Name Operation
check-circle Edit (displays the writing tool
editing window) for text;
Properties for all other objects.
@ c-circle Copy
@ d-circle Delete (or Clear)
@ m-circle Menu
@ n-circle New line
p-circle Paste
@ s-circle Insert space
@ t-circle Insert tab
@ u-circle Undo
x-circle Cut
@ A-circle Insert text

February 13, 1995

Chapter 5 General Interaction Techniques 73

Note These gestures can be localized in certain international versions. In Kanji versions, the
circle-k gesture is used to convert Kana to Kanji.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Transfer Operations
Transfer operations are operations that involve (or can be derived from) moving, copying, and linking objects from
one location to another. For example, printing an object is a form of a transfer operation because it can be defined as
copying an object to a printer.

Three components make up a transfer operation: the object to be transferred, the destination of the transfer, and the
operation to be performed. You can define these components either explicitly or implicitly, depending on which
interaction technique you use.

The operation defined by a transfer is determined by the destination. Because a transfer may have several possible
interpretations, you can define a default operation and other optimal operations, based on information provided by
the source of the transfer and the compatibility and capabilities of the destination. Attempting to transfer an object to
a container can result in one of the following alternatives:

e Rejecting the object.

e Accepting the object.

e Accepting a subset or transformed form of the object (for example, extract its content or properties
but discard its present containment, or convert the object into a new type).

February 13, 1995

Chapter 5 General Interaction Techniques 73

Most transfers are based on one of the following three fundamental operations.

Operation Description

Move Relocates or repositions the selected object. Because it does not change
the basic identity of an object, a move operation is not the same as
copying an object and deleting the original.

Copy Makes a duplicate of an object. The resulting object is independent of its
Makes a original. Duplication does not always produce an identical clone. Some of
duplicate of the properties of a duplicated object may be different from the original.
an object. For example, copying an object may result in a different name or creation
The date. Similarly, if some component of the object restricts copying, then
resulting only the unrestricted elements may be copied.

object is

independent

of its

original.

Duplication

does not

always

produce an

identical

clone. Some

of the

properties of

a duplicated

object may

be different

from the

original. For

example,

copying an

object may

result in a

different

name or

creation

date.

Similarly, if

some

component

of the object

restricts

copying,

then only

the

unrestricted

elements

may be

copied.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Link Creates a connection between two objects. The result is usually an object
Creates a in the destination that provides access to the original.
connection

between two
objects. The
result is
usually an
object in the
destination
that
provides
access to the
original.

There are two different methods for supporting the basic transfer interface: the command method and the direct
manipulation method.

Command Method

The command method for transferring objects uses the Cut, Copy, and Paste commands. Place these commands on
the Edit drop-down menu as well as on the pop-up menu for a selected object. You can also include toolbar buttons
to support these commands.
To transfer an object, the user:

1. Makes a selection.

2. Chooses either Cut or Copy.

3. Navigates to the destination (and sets the insertion location, if appropriate).

4. Chooses a Paste operation.
Cut removes the selection and transfers it (or a reference to it) to the Clipboard. Copy duplicates the selection (or a
reference to it) and transfers it to the Clipboard. Paste completes the transfer operation. For example, when the user
chooses Cut and Paste, remove the selection from the source and relocate it to the destination. For Copy and Paste,
insert an independent duplicate of the selection and leave the original unaffected. When the user chooses Copy and
Paste Link or Paste Shortcut, insert an object at the destination that is linked to the source.
Choose a form of Paste command that indicates how the object will be transferred into the destination. Use the Paste
command by itself to indicate that the object will be transferred as native content. You can also use alternative forms
of the Paste command for other possible transfers, using the following general form.
Paste [short type name] [as | to object type | object name]

For example, Paste Cells as Word Table, where [short type name] is Cells and [object type] is Word Table.

For more information about object names, including their short type name, see Chapter 10, "Integrating with the
System."

February 13, 1995

Chapter 5 General Interaction Techniques

73

The following summarizes common forms of the Paste command.

Command

Function

Paste

Paste [short type name]

Paste [short type name] as Icon

Paste Link

Paste Link to [object name]

Paste Shortcut

Paste Special

Inserts the object on the Clipboard as native
content (data).

Inserts the object on the Clipboard as an OLE
embedded object. The OLE embedded object can
be activated directly within the destination.

Inserts the object on the Clipboard as an OLE
embedded object. The OLE embedded object is
displayed as an icon.

Inserts a data link to the object that was copied to
the Clipboard. The object's value is integrated or
transformed as native content within the
destination, but remains linked to the original
object so that changes to it are reflected in the
destination.

Inserts an OLE linked object, displayed as a
picture of the object copied to the Clipboard. The
representation is linked to the object copied to the
Clipboard so that any changes to the original
source object will be reflected in the destination.

Inserts an OLE linked object, displayed as a
shortcut icon, to the object that was copied to the
Clipboard. The representation is linked to the
object copied to the Clipboard so that any changes
to the original source object will be reflected in
the destination.

Displays a dialog box that gives the user explicit
control over how to insert the object on the
Clipboard.

For more information about these Paste command forms and the Paste Special dialog box, see Chapter 11, "Working

with OLE Embedded and OLE Linked Objects."

Use the destination's context to determine what form(s) of the Paste operation to include based on what options it can

offer to the user, which in turn may be dependent on the available forms of the object that its source location object
provides. It can also be dependent on the nature or purpose of the destination. For example, a printer defines the

context of transfers to it.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Typically, you will need only Paste and Paste Special commands. The Paste command can be dynamically modified
to reflect the destination's default or preferred form by inserting the transferred object—for example, as native data
or as an OLE embedded object. The Paste Special command can be used to handle any special forms of transfer.
Although, if the destination's context makes it reasonable to provide fast access to another specialized form of
transfer, such as Paste Link, you can also include that command.

Use the destination's context also to determine the appropriate side effects of the Paste operation. You may also need
to consider the type of object being inserted by the Paste operation and the relationship of that type to the destination.
The following are some common scenarios.

e When the user pastes into a destination that supports a specific insertion location, replace the
selection in the destination with the transferred data. For example, in text or list contexts, where the
selection represents a specific insertion location, replace the destination's active selection. In text
contexts where there is an insertion location, but there is no existing selection, place the insertion
point after the inserted object.

e For destinations with nonordered or Z-ordered contexts where there is no explicit insertion point,
add the pasted object and make it the active selection. Use the destination's context also to
determine where to place the pasted object. Consider any appropriate user contextual information.
For example, if the user chooses the Paste command from a pop-up menu, you can use the pointer's
location when the mouse button is clicked to place the incoming object. If the user supplies no
contextual clues, place the object at the location that best fits the context of the destination—for
example, at the next grid position.

e If the new object is automatically connected (linked) to the active selection (for example, table data
and a graph), you may insert the new object in addition to the selection and make the inserted
object the new selection.

You also use context to determine whether to display an OLE embedded or OLE linked object as content (view or
picture of the object's internal data) or as an icon. For example, you can decide what presentation to display based on
what Paste operation the user selects; Paste Shortcut implies pasting an OLE link as an icon. Similarly, the Paste
Special command includes options that allow the user to specify how the transferred object should be displayed. If
there is no user-supplied preference, the destination application defines the default. For documents, you typically
display the inserted OLE object as in its content presentation. If icons better fit the context of your application, make
the default Paste operation display the transferred OLE object as an icon.

The execution of a Paste command should not affect the content of the Clipboard. This allows data on the Clipboard
to be pasted multiple times, although subsequent paste operations should always result in copies of the original.
Remember that a subsequent Cut or Copy command will replace the last entry on the Clipboard.

Direct Manipulation Method

The command method is useful when a transfer operation requires the user to navigate between source and
destination. However, for many transfers, direct manipulation is a natural and quick method. In a direct manipulation
transfer, the user selects and drags an object to the desired location, but because this method requires motor skills
that may be difficult for some users to master, avoid using it as the exclusive transfer method. The best interfaces
support the transfer command method for basic operations as well as direct manipulation transfer as a shortcut.

When a pen is being used as a pointing device, or when it drags an action handle, it follows the same conventions as

dragging with mouse button 1. For pens with barrel buttons, use the barrel+drag action as the equivalent of dragging
with mouse button 2.

February 13, 1995

Chapter 5 General Interaction Techniques 73

There is no keyboard interface for direct manipulation transfers.

You can support direct manipulation transfers to any visible object. The object (for example, a window or icon) need
not be currently active. For example, the user can drop an object in an inactive window. This action activates the
window. If an inactive object cannot accept a direct manipulation transfer, it (or its container) should provide
feedback to the user.

How the transferred object is integrated and displayed in the drop destination is determined by the destination's
context. A dropped object can be incorporated either as native data, as an OLE object, or as a partial form of the
object such as its properties or a transformed object. You determine whether to add to or replace an existing selection
based on the context of the operation, using such factors as the formats available for the object, the destination's
purpose, and any user-supplied information such as the specific location that the user drops or commands (or modes)
that the user has selected. For example, an application can supply a particular type of tool for copying the properties
of objects.

Default Drag and Drop

Default drag and drop transfers an object using mouse button 1. How the operation is interpreted is determined by
what the destination defines as the appropriate default operation. As with the command method, the destination
determines this based on information about the object (and the formats available for the object) and the context of the
destination itself. Avoid defining a destructive operation as the default. When that is unavoidable, display a message
box to confirm the intentions of the user.

Using this transfer technique, the user can directly transfer objects between documents defined by your application as
well as to system resources, such as folders and printers. Support drag and drop following the same conventions the
system supports: the user presses button 1 down on an object, moves the mouse while holding the button down, and
then releases the button at the destination. For the pen, the destination is determined by the location where the user
lifts the pen tip from the screen.

The most common default transfer operation is Move, but the destination (dropped on object) can reinterpret the
operation to be whatever is most appropriate. Therefore, you can define a default drag and drop operation to be
another general transfer operation such as Copy or Link, a destination specific command such as Print or Send To, or
even a specialized form of transfer such as Copy Properties.

Nondefault Drag and Drop

Nondefault drag and drop transfers an object using mouse button 2. In this case, rather than executing a default
operation, the destination displays a pop-up menu when the user releases the mouse button, as shown in Figure 5.13.
The pop-up menu contains the appropriate transfer completion commands.

::Muve Here

Copy Here
Link Here

Cancel

Figure 5.13 A nondefault drag and drop operation

February 13, 1995

Chapter 5 General Interaction Techniques 73

The destination always determines which transfer completion commands to include on the resulting pop-up menu,
usually factoring in information about the object supplied by the source location.

The form for nondefault drag and drop transfer completion verbs follows similar conventions as the Paste command.
Use the common transfer completion verbs, Move Here, Copy Here, and Link Here, when the object being
transferred is native data of the destination. When it is not, include the short type name. You can also display
alternative completion verbs that communicate the context of the destination; for example, a printer displays a Print
Here command. For commands that support only a partial aspect or a transformation of an object, use more
descriptive indicators—for example, Copy Properties Here, or Transpose Here.

Use the following general form for nondefault drag and drop transfer commands.

[Command Name] [object type | object name] Here [as object type]

The following summarizes command forms for nondefault transfer completion commands.

Command Function

Move Here Moves the selected object to the destination
as native content (data).

Copy Here Creates a copy of the selected object in the
destination as native content.

Link Here Creates a data link between the selected

Move [short type name] Here
Copy [short type name] Here

Link [short type name] Here

Move [short type name] Here as Icon
Copy [short type name] Here as Icon

Create Shortcut Here

object and the destination. The original
object's value is integrated or transformed as
native data within the destination, but
remains linked to the original object so that
changes to it are reflected in the destination.

Moves or copies the selected object as an
OLE embedded object. The OLE embedded
object is displayed in its content presentation
and can be activated directly within the
destination.

Creates an OLE linked object displayed as a
picture of the selected object. The
representation is linked to the selected object
so that any changes to the original object will
be reflected in the destination.

Moves or copies the selected object as an
OLE embedded object and displays it as an
icon.

Creates an OLE linked object to the selected
object; displayed as a shortcut icon. The
representation is linked to the selected object
so that any changes to the original object will
be reflected in the destination.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Define and appropriately display one of the commands in the pop-up menu to be the default drag and drop command.
This is the command that corresponds to the effect of dragging and dropping with mouse button 1.

For more information about how to display default menu commands, see Chapter 13, "Visual Design."
Canceling a Drag and Drop Transfer

When a user drags and drops an object back on itself, interpret the action as cancellation of a direct manipulation
transfer. Similarly, cancel the transfer if the user presses the ESC key during a drag transfer. In addition, include a
Cancel command in the pop-up menu of a nondefault drag and drop action. When the user chooses this command,
cancel the operation.

Differentiating Transfer and Selection When Dragging

Because dragging performs both selection and transfer operations, provide a convention that allows the user to
differentiate between these operations. The convention you use depends on what is most appropriate in the current
context of the object, or you can provide specialized handles for selection or transfer. The most common technique
uses the location of the pointer at the beginning of the drag operation. If the pointer is within an existing selection,
interpret the drag to be a transfer operation. If the drag begins outside of an existing selection, on the background's
white space, interpret the drag as a selection operation.

Scrolling When Transferring by Dragging

When the user drags and drops an object from one scrollable area (such as a window, pane, or list box) to another,
some tasks may require transferring the object outside the boundary of the area. Other tasks may involve dragging
the object to a location not currently in view. In this latter case, it is convenient to automatically scroll the area (also
known as automatic scrolling or autoscroll) when the user drags the object to the edge of that scrollable area. You
can accommodate both these behaviors by using the velocity of the dragging action. For example, if the user is
dragging the object slowly at the edge of the scrollable area, you scroll the area; if the object is being dragged
quickly, do not scroll.

To support this technique, during a drag operation you sample the pointer's position at the beginning of the drag,
each time the mouse moves, and on an application-set timeout (every 100 milliseconds recommended). Store each
value in an array large enough to hold at least three samples, replacing existing samples with later ones. Then
calculate the pointer's velocity based on at least the last two locations of the pointer.

February 13, 1995

Chapter 5 General Interaction Techniques 73

To calculate the velocity, sum the distance between the points in each adjacent sample and divide the total by the
sum of the time elapsed between samples. Distance is the absolute value of the difference between the x and y
locations, or (abs(x1 — x2) + abs(y1 — y2)). Multiply this by 1024 and divide it by the elapsed time to produce the
velocity. The 1024 multiplier prevents the loss of accuracy caused by integer division.

Note Distance as implemented in this algorithm is not true Cartesian distance. This
implementation uses an approximation for purposes of efficiency, rather than using the square root
of the sum of the squares, (sqrt((x1 —x2)*2 + (y1 — y2)*2)), which is more computationally
expensive.

You also predefine a hot zone along the edges of the scrollable area and a scroll timeout value. The recommended
hot zone width is XXX. You use the scroll timeout value to control the scroll rate. During the drag operation, scroll
the area if the following conditions are met: the user moves the pointer within the hot zone, the current velocity is
below a certain threshold velocity, the scroll timeout has elapsed, and the scrollable area is able to scroll in the
direction associated with the hot zone it is in. The recommended threshold velocity is XXX. These principles are
illustrated in Figure 5.14.

657

d’ﬁ$?

a‘ﬁ$?
Le

Figure 5.14 Automatic scrolling based on velocity of dragging

Note The system provides support for automatic scrolling using the AddTimeSample function
and the AUTO_SCROLL_DATA structure to record and maintain time and position samples and
the scroll timeout. For more information about using these API elements, see the Microsoft Win32
Programmer's Reference.

Transfer Feedback

Because transferring objects is one of the most common user tasks, providing appropriate feedback is an important
design factor. Inconsistent or insufficient feedback can result in user confusion.

For more information about the design of transfer feedback, see Chapter 13, "Visual Design."

February 13, 1995

Chapter 5 General Interaction Techniques 73

Command Method Transfers

For a command method transfer, remove the selected object visually when the user chooses the Cut command. If
there are special circumstances that make removing the object's appearance impractical, you can instead display the
selected object with a special appearance to inform the user that the Cut command was completed, but that the
object's transfer is pending. For example, the system displays icons in a checkerboard dither to indicate this state. But
the user will expect Cut to remove a selected object, so carefully consider the impact of inconsistency if you choose
this alternate feedback.

The Copy command requires no special feedback. A Paste operation also requires no further feedback than that
already provided by the insertion of the transferred object. However, if you did not remove the display of the object
and used an alternate representation when the user chose the Cut command, you must remove it now.

Direct Manipulation Transfers

During a direct manipulation transfer operation, provide visual feedback for the object, the pointer, and the
destination. Specifically:

e Display the object with selected appearance while the view it appears in has the focus. To indicate
that the object is in a transfer state, you can optionally display the object with some additional
appearance characteristics. For example, for a move operation, use the checkerboard dithered
appearance used by the system to indicate when an icon is Cut. Change this visual state based on
the default completion operation supported by the destination the pointer is currently over. Retain
the representation of the object at the original location until the user completes the transfer
operation. This not only provides a visual cue to the nature of the transfer operation, it provides a
convenient visual reference point.

e Display a representation of the object that moves with the pointer. Use a presentation that provides
the user with information about how the information will appear in the destination and that does
not obscure the context of the insertion location. For example, when transferring an object into a
text context, it is important that the insertion point not be obscured during the drag operation. A
translucent or outline representation, as shown in Figure 5.15, works well because it allows the
underlying insertion location to be seen while also providing information about the size, position,
and nature of the object being dragged.

Figure 5.15 Qutline and translucent representations for transfer operations

e The object's existing source location provides the transferred object's initial appearance, but any
destination can change the appearance. Design the presentation of the object to provide feedback as
to how the object will be integrated by that destination. For example, if an object will be embedded
as an icon, display the object as an icon. If the object will be incorporated as part of the native
content of the destination, then the presentation of the object that the destination displays should
reflect that. For example, if a table being dragged into a document will be incorporated as a table,
the representation could be an outline or translucent form of the table. On the other hand, if the
table will be converted to text, display the table as a representation of text, such as a translucent
presentation of the first few words in the table.

February 13, 1995

Chapter 5 General Interaction Techniques 73

e Display the pointer appropriate to the context of the destination, usually used for inserting objects.
For example, when dragging an object into a text editing context such that the object will be
inserted between characters, display the usual text editing pointer (sometimes called the I-beam
pointer).

e Display the interpretation of the transfer operation at the lower right corner of the pointer, as
shown in Figure 5.16. No additional glyph is required for a move operation. Use a plus sign (+)
when the transfer is a copy operation. Use the shortcut arrow graphic for linking.

ok R
B m

Figure 5.16 Pointers — move, copy, and link operations

e Use visual feedback to indicate the receptivity of potential destinations. You can use selection
highlighting and optionally animate or display a representation of the transfer object in the
destination. Optionally, you can also indicate when a destination cannot accept an object by using
the "no drop" pointer when the pointer is over it, as shown in Figure 5.17.

Y

Figure 5.17 A '"no drop " pointer

Specialized Transfer Commands

In some contexts, a particular form of a transfer operation may be so common, that introducing an additional
specialized command is appropriate. For example, if copying existing objects is a frequent operation, you can include
a Duplicate command. Following are some common specialized transfer commands.

Command Function

Delete Removes an object from its container. If the object is a file, the
object is transferred to the Recycle Bin.

Clear Removes the content of a container.

Duplicate Copies the selected object.

Print Prints the selected object on the default printer.

Send To Displays a list of possible transfer destinations and transfers the

selected object to the user selected destination.

Note Delete and Clear are often used synonymously. However, they are best differentiated by
applying Delete to an object and Clear to the container of an object.

Shortcut Keys for Transfer Operations
Following are the defined shortcut techniques for transfer operations.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Shortcut Operation

CTRL+X Performs a Cut command.

CTRL+C Performs a Copy command.

CTRL+V Performs a Paste command.

CTRL+drag Toggles the meaning of the default direct manipulation transfer

operation to be a copy operation (provided the destination can
support the copy operation). The modifier may be used with either
mouse button.

ESC Cancels a drag and drop transfer operation.

Because of the wide use of these command shortcut keys throughout the interface, do not reassign them to other
commands.

For more information about reserved and recommended shortcut key assignments, see Appendix B, "Keyboard
Interface Summary."

February 13, 1995

Chapter 5 General Interaction Techniques 73

Scraps

The system allows the user to transfer objects within a data file to the desktop or folders providing that the
application supports the OLE transfer protocol. The result of the transfer operation is a file icon called a scrap. When
the user transfers a scrap into an application, integrate it as if it were being transferred from its original source. For
example, if a selected range of cells from a spreadsheet is transferred to the desktop, they become a scrap. If the user
transfers the resulting scrap into a word processing document, incorporate the cells as if they were transferred
directly from the spreadsheet. Similarly, if the user transfers the scrap back into the spreadsheet, integrate the cells as
if they were originally transferred within that spreadsheet.

Creation Operations
Creating new objects is a common user action in the interface. Although applications can provide the context for
object creation, avoid considering an application's interface as the exclusive means of creating new objects. Creation
is typically based on some predefined object or specification and can be supported in the interface in a number of
ways.

Copy Command

Making a copy of an existing object is the fundamental paradigm for creating new objects. Copied objects can be
modified and serve as prototypes for the creation of other new objects. The transfer model conventions define the
basic interaction techniques for copying objects. Copy and Paste commands and drag and drop manipulation provide
this interface.

New Command

The New command facilitates the creation of new objects. New is a command applied to a specific object,
automatically creating a new instance of the object's type. The New command differs from the Copy and Paste
commands in that it is a single command that generates a new object.

Insert Command

The Insert command works similarly to the New command, except that it is applied to a container to create a new
object, usually of a specified type, in that container. In addition to inserting native types of data, use the Insert
command to insert objects of different types. By supporting OLE, you can support the creation of a wide range of
objects. In addition, objects supported by your application can be inserted into data files created by other OLE
applications.

For more information about inserting objects, see Chapter 11, "Working with OLE Embedded and OLE Linked
Objects."

Using Controls

You can use controls to support the automatic creation of new objects. For example, in a drawing application,
buttons are often used to specify tools or modes for the creation of new objects, such as drawing particular shapes or
controls. Buttons can also be used to insert OLE objects.

For more information about using buttons to create new objects, see Chapter 11, "Working with OLE Embedded and

OLE Linked Objects." For general information about using controls to perform operations, see Chapter 7, "Menu,
Controls, and Toolbars."

February 13, 1995

Chapter 5 General Interaction Techniques 73

Using Templates

A template is an object that automates the creation of a new object. To distinguish its purpose, display a template
icon as a pad with the small icon of the type of the object to be created, as shown in Figure 5.18.

Figure 5.18 A template icon

Define the New command as the default operation for a template object; this starts the creation process, which may
either be automatic or request specific input from the user. Place the newly created object in the same location as the
container of the template. If circumstances make that impractical, place the object in a common location such as the
desktop, or, during the creation process, include a prompt that allows a user to specify some other destination. In the
former situation, display a message box so that the user knows where the object will appear.

Operations on Linked Objects
A link is a connection between two objects that represents or provides access to another object that is in another
location in the same container or in a different, separate container. The components of this relationship include the
link source (sometimes referred to as the referent) and the link or linked object (sometimes referred to as the
reference). A linked object often has operations and properties independent of of its source. For example, a linked
object's properties can include attributes like update frequency, the path description of its link source, and the
appearance of the linked object. The containers in which they reside provide access to and presentation of commands
and properties of linked objects.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Links can be presented in various ways in the interface. For example, a data link propagates a value between two
objects, such as between two cells in a worksheet or a series of data in a table and a chart. Jumps (also referred to as
hyperlinks) provide navigational access to another object. An OLE linked object provides access to any operation
available for its link source and also supplies a presentation of the link source. A shortcut icon is a link, displayed as
an icon.

For more information about OLE linked objects, see Chapter 11, "Working with OLE Embedded and OLE Linked
Objects”

When the user transfers a linked object, store both the absolute and relative path to its link source. The absolute path
is the precise description of its location, beginning at the root of its hierarchy. The relative path is the description of
its location relative to its current container.

The destination of a transfer determines whether to use the absolute or relative path when the user accesses the link
source through the linked object. The relative path is the most common default path. However, regardless of which
path you use, if it fails, use the alternative path. For example, if the user copies a linked object and its link source to
another location, the result is a duplicate of the linked object and the link source. The relative path for the duplicate
linked object is the location of the duplicate of the link source. The absolute path for the duplicate linked object is the
description of the location of the initial link source. Therefore, when the user accesses the duplicate of the linked
object, its inferred connection should be with the duplicate of the link source. If that connection fails — for example,
because the user deletes the duplicate of the linked source — use the absolute path, the connection to the original link
source.

You can optionally make the preferred path for a linked object a field in the property sheet for linked object. This
allows the user to choose whether to have a linked object make use of the absolute or relative path to its link source.

When the user applies a link operation to a linked object, link to the linked object rather than its linked source. That
is, linking a linked object results in a linked object linked to a linked object. If such an operation is not valid or
appropriate — for example, because the linked object provides no meaningful context — then disable any link
commands or options when the user selects a linked object.

February 13, 1995

Chapter 5 General Interaction Techniques 73

Activation of a linked object depends on the kind of link. For example, a single click can activate a jump; however, it
only results in selecting a data link or an OLE linked object. If you use a single click to do anything other than select
the linked object, distinguish the object by either presenting it as a button control, displaying the hand pointer (as
shown in Figure 5.19) when the user moves the pointer over the linked object, or both.

&

Figure 5.19 A hand pointer

February 13, 1995

75

CHAPTER 6

Windows
Windows provide the fundamental way a user views and interacts with data. Consistency in window design is
particularly important because it enables users to easily transfer their learning skills and focus on their tasks rather
than learn new conventions. This chapter describes the common window types and presents guidelines for general
appearance and operation.

Common Types of Windows
Because windows provide access to different types of information, they can be classified according to common
usage. Interacting with objects typically involves a primary window in which most primary viewing and editing
activity takes place. In addition, multiple supplemental secondary windows can be included to allow users to specify
parameters or options, or to provide more specific details about the objects or actions included in the primary
window.

For more information about secondary windows, see Chapter 8, "Secondary Windows."

Primary Window Components
A typical primary window consists of a frame (or border) which defines its extent, and a title bar which identifies
what is being viewed in the window. If the viewable content of the window exceeds the current size of the window,
scroll bars are used. The window can also include other components like menu bars, toolbars, and status bars.

For more information about these components, see Chapter 7, "Menus, Controls, and Toolbars," and the section,
"Scrolling Windows," later in this chapter.

February 13, 1995

Chapter 6 Windows 95

Figure 6.1 shows the common components of a primary window.

5 D ocument M=l E3

File Edit “iew

L

Figure 6.1 A primary window

Window Frames

Every window has a boundary that defines its shape. A sizable window has a distinct border that provides central
points (handles) for resizing the window using direct manipulation. If the window cannot be resized, the border
coincides with the edge of the window.

Title Bars

At the top edge of the window, inside its border, is the title bar (also referred to as the caption or caption bar), which
extends across the width of the window. The title bar identifies what the window is viewing. It also serves as a
control point for moving the window and an access point for commands that apply to the window and its associated
view. For example, clicking on the title bar with mouse button 2 displays the pop-up menu for the window. Pressing
the ALT+SPACEBAR key combination also displays the pop-up menu for the window.

For more information about pop-up menus, see Chapter 7, "Menus, Controls, and Toolbars."

Title Bar Icons

A small version of the object's icon appears in the upper left corner of the title bar; it represents the object being
viewed in the window. If the window represents a "tool" application (that is, an application that does not create, load,
and save separate data files), insert the small version of the application's icon in its title bar, as shown in Figure 6.2.

February 13, 1995

Chapter 6 Windows 95

7 Calculator _ (O] x]
Edit “iew Help

Figure 6.2 '"Tool" title bar

If the application loads and saves documents or data files, place the icon that represents its document or data file type
in the title bar, as shown in Figure 6.3.

Ei Document - Application Name M=l Eq

File Edt “iew Inzert Format Help

Figure 6.3 Document title bar

For information about how to register icons for your application and data file types, see Chapter 10, "Integrating with
the System." For more information about designing icons, see Chapter 13, "Visual Design."

If an application uses the multiple document interface (MDI), place the application's icon in the parent window's title
bar, and place an icon that reflects the application data file type in the child window's title bar, as shown in Figure
6.4.

@ Word Processing App M=]
File Edit “iew |nzert Format Tool: Table ‘Window Help
E D ocument M=]

Figure 6.4 MDI application and document title bars

However, when a user maximizes the child window, hide the title bar, and merge its title information with the parent,
as shown in Figure 6.5. Then display the icon from the child window's title bar in the menu bar of the parent
window. If multiple child windows are open within the MDI parent window, display the icon from the active
(topmost) child window.

@ Word Processing App - Document [_[O] =]

File Edit “iew |nsert Fomat Toolz Table *#indow Help _|5’|5|

Figure 6.5 MDI parent window title bar with maximized child window

For more information about MDI, see Chapter 9, "Window Management."

February 13, 1995

Chapter 6 Windows 95

When the user clicks the title bar icon with mouse button 2, display the pop-up menu for the object. Typically, the
menu contains the same set of commands available for the icon from which the window was opened, except that
Close replaces Open. Close is also the default command, so when the user double-clicks the title bar icon, the
window closes.

Note When the user clicks the title bar icon with mouse button 1, the pop-up menu for the window is displayed.
However, this behavior is only supported for backward compatibility with Windows 3.1. Avoid documenting it as
the primary way to access the pop-up menu for the window.

Title Text

The title text is a label that identifies the name of the object being viewed through the window. It should correspond
to the current icon in the title bar. For example, if a document or data file is displayed in the window, display the
name of the file. It is also optional to include the name of the application in use; however, if it is used, the name of
the file appears first, followed by a dash and the application name, as shown in Figure 6.6.

E Document - Application Hame M=]

File Edit “iew |nzert Format Help

Figure 6.6 Title text order: document name — application name

Note The order of the document (or data) filename and application name differs from the Windows
3.1 guidelines. The new convention is better suited for the design of a data-centered interface.

February 13, 1995

Chapter 6 Windows 95

If the window represents a "tool" application without any associated data files, such as the Windows Calculator,
display the application's name in the title bar. If the tool application includes a specifier then include a dash and the
specification text. For example, the Windows Find File application indicates a specification of search criteria in the
title bar. Similarly, the Windows Explorer indicates what container the user is exploring. While this may appear to be
inconsistent with the guideline for data files, the key distinction is what icon you display in the title bar. If that icon
represents the application, then display the application name first. If the icon represents the data file, display the data
filename first.

For an MDI application, use the application's name in the parent window and the data file's name in the child
windows. When the user maximizes the file's child window, format the title text following the same convention as a
tool application, with the application's name first, followed by the data filename..

If a data file currently has no user-supplied name, create one automatically by using the short type name—for
example Document n, Sheet n, Chart n, where n is a number (as in Document 1). Use this name in the title text and
also as the proposed default filename for the object in the Save As dialog box. If it is impractical or inappropriate to
supply a default name, display a placeholder in the title, such as (Untitled).

For more information about short type names, see Chapter 10, "Integrating with the System." For more information
about the Save dialog box, see Chapter 8, "Secondary Windows."

Display the text exactly as it appears to the user in the file system, using both uppercase and lowercase letters. Avoid
including the file extensions or the path name in the title bar. This information is not meaningful for most users and
can make it more difficult for them to identify the file. However, the system does provide an option for users to
display filename extensions. Support this option by using the SHGetFileInfo function to format and display the
filename appropriately based on the user's preference.

For more information about SHGetFileInfo, see the Microsoft Win32 Programmer's Reference.
If the name of the displayed object in the window changes—for example, when the user edits the name in the

object's property sheet—update the title text to reflect that change. Always maintain a clear association between the
object and its open window.

February 13, 1995

Chapter 6 Windows 95

The title text and icon always represent the outmost container — the object that was opened—even if the user selects
an embedded object or navigates the internal hierarchy of the object being viewed in the window. If you need an
additional specifier to clarify what the user is viewing, place this specifier after the filename and clearly separated
from the filename, such as enclosed in parentheses—for example, My HardDisk (C:). Because the system now
supports long filenames, avoid additional specification whenever possible. Complex or verbose additions to the title
text also make it more difficult for the user to easily read and identify the window.

When the width of the window does not allow you to display the complete title text, you may abbreviate the title text,
being careful to maintain the essential information that allows the user to quickly identify the window.

For more information about abbreviating names, see Chapter 10, "Integrating with the System."

Avoid drawing directly into the title area or adding other controls. Such added items can make reading the name in
the title difficult, particularly because the size of the title bar varies with the size of the window. In addition, the
system uses this area for displaying special controls. For example, in some international versions of Windows, the
title area provides information or controls associated with the input of certain languages.

Title Bar Buttons

Command buttons associated with the commands of the window appear in the title bar. They act as shortcuts to
specific window commands. Clicking a title bar button with mouse button 1 invokes the command associated with
the command button. When the user clicks a command button with mouse button 2, display the pop-up menu for the
window. For the pen, tapping a window button invokes its associated command, and barrel-tapping it (or using the
pen menu gesture) displays the pop-up menu for the window.

Typically, the following buttons appear in a primary window (provided that the window supports the respective
functions).

Command Operation

button
x| Closes the window.
= Minimizes the window.
u]| Maximizes the window.

J=| Restores the window.

When the commands are supported, by a window do not display the buttons.

Basic Window Operations
The basic operations for a window include: activation and deactivation, opening and closing, moving and sizing, and
scrolling and splitting. The following sections describe these operations.

Activating and Deactivating Windows

While the system supports the display of multiple windows, the user generally works within a single window at a
time. This window is called the active window. The active window is typically at the top of the window Z order. It is
also visually distinguished by its title bar that is displayed in the active window title color (also referred to as the
COLOR_ACTIVECAPTION value). All other windows are inactive with respect to the user's input; that is, while
other windows can have ongoing processes, only the active window receives the user's input. The title bar of an

February 13, 1995

Chapter 6 Windows 95

inactive window displays the system inactive window color of the system (the COLOR_INACTIVECAPTION
value).

For more information about the COLOR_ACTIVECAPTION and COLOR_INACTIVECAPTION values, and the
GetSysColor function, see the Microsoft Win32 Programmer's Reference.

The user activates a primary window by switching to it; this inactivates any other windows. To activate it with the
mouse or pen, the user clicks or taps on any part of the window, including its interior. If the window is minimized,
the user clicks (taps) the button representing the window in the taskbar. From the keyboard, the system provides the
ALT+TAB key combination for switching between primary windows. (The SHIFT+ALT+TAB key also switches
between windows, but in reverse order.) The reactivation of a window does not affect any pre-existing selection; the
selection and focus are restored to the previously active state.

When the user reactivates a primary window, the window and all its secondary windows come to the top of the
window order and maintain their relative positions. If the user activates a secondary window, its primary window
comes to the top of the window order along with the primary window's other secondary windows.

When a window becomes inactive, hide the selection feedback (for example, display of highlighting or handles) of
any selection within it to prevent confusion over which window is receiving keyboard input. A direct manipulation
transfer (drag and drop) is an exception. Here, you can display transfer feedback if the pointer is over the window
during the drag operation. Do not activate the window unless the user releases the mouse button (pen tip is lifted) in
that window.

For more information about selection and transfer appearance, see Chapter 13, "Visual Design."

Opening and Closing Windows

When the user opens a primary window, include an entry for it on the taskbar. If the window has been opened
previously, restore the window to its size and position when it was last closed. If possible and appropriate, reinstate
the other related view information, such as selection state, scroll position, and type of view. When opening a primary
window for the first time, open it to a reasonable default size and position as best defined by the object or
application.

Opening the primary window activates that window and places it at the top of the window order. If the user attempts
to open a primary window that is already open within the same desktop, follow these recommendations:

February 13, 1995

Chapter 6 Windows 95

File type Action when repeating an open operation

Document or data file Activates the existing window of the object and
displays it at the top of the window Z order.

Application file Displays a message box indicating that an open
window of that application already exists and offers
the user the option to switch to the open window or
to open another window. Either choice activates the
selected window and brings it to the top of the
window Z order.

Document file that is already open in ~ Activates the existing window of the file. Its MDI

a multiple document interface (MDI) parent window comes to the top of the window Z

application window order, and the file appears at the top of the Z order
within its MDI parent window.

Document file that is not already Opens a new instance of the file's associated MDI
open, but its associated multiple application at the top of the window Z order and
document interface (MDI) displays the child window for the file.

application is already running (open)

For more information about MDI, see Chapter 9, "Window Management."

When opening a window, consider the size and orientation of the current screen upon which it will be opened. For
example, on some systems, the display may be landscape oriented (long dimension along the bottom) and on others
it may be portrait. The display resolution may vary as well. In such cases, adjust the size and position of the window
from its stored state so that it appears relative to and yet completely on the user's display configuration.

February 13, 1995

Chapter 6 Windows 95

The user closes a primary window by clicking (for a pen, tapping the screen) the Close button in the title bar or
choosing the Close command from the window's pop-up menu. In addition, you can support double-clicking (with a
pen, double-tapping the screen) on the title bar icon as a shortcut for closing the window for compatibility with
previous versions of Windows.

When the user chooses the Close command or any other command that results in closing the primary window (for
example, Exit or Shut Down), display a message asking the user whether to save any changes, discard any changes,
or cancel the Close operation before closing the window. This gives the user control over any pending transactions
that are not automatically saved. If there are no pending transactions, close the window.

For more information about supporting the Close command, see Chapter 5, "General Interaction Techniques."

When closing the primary window, close any of its dependent secondary windows as well. The design of your
application affects whether closing the primary window also ends the application processes. For example, closing the
window of a text document typically halts any application code or processes remaining for inputting or formatting
text. However, closing the window of a printer has no effect on the jobs in the printer's queue. In both cases, closing
the window removes its entry from the taskbar.

Moving Windows

The user can move a window either by dragging its title bar using the mouse or pen or by using the Move command
on the window's pop-up menu. On most configurations, an outline representation moves with the pointer during the
operation, and the window is redisplayed in the new location after the completion of the move. (The system also
provides a display property setting that redraws the window dynamically as it is moved.) After choosing the Move
command, the user can move the window with the keyboard interface by using arrow keys and pressing the ENTER
key to end the operation and establish the window's new location. Never allow the user to reposition a window such
that it cannot be accessed.

A window need not be active before the user can move it. The implicit action of moving the window activates it.

Moving a window can clip or reveal information shown in the window. In addition, activation can affect the view
state of the window—{for example, the current selection can be displayed. However, when the user moves a window,
avoid making any changes to the content being viewed in that window.

Resizing Windows

Make your primary windows resizable unless the information displayed in the window is fixed, such as in the
Windows Calculator program. The system provides several conventions that support user resizing of a window.
Sizing Borders

The user resizes a primary window by dragging the sizing border with the mouse or pen at the edge of a window or
by using the Size command on the window's menu. On most configurations, an outline representation of the window
moves with the pointer. (A display property setting allows the user to have the system dynamically redraw the
window as it is sized.) After completing the size operation, the window assumes its new size. Using the keyboard,
the user can size the window by choosing the Size command, using the arrow keys, and pressing the ENTER key.

A window does not need to be active before the user can resize it. The action of sizing the window implicitly makes
it active, and it remains active after the sizing operation.

When the user resizes a window to be smaller, you must determine how to display the information being viewed in
that window. Use the context and type of information to help you choose your approach. The most common

February 13, 1995

Chapter 6 Windows 95

approach is to clip the information. However, in other situations where you want the user to see as much information
as possible, you may want to consider using different methods, such as rewrapping or scaling the information. Use
these variations carefully because they may not be consistent with the resizing behavior of most windows. In
addition, avoid these methods when readability or maintaining the structural relationship of the information is
important.

While the size of a primary window may vary, based on the user's preference, you can define a window's maximum
and minimum size. When defining these sizes, consider the reasonable usage within the window, and the size and
orientation of the screen.

Maximizing Windows

Although the user may be able to directly resize a window to its maximum size, the Maximize command optimizes
this operation. The command is available on a window's pop-up menu, and as the Maximize command button in the
title bar of a window.

February 13, 1995

Chapter 6 Windows 95

Maximizing a window increases the size of the window to its largest, optimum size. The system default setting for
the maximum size is as large as the display, excluding the space used by the taskbar. For an MDI child window, the
default maximize size fills the parent window. However, you can define the size to be less (or, in some cases, more)
than the display dimensions. Because display resolution and orientation varies, your software should not assume a
fixed display size, but rather adapt to the shape and size defined by the system. If you use a standard system
interface, such as the SetWindowPlacement function, the system automatically places your windows relative to the
current display configuration.

For more information about the SetWindowPlacement function, see the Microsoft Win32 Programmer's Reference.

When the user maximizes a window, replace the Maximize button with a Restore button. In addition, disable the
Maximize command and enable the Restore command on the pop-up menu for the window.

Minimizing Windows

Minimizing a window reduces it to its smallest size. To minimize a window, the user chooses the Minimize
command on the window's pop-up menu or the Minimize command button on the title bar. For primary windows,
minimizing removes the window from the screen, but leaves its entry in the taskbar. For MDI child windows, the
window resizes to a minimum size within its parent window.

Note The Windows 3.1 representation of a minimized window using an icon is no longer appropriate. To reflect
some status information about the open, but minimized, window, place the entry on the taskbar. For more
information about status notification, see Chapter 10, "Integrating with the System."

When the user minimizes a window, disable the Minimize command on the pop-up menu for the window and enable
the Restore command.

Restoring Windows

After maximizing or minimizing a window, the user can restore it to its previous size and position using the Restore
command. For maximized windows, make this command available from the window's pop-up menu or the button
which replaces the Maximize button in the title bar of the window.

For minimized, primary windows, enable the Minimize command in the pop-up menu of the window. The user
restores a minimized primary window to its former size and position by clicking (for pens, tapping the screen) on its
button in the taskbar that represents the window, selecting the Restore command on the pop-up menu of the
window's taskbar button, or using the ALT+TAB key combination or the SHIFT+ALT+TAB key combination.

Size Grip

When you define a sizable window, include a size grip. A size grip is a special handle for sizing a window. It is not
exclusive to the sizing border. To size the window, the user drags the grip and the window resizes following the
same conventions as the sizing border.

Always locate the size grip in the lower right corner of the window. Typically, this means you place the size grip at
the junction of a horizontal or vertical scroll bar, or at the right end of a horizontal scroll bar, or the bottom of a
vertical scroll bar. However, if you include a status bar in the window, display the size grip at the far corner of the
status bar instead. Never display the size grip in both locations at the same time.

For more information on the use of the size grip in a status bar, see Chapter 7, "Menus, Controls, and Toolbars."

February 13, 1995

Chapter 6 Windows 95

Scrolling Windows

When the information viewed in a window exceeds the size of that window, the window should support scrolling.
Scrolling enables the user to view portions of the object that are not currently visible in a window. Scrolling is
commonly supported through the use of a scroll bar. A scroll bar is a rectangular control consisting of scroll arrows,
a scroll box, and a scroll bar shaft, as shown in Figure 6.7.

=
Figure 6.7 Scroll bar and its components
You can include a vertical scroll bar, a horizontal scroll bar, or both. The scroll bar aligns with the vertical or
horizontal edge of the window orientation it supports. If the content is never scrollable in a particular direction, do

not include a scroll bar for that direction.

Scroll bars are also available as separate window components. For more information about scroll bar controls, see
Chapter 7, "Menus, Controls, and Toolbars."

February 13, 1995

Chapter 6 Windows 95

The common practice is to display scroll bars if the view requires some scrolling under any circumstances. If the
window becomes inactive or resized so that its content does not require scrolling, continue to display the scroll bars.
While removing the scroll bars potentially allows the display of more information as well as feedback about the state
of the window, it also requires the user to explicitly activate the window to scroll. Consistently displaying scroll bars
also provides a more stable environment.

Scroll Arrows

Scroll arrow buttons appear at each end of a scroll bar, pointing in opposite directions away from the center of the
scroll bar. The scroll arrows point in the direction that the window "moves" over the data. When the user clicks (for
pens, tapping the screen) a scroll arrow, the data in the window moves, revealing information in the direction of the
arrow in appropriate increments. The granularity of the increment depends on the nature of the content and context,
but it is typically based on the size of a standard element. For example, you can use one line of text for vertical
scrolling, one row for spreadsheets. You can also use an increment based a fixed unit of measure. Whichever
standard you choose, maintain the same scrolling increment throughout a window. The objective is to provide an
increment that provides smooth but efficient scrolling. When a window cannot be scrolled any further in a particular
direction, disable the scroll arrow corresponding to that direction.

Note The default system support for scroll bars does not disable the scroll arrow buttons when the region or area is no
longer scrollable in this direction. However, it does provide support for you to disable the scroll arrow button under
the appropriate conditions.

When scroll arrow buttons are pressed and held, they exhibit a special auto-repeat behavior. This action causes the
window to continue scrolling in the associated direction as long as the pointer remains over the arrow button. If the
pointer is moved off the arrow button while the user presses the mouse button, the auto-repeat behavior stops and
does not continue unless the pointer is moved back over the arrow button (also when the pen tip is moved off the
control).

Scroll Box

The scroll box, sometimes referred to as the elevator, thumb, or slider, moves along the scroll bar to indicate how far
the visible portion is from the top (for vertical scroll bars) or from the left edge (for horizontal scroll bars). For

example, if the current view is in the middle of a document, the scroll box in the vertical scroll bar is displayed in the
middle of the scroll bar.

February 13, 1995

Chapter 6 Windows

The size of the scroll box can vary to reflect the difference between what is visible in the window and the entire

content of the file, as s

hown in Figure 6.8.

Note The proportional scroll box was not supported in earlier releases of Windows.

of a seraoll bar. The scroll box indicates
the position of the wiew within the content
of the docurnent. Using a proportional
scroll box also allows you to indicate the
size of the area being viewed with respect
to the total size of the docurment. That
means that a small scroll box indicates

L

of a scroll bar. The scrall box indicates
the position of the wiew within the content
of the docurnent. Using a proportional
zoroll box also allows you to indicate the
zize of the area being wiewed with respect
to the total size of the docurment. That
means that a small seroll bos indicates

B Mailing =] B Mailing Mi=] B3
File Edit “iew Insett Format Help Fil= Edit “iew |nzert Format Help
& zeroll box is an important component ;I & =oroll box is an important component ;I

L

Lo

Figure 6.8 Proportional relationship between scroll box and content

For example, if the content of the entire document is visible in a window, the scroll box extends the entire length of
the scroll bar, and the scroll arrows are disabled. Make the minimum size of the scroll box no smaller than the width
of a window's sizing border.

The user can also scroll a window by dragging the scroll box. Update the view continuously as the user moves the

scroll box. If you cannot support scrolling at a reasonable speed, you can scroll the information at the end of the drag
operation as an alternative.

February 13, 1995

Chapter 6 Windows 95

If the user starts dragging the scroll box and then moves outside of the scroll bar, the scroll box returns to its original
position. The distance the user can move the pointer off the scroll bar before the scroll box snaps back to its original
position is proportional to the width of the scroll bar. If dragging ends at this point, the scroll action is canceled—
that is, no scrolling occurs. However, if the user moves the pointer back within the scroll-sensitive area, the scroll
box returns to tracking the pointer movement. This behavior allows the user to scroll without having to remain within
the scroll bar and to selectively cancel the initiation of a drag-scroll operation.

Dragging the scroll box to the end of the scroll bar implies scrolling to the end of that dimension; this does not
always mean that the area cannot be scrolled further. If your application's document structure extends beyond the
data itself, you can interpret dragging the scroll box to the end of its scroll bar as moving to the end of the data rather
than the end of the structure. For example, the document of a typical spreadsheet exceeds the data in it — that is, the
spreadsheet may have 65,000 rows, with data only in the first 50 rows. This means you can implement the scroll bar
so that dragging the scroll box to the bottom of the vertical scroll bar scrolls to the last row containing data rather
than the last row of the spreadsheet. The user can use the scroll arrow buttons to scroll further to the end of the
structure. This situation also illustrates why disabling the scroll arrow buttons can provide important feedback so that
the user can distinguish between scrolling to the end of data from scrolling to the end of the extent or structure. In the
example of the spreadsheet, when the user drags the scroll box to the end of the scroll bar, the arrow would still be
shown as enabled because the user can still scroll further, but it would be disabled when the user scrolls to the end of
the spreadsheet.

Scroll Bar Shaft

The scroll bar shaft not only provides a visual context for the scroll box, it also serves as part of the scrolling
interface. Clicking in the scroll bar shaft scrolls the view an equivalent size of the visible area in the direction of the
click. For example, if the user clicks in the shaft below the scroll box in a vertical scroll bar, the view is scrolled a
distance equivalent to the height of the view. Where possible, allow overlap from the previous view, as shown in
Figure 6.9. For example, if the user clicks below the scroll box, the top line of the next screen becomes the line that
was at the bottom of the previous screen. The same thing applies for clicking above the scroll box and horizontal
scrolling. These conventions provide the user with a common reference point.

February 13, 1995

Chapter 6 Windows 95

é Mailing |_ O] =]

File Edit “iew Fiter Tools Help

I

the scrollable region is only a small pe
scroll box is very large or fills the scr
know that you are seeing most or all o

document.

You can drag the scroll box to scroll tr*J

within the windaw (or pane). Clicking

box scrolls the content typically, the [}3

scrollable region, including the Tast]j;I
L3

E Mailing M= E3

File Edit “iew Fiter Toolz Help

I I

s

& scroll box is an important compaonen:
gcrall bar. The scrall box indicates the
position of the wiew within the cnntenJ
proportional scroll box also allows yo
the size of the area being viewed with
total size of document. That means the
scrall box indicates the area being vias

the scrollable region is only & small p: -
L3

Figure 6.9 Scrolling with the scroll bar shaft by a screenful

Pressing and holding mouse button 1 with the pointer in the shaft auto-repeats the scrolling action. If the user moves
the pointer outside the scroll-sensitive area while pressing the button, the scrolling action stops. The user can resume
scrolling by moving the pointer back into the scroll bar area. (This behavior is similar to the effect of dragging the

scroll box.)

February 13, 1995

Chapter 6 Windows 95

Automatic Scrolling

The techniques previously summarized describe the explicit ways for scrolling. However, the user may also scroll as
a secondary result of some situations. This type of scrolling is called automatic scrolling. The situations in which to
support automatic scrolling are as follows:

e When the user begins or adjusts a selection and drags it past the edge of the scroll bar or window,
scroll the area in the direction of the drag.

e When the user drags an object and approaches the edge of a scrollable area, scroll the area
following the recommended auto-scroll conventions. Base the scrolling increment on the context of
the destination and, if appropriate, on the size of the object being dragged.

e When the user enters text from the keyboard at the edge of a window or moves or copies an object
into a location at the edge of a window, the view should scroll to allow the user to focus on the
currently visible information. The amount to scroll depends on context. For example, for text typed
in vertically, scroll a single line at a time. When scrolling horizontally, scroll in units greater than a
single character to prevent continuous or uneven scrolling. Similarly, when the user transfers a
graphic object near the edge of the view, base scrolling on the size of the object.

e If an operation results in a selection or moves the cursor, scroll the view to display the new
selection. For example, for a Find command that selects a matching object, scroll the object into
view because usually the user wants to focus on that location. In addition, other forms of
navigation may cause scrolling. For example, completing an entry field in a form may result in
navigating to the next field. In this case, if the field is not visible, the form can scroll to display it.

For more information about scrolling when the user drags objects, see Chapter 5, “General Interaction Techniques.”

February 13, 1995

Chapter 6 Windows 95

Keyboard Scrolling

Use navigation keys to support scrolling with the keyboard. When the user presses a navigation key, the cursor
moves to the appropriate location. For example, in addition to moving the cursor, pressing arrow keys at the edge of
a scrollable area scrolls in the corresponding direction. Similarly, the PAGE UP and PAGE DOWN keys are comparable
to clicking in the scroll bar shaft, but they also move the cursor.

Optionally, you can use the SCROLL LOCK key to facilitate keyboard scrolling. In this case, when the SCROLL LOCK
key is toggled on and the user presses a navigation key, the view scrolls without affecting the cursor or selection.
Placing Adjacent Controls

It is sometimes convenient to locate controls or status bars adjacent to a scroll bar and position the end of the scroll
bar to accommodate them. Although split box controls are an example of such controls, other types of controls also
exist. Take care when placing adjacent elements; too many can make it difficult for users to scroll, particularly if you
reduce the scroll bar too much. If you need a large number of controls, consider using a conventional toolbar instead.

For more information about toolbars, see Chapter 7, "Menus, Controls, and Toolbars."
Splitting Windows
A window can be split into two or more separate viewing areas, which are called panes. For example, a split window

allows the user to examine two parts of a document at the same time. You can also use a split window to display
different, yet simultaneous views of the same object (data), as shown in Figure 6.10.

February 13, 1995

Chapter 6 Windows 95

E'l Explorning - C:\

File Edit “iew Toolz Help

-l Bl 4B@] o X 20

I = Faul'z Hard Drive [C:]

| &l Folders | Cantents of 'C:4
% Desktop & | | Mame | Size | Type &
.. =
-2 My Lomputer (2 Bilboards Folder
[0 3% Floppy [4:] .
Ea Bobby's Statz Folder
[0 B Floppy [B:] . . b
g g [Business Unit Folder
=Ee=Faul = Hard Dnve [C:)
(] Bilboards (L] Colar Samples Folder
-] Bobby's Stats [Estra Templates Faolder
{21 Business Unit (L1 Financial Statistics Folder
+-{_] Colar Samples] b ailing Liztz Folder
+1-[_7 Extra Templates (L1 0Id Program Files Folder
-2 Financial Statistics (] Quarterly Stats Falder
-|23 Mailing Lists [Reviews Folder
|23 0Id Program Files 1 Rallin Account Folder
- Quarterly Stats [Smith Praject Folder
-{ HEV_'EWS (] Samples Faolder
{1 Roliin Account ([Sterling Project Falder

-] Smith Project _ILI (L1 Wacation Plans
3

Fu|d.i|;|
l | l | 2

|95 abject(s] |2.75MB o

Figure 6.10 A split window

While you can use a split window panes to view the contents of multiple files or containers at the same time,
displaying these in separate windows typically allows the user to better identify the files as individual elements.
When you need to present views of multiple files as a single task, consider the window management techniques such
as the Multiple Document Interface.

February 13, 1995

Chapter 6 Windows 95

The panes that appear in a window can be implemented either as part of a window's basic design or as a user-
configurable option. To support splitting a window that is not presplit by design, include a split box. A split box is a
special control placed adjacent to the end of a scroll bar that splits or adjusts the split of a window. The size of the
split box should be just large enough for the user to successfully target it with the pointer; the default size of a size
handle, such as the window's sizing border, is a good guideline. Locate the split box at the top of the up arrow button
of the vertical scroll bar or to the left of the left arrow button of a horizontal scroll bar as shown in Figure 6.11.

B Example =]

File Edit Miew |nzeit Formmat Help

L

Figure 6.11 Split box location

The user splits a window by dragging the split box to the desired position. When the user positions the hot spot of the
pointer over a split box, change the pointer's image to provide feedback and help the user target the split box. While
the user drags the split box, move a representation of the split box and split bar with the pointer, as shown in Figure
6.12.

At the end of the drag, display a visual separator, called the split bar, that extends from one side of the window to the
other, defining the edge between the resulting panes, as shown in Figure 6.12. Base the size for the split bar to be, at

a minimum, the current setting for the size of window sizing borders. This allows you to appropriately adjust when a

user adjusts size borders. If you display the split box after the split operation, place it adjacent to the split bar.

February 13, 1995

Chapter 6 Windows 95

E Example _ (O]

File Edit Mjew Ingert Format Help

3N

Figure 6.12 Moving the split bar

You can support dragging the split bar (or split box) to the end of the scroll bar to close the split. Optionally, you can
also support double-clicking (or, for pens, double-tapping the screen) as a shortcut technique for splitting the window
at some default location (for example, in the middle of the window or at the last split location) or fo