Machine Learning and Data Mining

Reinforcement Learning
Markov Decision Processes

Overview

Intro
Markov Decision Processes

Reinforcement Learning
— Sarsa
— Q-learning

Exploration vs Exploitation tradeoff

Resources

Book: Reinforcement Learning: An Introduction
Richard S. Sutton and Andrew G. Barto

UCL Course on Reinforcement Learning

David Silver

— https://www.youtube.com/watch?v=2pWv7GOvuf0
— https://www.youtube.com/watch?v=IfHX2hHRMVQ
— https://www.youtube.com/watch?v=Nd1-UUMV{z4
— https://www.youtube.com/watch?v=PnHCvfgC ZA

— https://www.youtube.com/watch?v=0g4i2k Ggc4

— https://www.youtube.com/watch?v=UoPei504fps

http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://www.youtube.com/watch?v=Nd1-UUMVfz4
https://www.youtube.com/watch?v=PnHCvfgC_ZA
https://www.youtube.com/watch?v=0g4j2k_Ggc4
https://www.youtube.com/watch?v=UoPei5o4fps

Branches of Machine Learning

Supervised
Learning

Unsupervised
Learning

Machine
Learning

Reinforcement
Learning

Why is it different

No target values to predict
Feedback in the form of rewards

— May be delayed not instantaneous

Have a goal : max reward

Have timeline : actions along arrow of time
Actions affect what data it will receive

Agent-Environment

PPt Py o
Y Za S VTSN
/ 7\/ J\ { P ’ .)
observation .i,ﬂ' Wi BW ALY K', y) action
. ,"I". A \\\ - ;‘iu —— z .A// — Agent
% H\ = E %
\\ /K';,':,:j/‘ = * decides on an action
_Tf * receives next observation
* receives next reward

Environment

* executes the action
* computes next observation
* computes next reward

Agent and Environment

observation

action

Ay

m At eachstep t the agent:
a EXecutes action A;
a Receives observation O;
m Receives scalar rewardR;

m The environment:

m Recelvesaction A;
m Emits observation O 1
m Emits scalar reward R; 1

m tincrements at env. step

Sequential Decision Making

* Actions have long term
conseqguences

Given an environment
(produces observations and rewards)

 Goal maximize cumulative
(long term) reward

— Rewards may be delayed [J

— May need to sacrifice short
term reward

Automated agent that selects actions

* Devise a p|an t0 Maximize o maximize total rewards in the environment
cumulative reward

Sequential Decision Making

Examples:

H . . .
A financial investment (may take months to mature)

Refuelling a helicopter (might prevent a crash in several hours)

. Blocking opponent moves (might help winning chances many
moves from now)

Reinforcement Learning

Learn a behavior strategy (policy) that maximizes the long term
Sum of rewards in an unknown and stochastic environment (Emma Brunskill:)

Planning under Uncertainty

Learn a behavior strategy (policy) that maximizes the long term
Sum of rewards in a known stochastic environment (Emma Brunskill:)

EXamples: RODOTICS

Atari Example: Reinforcement Learning

observation

‘‘‘‘‘‘‘‘

m Rules of the game are
unknown

m Learndirectly from
Interactive game-play

m Pick actions on
joystick, seepixels
and scores

12

Demos

Some videos

* https://www.youtube.com/watch?v=V1eYniJORNK
« https://www.youtube.com/watch?v=CIF2SBVY-J0
« https://www.youtube.com/watch?v=12WFvGI4y8c

13

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=I2WFvGl4y8c

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

P[Sﬁ-l | St] = P[St-l-l | 511'":51’]

m [he state captures all relevant information from the history
m Once the state is known, the history may be thrown away

m i.e. [he state is a sufficient statistic of the future

14

State Transition

For a Markov state s and successor state s’, the state transition
probability is defined by

Psst =P |:St+1 =g ‘ St = S]

State transition matrix P defines transition probabilities from all
states s to all successor states s/,

to

Pir ... Pun
P = from :

Pnl . Pnn

where each row of the matrix sums to 1.
_—

15

Markov Process

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, S5, ... with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)
m S is a (finite) set of states

m P is a state transition probability matrix,
Psss =P[St11=5"| St = 3]

16

Student Markov Chalin

Student MC : Episodes

Sample episodes for Student Markov
Chain starting from 5; = C1

Sla 527 sy ST

1.0

@ m C1 C2 C3 Pass Sleep
m C1 FB FB C1 C2 Sleep
m C1 C2 C3 Pub C2 C3 Pass Sleep

m Cl1FBFBC1C2C3PubClFBFB
FB C1 C2 C3 Pub C2 Sleep

18

Student MC : Transition Matrix

0.9
@ Sleep |g—
0.1
C1
C2
0.5 0.2 1.0 C3
o) "%
Pub
0.4 FB
Sleep

C1

Cc2
0.5

0.4

C3

0.8

0.4

Pass

0.6

Pub FB Sleep
0.5
0.2
0.4
1.0

0.9

19

Return

The return G; is the total discounted reward from time-step t.

o0
Gt = Rey1 +YReq2 + ... = Z’Yth+k+1
k=0

m The discount v € [0,1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is v%R.

m This values immediate reward above delayed reward.

m v close to 0 leads to "myopic” evaluation
m 7 close to 1 leads to "far-sighted” evaluation

20

Value

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return
starting from state s

v(s) =E[G; | St = 5]

ve(s) = EL[G: | Si=5] Z kRysnsr | Si=s|, forall s €8,

21

Student MRP

+10)

22

Student MRP : Returns

Sample returns for Student MRP:
Starting from $§; = C1 with v = ;

Gi=Ry+vRz+..+~v %Rt

C1 C2 C3 Pass Sleep v1=—2—2*%—2*%+10*% = —2.25

C1 FB FB C1 C2 Sleep M=-2—-1%x3—1x}—-2x}%—2x% = -3.125

C1 C2 C3 Pub C2 C3 Pass Sleep v1_—2——2*%-—2*%+1*é—2*%6.. = —3.41
= - 1 1 1 1

C1 FBFB C1C2C3PubCl ... =-2-1x3—-1x%-2x1-2x%.. = BB

FB FB FB C1 C2 C3 Pub C2 Sleep

Student MRP : Value Function

v(s) for y =0

0.9

24

Student MRP : Value Function

Student MRP : Value Function

Bellman Equation for MRP

The value function can be decomposed into two parts:

m immediate reward Ry

m discounted value of successor state yv(S;41)

v(s) =E[G; | S; = s]

=

[Rt+1 iR+ '72Rt+3 + s | S = 5]
[Re+1+ 7 (Rew2 +YRe3 +...) | St = 5]
[Re+1 + vGey1 | Se = 9]

[Re+1+Yv(St+1) | St = 9]

27

Backup Diagrams for MRP

v(s) = E[Ret1 +yv(St41) | St = 5]

v(s') + 8

v(s) = Rs +72Pssv(s)

s'eS

Bellman Eq: Student MRP

4.3=-2+0.6*%10+ 0.4%0.8

29

Bellman Eq: Student MRP

The Bellman equation can be expressed concisely using matrices,

v=R+9Pv

where v is a column vector with one entry per state

30

Solving the Bellman Equation

= 1he Bellman equation is a linear equation
s It can be solved directly:

v= R+ yPv
(I —yP) v=R
v=(l-yP) 'R

s Computational complexity is O(n3) for n states
m Direct solution only possible for small MRPs
® There are many iterative methods for large MRPs, e.g.
® Dynamic programming
® Monte-Carlo evaluation
= Temporal-Difference learning 31

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple (S, A,P,R,~)
m S is a finite set of states
m A is a finite set of actions
m P is a state transition probability matrix,
P2, =P[S¢p1 =5 | Si=5,4; =3
m R is a reward function, RZ = E[R¢y1 | St = s, At = 3]
m 7 is a discount factor v € [0, 1].

32

Facebook
R=-1

Student MDP

Facebook
R=-1]

Study Study

S!’Uc’p
R=+10

33

Policies

A policy 7 is a distribution over actions given states,

n(als) =P[A;=a | S; = 3]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At ~ W(lSt),Vt >0

34

MP — MRP — MDP

m Given an MDP M = (S, A,P,R,v) and a policy 7
m The state sequence 51, Sy, ... is a Markov process (S, P™)

m The state and reward sequence 51, R, S, ... is a Markov
reward process (S, P™,R™,~)

m where

.:s’ — Zﬂ-(a|5) sas’

acA

R =) m(als)R;

acA

35

Value Function

The state-value function v, (s) of an MDP is the expected return
starting from state s, and then following policy 7

Ve(s) =Ex [G: | St = 5]

The action-value function q.(s, a) is the expected return
starting from state s, taking action a, and then following policy 7

qxz(s,3) =Ex |G | 5: = s, A: = 3]

36

Bellman Eq for MDP

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(S) = Erx [Re+1 + yva(Se+1) | St = s]
The action-value function can similarly be decomposed,
r(s,a) = Ex [Ret1 + ¥qn(St+1, Aet1) | S = s, Ar = 4

Evaluating Bellman equation translates into 1-step lookahead

37

Bellman Eq, V

Un(s) 7\
gr(S,a) <4 a

vr(s) = 3 7(als)an(s; 2)

acA

Bellman Eq, g

Bellman Eq, V

40

Bellman Eq, g

qr(8,a) <4 8,a

Gr(s,a) =RI+7 Y P D w(d|s)an(s',d)

s'eS aeA

41

Student MDP : Bellman EqQ

Facebook 7.4=05%(+02*%-1.3+04*2.7+04%*7.4)
R=-1 0.5 *10

Facebook
R=-1

Study
R=+10

42

Bellman Eq : Matrix Form

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve = R + 4P vy

with direct solution

Ve = (I —4P™) I RT

43

Optimal Value Function

Definition

The optimal state-value function v.(s) is the maximum value
function over all policies

Vils) = max vr(S)

The optimal action-value function q.(s, a) is the maximum
action-value function over all policies

guls,a) = max g (s, a)

m The optimal value function specifies the best possible
performance in the MDP.
m An MDP is “solved” when we know the optimal value fn.

44

Student MDP : Optimal V

Facebook v(s) fory =1
R=-1

0 |q—

Facebook
R=-1

Quit
R=10

Study
R=+10

Student MDP : Optimal Q

Facebook q «(s,a) fory =1
R=-1
q % 5
0 |

Quit Facebook

R=0 R=-1

L il Study
R=+10
gx =10

46

Optimal Policy

Define a partial ordering over policies

= if vz(s) = vy (s), Vs

For any Markov Decision Process
m There exists an optimal policy iy that is better than or equal
to all other policies, rn« = r, Vn
m All optimal policies achieve the optimal value function,
Vi (S) = Vi(s)
m All optimal policies achieve the optimal action-value function,
Gr«(S, @) = g«(s, a)

Finding an Optimal Policy

An optimal policy can be found by maximising over g«(s, a),
1 if a = argmax q«(s, a)

m(a|s) = acA
0 otherwise

m There is always a deterministic optimal policy for any MDP
m Ifweknow g«(s, a), weimmediately have the optimal policy

48

Student MDP : Optimal Policy

Facebook mx(a|s) fory =1
R=-1
{q % 5
0 |

Facebook

(/* O

49

Bellman Optimality Eqg, V

Facebook rx(als) fory =1
R=-1
q % 5
0 |a—

Quit Facebook
R=10 R =-1
qx =0 q »

Study
R=+10
% /”

50

Student MDP : Bellman Optimality

Facebook 6 =max {-2+8, -1+6}
R=-1

Facebook
R =-1

51

Solving the Bellman Optimality Equation

Not easy

a Bellman Optimality Equation is non-linear
= No dosed form solution (in general)

= Many iterative solution methods

® Value Iteration
® Policy Iteration
® Q-learning

® Sarsa

52

Maze Example

Start

s Rewards: -1 per time-step
s Actions: N, E,S,W
a States: Agent’s location

Goal

53

Maze Example: Policy

m Arrows represent policy Tt(s) for each state s »

Maze Example: Value Function

Start |-

m Numbers represent value v;;(s) of each state s -

Maze Example: Model

m Agent may have an internal
model of the environment

m Dynamics: how actions
change the state

m Rewards: how much reward
from each state

m The model may be imperfect

a Grid layout represents transition model P,

m Numbers represent immediate reward R? from each state s

(same for all a)
56

Algorithms for MDPs

m States, Transitions, Actions, Rewards

[Prediction } Given Policy m, Estimate State Value Functions, Action Value Functions

Control J Estimate Optimal Value Functions, Optimal Policy

Does the agent know the MDP?

It’s “Model-free RL”
Agent observes everything as it goes

1 It’s “planning”

Agent knows everything

57

m A model predicts what the environment will do next
m P predicts the next state

m R predicts the next (immediate) reward, e.g.

P;js! =]P)[Sf_|_1 = Srr | Sf — 5, At = 3]
Rg :E[Rt—l—l ‘ St = 5._141; = 3]

58

Algorithms cont.

Prediction Control
Evaluate Policy, Find Best Policy, t*
: I
Planning
MDP Known Policy Evaluation Policy/Value Iteration
J

-l

59

Learning and Planning

Two fundamental problems in sequential decision making

a Reinforcement Learning:

m The environment is initially unknown
m The agentinteracts with the environment
m The agentimproves its policy

m Planning:
m A model of the environment is known
m The agent performs computations with its model (without any
external interaction)
m The agentimproves its policy

m a.k.a. deliberation, reasoning, introspection, pondering,
thought, search

60

Major Components of an RL Agent

= An RL agent may include one or more of these components:
m Policy: agent’s behaviourfunction
m Value function: how good is each state and/or action
m Model: agent’s representation of the environment

61

Dynamic Programming

Dynamic sequential or temporal component to the problem
Programming optimising a “program”, i.e. a policy
m c.f. linear programming

m A method for solving complex problems

m By breaking them down into subproblems

m Solve the subproblems
m Combine solutions to subproblems

62

Requirements for DP

Dynamic Programming is a very general solution method for
problems which have two properties:

m Optimal substructure

m Principle of optimality applies

m Optimal solution can be decomposed into subproblems
m Overlapping subproblems

m Subproblems recur many times
m Solutions can be cached and reused

m Markov decision processes satisfy both properties

m Bellman equation gives recursive decomposition
m Value function stores and reuses solutions

63

Applications for DPs

Dynamic programming is used to solve many other problems, e.g.
m Scheduling algorithms
m String algorithms (e.g. sequence alignment)
m Graph algorithms (e.g. shortest path algorithms)
m Graphical models (e.g. Viterbi algorithm)

m Bioinformatics (e.g. lattice models)

64

Planning by Dynamic Programming

= Dynamic programming assumes full knowledge of the MDP
s Itis used for planningin an MDP

m For prediction:
= Input: MDP (S, A, P, R, y) and policy n
m or: MRP (S,P7,R7,y)
m Output: value function v,
m Or for control:
m Input: MDP (S, A, P, R, y)
a Output: optimal value function v
N and: optimal policy

65

Policy Evaluation (Prediction)

m Problem: evaluate a given policy n
m Solution: iterative application of Bellman expectation backup

mVi— Vo— ...—> Vg
m Using synchronous backups,
a At eachiteration k + 1
m Forall statess e S
s Update vi+1(s) from vi(s)
m Where s’ is a successor state of s

m We will discuss asynchronous backups later
m Convergence to v;rcan be proven

66

Iterative policy Evaluation

Iterative policy evaluation

Input m, the policy to be evaluated
Initialize an array V' (s) =0, for all s € 8T
Repeat
A0
For each s € &:
v+ V(s)
V(s) « >, m(als) X s . p(s',7]s,a) [r +1V ()]
A +— max(A, |[v —V(s)|)
until A < @ (a small positive number)
Output V = v,

68

Evaluating a Random Policy in the Small Gridworld

1 2 3

4 |5 |6 |7 r= -1
on all transitions
8 9 [10 |11

actions

12 13 [14

= Undiscounted episodic MDP (y = 1)

s Nonterminal states 1, ..., 14

= One terminal state (shown twice as shaded squares)
m Actions leading out of the grid leave state unchanged
s Rewardis -1 until the terminal state is reached

= Agent follows uniform random policy

n(n|-) = n(e|-) = n(s|-) = n(w|-) = 0.25

69

Policy Evaluation : Grid World

V. forthe
Random Policy

0.0| 0.0/ 0.0{0.0
0.0/ 0.0] 0.0{ 0.0
0.0/ 0.0] 0.0{ 0.0
0.0] 0.0/ 0.0{ 0.0

Time 0 : do nothing, stop; no cost.

00]-1.0]-1.0{-1.0

Time 1 : move (reward -1); then k=0
Unless in goal: reward O

-1.0{-1.0]-1.0{-1.0
-1.0/-1.0|-1.0] 0.0

00|-1.7[-20/-20] Time 2 : move (reward -1); then k=1
k=2 -1.7]-2.0/-2.0{-2.0 Most: move (-1) + [vl =-1] =-2

-201-2.01-2.01-1.7 Some: move (-1) + % [vl =-1] + % [v1=0] = 1.75
2.0[-2.0[-1.7] 0.0

70

Policy Evaluation : Grid World

VL for the
Random Policy

0.0/-2.4/-2.9]-3.0
-2.4(-2.9|-3.0[-2.9
-2.9|-3.0[-2.9|-2.4
-3.0(-2.9]-2.4| 0.0

0.0]-6.1|-8.4|-9.0

-8.4|-8.4|-7.7]-6.1
-9.0|-8.4|-6.11 0.0

0.0(-14.]-20.|-22.
-14./-18.]-20.]-20.
-20.[-20.|-18.]-14.
-22.-20.[-14.] 0.0

?:-
I
g

Policy Evaluation : Grid World

V. for the Greedy Policy
Random Policy wrt Vg
00| 0.0/|0.0] 00 !e——»: e
00| 0.0/]0.0] 00 $lblbl e
A= P Y P I P O P O olic
0.0} 0.0/[0.0] 0.0 ol policy
00| 00| 0.0] 0.0 ol le :.
0.0l[-1.0[-1.0[-1.0 n« ol
it 10[-10[-10[-10 Slblb
10[-1.0[-10[-10 olebleb]
-1.0}-1.0-1.0{ 0.0 ol —».
0.0/-1.7]-2.0[-2.0 ‘— — 55
k=2 -1.7]-2.0|-2.0[-2.0 el
20[-2.00-2.0|-17 Vidb| Pl |
2.0[-2.0l-17] 0.0 | - —+-

Policy Evaluation : Grid World

Vi for the Greedy Policy
Random Policy wrt U
0.0]-2.4/-2.9|-3.0 ‘k - |9
o3 -2.4/-2.9|-3.0]-2.9 | 91,
2.9|-3.0/-2.9[-2.4 Ll Pl
3.0]-2.9]-2.4] 0.0 FEEN
0.0(-6.1|-8.4/-9.0 ‘ - |9
k=10 6.1]-7.7]-8.4|-8.4 9 |} | < optimal
8.4|-8.4|-7.7-6.1 "'Yl P policy
-9.0|-8.4|-6.1| 0.0 L] = -
0.0]-14.]-20.|-22. ‘ « |9 | Ingeneral:
= -14.1-18.1-20.]1-20. M “ | best policy & value for
20.]-20.|-18.|-14. bl p “one step, then
221201-14 0.0 L -] - follow random policy”

(always better policy than random!)

Most of the story in a nutshell:

Will Value lteration Converge?

* Yes, if discount factoris <1 orend upin a
terminal state with probability 1

* Bellman equation is a contraction

* |[f apply it to two different value functions,
distance between value functions shrinks
after apply Bellman equation to each

MDP Known

MDP Unknown

Finding Best Policy

Evaluate Policy, Find Best Policy, m*

Policy Evaluation Policy/Value Iteration
MC and TD Learning Sarsa + Q-Learning

75

Policy Improvement

= Given a policy
m Evaluate the policy

Vi(s) = E[Re+1 + yRi+2 + ...|St = 5]
m Improve the policy by acting greedily with respect to v

n = greedy(vi)

= In Small Gridworld improved policy was optimal, ' = r*
= In general, need more iterations of improvement / evaluation

m But this process of policy iteration always converges to =

76

Policy Iteration

E I E I E E
Mo — Upg —F M1 —F Ugry —F> M2 —F -+ —> T — Vs,

where — denotes a policy evaluation and — denotes a policy improvement. Each policy is guaranteed
to be a strict improvement over the previous one (unless it is already optimal). Because a finite MDP
has only a finite number of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Repeat
A+0
For each s € &:
v+ V{(s)
V(s) ¢ Y p8", 7|8, 7(8) [r + 9V ()]
A+ max(A, |v—V(s)])
until A < # (a small positive number)

3. Policy Improvement
policy-stable + true
For each s € &:
old-action + m(s)
m(s) + argmax, » . .p(s',7|s, a)[r+1V(s)]
If old-action # w(s), then policy-stable + false
If policy-stable, then stop and return V = v, and 7 = m.; else go to 2

77

Policy Iteration

starting
Vr

Policy evaluation Estimate v,
Iterative policy evaluation

Policy improvement Generate ! > nt
Greedy policy improvement

evaluation

o %

ni—>greedy(V)

improvement

Jack’s Car Rental

m States: Two locations, maximum of 20 cars at each
m Actions: Move up to 5 cars between locations overnight

m Reward: $10 for each car rented (must be available)

m Transitions: Cars returned and requested randomly
A
=

m Poisson distribution, n returns/requests with prob <
m Ist location: average requests = 3, average returns = 3
m 2nd location: average requests = 4, average returns = 2

79

Policy Iteration in Car Rental

Ty

20

#Cars at first location

o =3[-4
0 #Cars at second location

80

Policy Improvement

m Consider a deterministic policy, a = 7(s)
m We can improve the policy by acting greedily

7'(s) = argmax g-(s. a)
acA

m [his improves the value from any state s over one step,

Gx(5.7'(5)) = max 4x(s,) = Gz(5.7(5)) = v (5)

m |t therefore improves the value function, v,/(s) > v:(s)
V’W(S) < Q?T(S: W!(S)) = Ex [Rt—l—l + ﬁ}"'VW(SH—l) I St = 5]
< Er [Rf—i—l + 7Gx (Se1, 7 (Se41)) | Se = 5}
Err [Res1 + YReyo + V4 (St42. 7 (Se42)) | Se = |
Eﬁf [Rt—|—1 -+ ’”jﬁ"Rt_|_2 =+ ... | Sr = 5] = Vﬂ-w'(S)

IA A

81

Policy Improvement (2)

m If improvements stop,

gr(s, m(s)) = max gn(s,) = Gn(s, 7(s)) = V()

m Then the Bellman optimality equation has been satisfied

vi(s) = max gr(s, a)
acA

m Therefore vi;(s) = v«(s) forall s € S
m SOt is an optimal policy

82

Some Technical Questions

= How do we know that value iteration converges to v?
a Or that iterative policy evaluation convergesto vi;?
= And therefore that policy iteration converges to vi?

a Isthe solution unique?

m How fast do these algorithms converge?
m These questions are resolved by contraction mapping theorem

83

Value Function Space

= Consider the vector space V over value functions

= There are |S| dimensions

a Each point in this space fully specifies a value function v (s)

= What does a Bellman backup do to points in this space?

= We will show that it brings value functions closer

m And therefore the backups must converge on a unique solution

84

Value Function co-Norm

m We will measure distance between state-value functions u and
v by the co-norm

m i.e. the largest difference between state values,

lu= V]l = max |u(s) - v(s)l

85

Bellman Expectation Backup is a Contraction

m Approximate the value function

m Using a function approximator v(s,w)

m Apply dynamic programming to v(-,w)

m ec.g. Fitted Value lteration repeats at each iteration k,

m Sample states S CS
m For each state s € S, estimate target value using Bellman
optimality equation,

Vi (s) = max (R;’ + Z Pﬁsfﬁ(SﬂWk))

acA
s'eS

m Train next value function V(-,wk.1) using targets {(s. Vx(s))}

86

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an
operator T (v), where T is a y-contraction,

m | converges to a unique fixed point
a At a linear convergence rate of y

Convergence of Iter. Policy Evaluation and Policy Iteration

= The Bellman expectation operator T has a unique fixed point
m Vrris a fixed point of T ™ (by Bellman expectation equation)
= By contraction mapping theorem

m [terative policy evaluation converges on vi;
m Policy iteration converges on vx

88

Bellman Optimality Backup is a Contraction

m Define the Bellman optimality backup operator T *,

T *(v) = max R4 + yP4y
acA

= This operator is a y-contraction, i.e. it makes value functions
closer by at least y (similar to previous proof)

[IT*W) = T*lle < vllu = V]l

89

Convergence of Value Iteration

= 1he Bellman optimality operator T *has a unique fixed point
= V«isS a fixed point of T *(by Bellman optimality equation) By
a contraction mapping theorem

m Value iteration converges on v

90

Most of the story in a nutshell:

Value lteration Converges

e |f discount factor < 1
 Bellman is a contraction

« Value iteration converges to unique
solution which is optimal value function

Most of the story in a nutshell:

Properties of Contraction

* Only has 1 fixed point

If had two, then would not get closer when apply
contraction function, violating definition of
contraction

« When apply contraction function to any argument,
value must get closer to fixed point

Fixed point doesn’'t move
Repeated function applications yield fixed point

92

Most of the story in a nutshell:

Bellman Operator is a Contraction

| V-V’|| = Infinity norm
(find max diff |BV - BV =
Over all states)

<

<y

o

= ymax
a

max_zjjesp(sj S, a)V(Sj)—ZSJﬂP(S; |S; G)V'(Sf)}

mt?x[R(S, a)+)/Zs » ps; | s, a)lV (s,)}

—m{;%}X[R(S, a)-y2, P 15.a) ()

2., P68 15 @)V (5))- V'(sj))]‘

<ymaxy, pls, |5, @)|V(s)-V'Gs))
< }/1133}{2&65;?(3‘}- |SJ-,£I)HV— V'H

A & -

93

mSX[R(Ss a)+ ?ZSJEISP(S; |5,,a)V(s,)~R(s,a)+ 725}.55 ps, |5, @)V (s,)]

Modified Policy Iteration

m Does policy evaluation need to converge to v;;?

m Or should weintroduce a stopping condition
m €.g. E-convergence of value function

m Or simply stop after k iterations of iterative policy evaluation?

a For example, in the small gridworld k = 3 was sufficient to
achieve optimal policy

= Why not update policy every iteration? i.e. stop after k = 1
m This is equivalent to value iteration (next section)

94

Generalised Policy Iteration

evaluation
/:\N
JU
starting v* V
V nt - ni—>greedy(V)
improvement

Policy evaluation Estimate v
Any policy evaluation algorithm

Policy improvement Generate it = nt 5
Any policy improvement algorithm T -

Value Iteration

Problem: find optimal policy r

Solution: iterative application of Bellman optimality backup

Vi— Vo— ... > Vg
Using synchronous backups
a At eachiteration k + 1

m Forall statess € S
m Update vi+1(s) from vi(s)

Convergence to v« Wwill be proven later
Unlike policy iteration, there is no explicit policy
Intermediate value functions may not correspond to any policy

96

Value Iteration (2)

Vk+1(S)

Vi1

Vk4+1(8) <= s

97

Asynchronous Dynamic Programming

m DP methods described so far used synchronous backups

m i.e. all states are backed up in parallel
a Asynchronous DP backs up states individually, in any order

a For each selected state, apply the appropriate backup

= Can significantly reduce computation
m Guaranteed to converge if all states continue to be selected

99

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

m In-place dynamic programming
m Prioritised sweeping
m Real-time dynamic programming

100

In-Place Dynamic Programming

m Synchronous value iteration stores two copies of value function

forall sin S

Vhew(S) 4= max (’R? + Z P vo;d(s’))

ac A
s’eS

Vold < Vhnew

m In-place value iteration only stores one copy of value function

forall sin &

v(s) < max (’Ra + v Z Piv(s)

e s'eS

101

Prioritised Sweeping

m Use magnitude of Bellman error to guide state selection, e.g.

max (’Ri + Z P v(s’)) — v(s)
s'eS

Backup the state with the largest remaining Bellman error

O

m Update Bellman error of affected states after each backup
m Requires knowledge of reverse dynamics (predecessor states)
O

Can be implemented efficiently by maintaining a priority queue

102

Real-Time Dynamic Programming

m Idea: only states that are relevant to agent
a Use agent’s experience to guide the selection of states

a After each time-step S¢, At, Rt+1
m Backup the state S;

S a ~ a /
v(St) ¢ max (L+7) Piav(s))

s’'eS

103

Full-Width Backups

m DP uses full-widthbackups

m For each backup (sync or async)
a Every successor state and action is
considered
m Using knowledge of the MDP transitions
and reward function

m DP is effective for medium-sized problems
(millions of states)

m For large problems DP suffers Bellman'’s
curse of dimensionality

m Number of states n = |S| grows
exponentially with number of state
variables

m Even one backup can be too expensive 04

Sample Backups

m In subsequent lectures we will consider sample backups

m Using sample rewards and sample transitions
(S,AR,S)

m Instead of reward function R and transition dynamics P

= Advantages:

m Model-free: no advance knowledge of MDP required
m Breaks the curse of dimensionality through sampling
m Cost of backup is constant, independent of n = |S]

O
o
O

105

Approximate Dynamic Programming

m Approximate the value function

m Using a function approximator V(s,w)

m Apply dynamic programming to (-, w)

m c.g. Fitted Value lteration repeats at each iteration k,

m Sample states ScsS
m For each state s € §, estimate target value using Bellman
optimality equation,

Vi (s) = max (7?,_‘;’ + Z Pj's,i?(s”.Wk))

acA
s'eS

m Train next value function V(-, wy.1) using targets {(s. Vx(s))}

106

Monte Carlo Learning

Evaluate Policy, t Find Best Policy, m*

Policy Evaluation Policy/Value Iteration

MDP Known

MDP Unknown

107

Monte-Carlo Reinforcement Learning

MC methods can solve the RL problem by averaging sample returns

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return
Caveat: can only apply MC to episodic MDPs
m All episodes must terminate

MC is incremental episode by episode but not step by step

Approach: adapting general policy iteration to sample returns

First policy evaluation, then policy improvement, then control
108

Monte-Carlo Policy Evaluation

Goal: learn v;; from episodes of experience under policy 7
S, AL, Ry, ..., Sk~ 1T
Recall that the return is the total discounted reward:
Gi= Rter + YRu2 + .. + YT IRt
Recall that the value function is the expected return:
Vrr(S) = Er[Gt | St= s]

Monte-Carlo policy evaluation uses empirical mean return
instead of expected return, because we do not have the
model

109

Every Visit MC Policy Evaluation

To evaluate state s

Every time-step t that state s is visited in an episode,

Increment total return S(s) < S(s) + G
Value is estimated by mean return V(s) = S(s)/N(s)
m Again, V(s) — vi(s) as N(s) — oo

=
=
m Increment counter N(s) < N(s) + 1
Gl
@

Equivalent, “incremental tracking” form:

V(s) « V(s)+ ﬁ(G, —V(s))

Looks like SGD to minimize MSE from the mean value...

110

Blackjack Example

States (200 of them):
m Current sum (12-21)

m Dealer's showing card (ace-10)
m Do | have a “useable” ace? (yes-no)

Action stand Stop receiving cards (and terminate)
Action hit : Take another card (no replacement) Y

Reward for stand

m +1 if sum of cards > sum of dealer cards
m O if sum of cards = sum of dealer cards
m -1 if sum of cards < sum of dealer cards

Reward for hit

m -1 if sum of cards > 21 (and terminate)

m 0 otherwise
Transitions: automatically hit

if sum of cards < 12

111

Blackjack Value Function

After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit

112

Temporal Difference Learning

m D methods learn directly from episodes of experience
m TD is model-free: no knowledge of MDP transitions / rewards
m D learns from incomplete episodes, by bootstrapping

m D updates a guess towards a guess

113

MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G,

V(S:) < V(S:) + a(G: — V(5:))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ry 1 + vV/(5¢+1)

V(St) — V(5:) + a(Ri+1 + vV(S5¢t+1) — V(5t))

m Rip1 +vV(Si41) is called the TD target
m O = Riy1 +vV(St41) — V(S:) is called the TD error

114

Driving Home Example

State Elapsed Time Predicted Predicted
(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining 5 35 40
exit highway 20 15 35
behind truck 30 10 40
home street 40 3 43

arrive home 43 0 43

115

Driving Home: MCvs TD

Changes recommended by
Monte Carlo methods (a=1)

45
___actual outcome_____
\
) 40
Predicted
total
travel 35
time
30

1 1 Ll Ll Ll 1
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

4
Predicted

total
travel
time

Changes recommended
by TD methods (a=1)

actual
outcome

1 |l |l) 1 1
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

116

Finite Episodes: AB Example

Two states A, B; no discounting; 8 episodes of experience

MC & TD can give different answers on fixed data:

V(B)=6/8

V(A)=07? (Direct MC estimate)

B,0 V(A)=6/8? (TD estimate)

What is V(A), V(B)?

117

MCvs TD

* Wait till end of episode to learn
* Only for terminating worlds

* High-variance, low bias
* Not sensitive to initial value
* Good convergence properties

* Doesn’t exploit Markov property

* Minimizes squared error

Temporal Difference

Learn online after every step
* Non-terminating worlds ok

Low variance, high bias
* Sensitive to initial value
* Much more efficient

Exploits Markov Property

Maximizes log-likelihood

118

Unified View: Monte Carlo

V(S5:) + V(5¢) + a(G — V(S:))

119

Unified View: TD Learning

V(St) < V(5t) + a(Rep1 +7V(Se41) — V(5t))

120

Unified View: Dynamic Prog.

V(S:) < Ex [Re41 +7YV(St+1)]

121

Unified View of RL (Prediction)

. Exhaustive
Dynamic search
programming
full f‘(' A -‘f}:
backups

sample Monte Carlo
backups Y Temporal-
difference

learning 1

- - - .

shallow bootstrapping, A deep :
backups backups

!

122

Overview

Evaluate Policy, it Find Best Policy, n*

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Sarsa + Q-Learning

123

Which Policy Evaluation?

m Temporal-difference (TD) learning has several advantages
over Monte-Carlo (MC)

m Lower variance
m Online
m Incomplete sequences

m Natural idea: use TD
m Apply TD to Q(S, A)
m Use e-greedy policy improvement
m Update every time-step

124

Model-free Control

’_l Agent l
state reward action

St Rz Ar

§< Rt+l {
. S.. | Environment

Learn a policy T to maximize rewards in the environment

125

Generalized Policy Iteration

evaluation

m
T V
ni—>greedy(V)

improvement

Policy evaluation Estimate v,
e.g. lterative policy evaluation

Policy improvement Generate 7’ > 7 &
e.g. Greedy policy improvement T

126

Gen Policy Improvement?

smnlng V‘

" =
Policy evaluation Monte-Carlo policy evaluation, V = v,.?7
Policy improvement Greedy policy improvement?

127

Not quite!

m Greedy policy improvement over V(s) requires model of MDP

7'(s) = argmax R2 + P2, V(s')
acA

m Greedy policy improvement over Q(s, a) is model-free

7'(s) = argmax Q(s, a)
acA

128

Learn Q function directly...

q.. e

Policy evaluation Monte-Carlo policy evaluation, Q = g,
Policy improvement Greedy policy improvement?

129

Q-Learning

Actions

State S

Q - Table

Sates

130

On and Off Policy Learning

m On-policy learning
m “Learn on the job"
m Learn about policy ™ from experience sampled from 7

m Off-policy learning

m “Look over someone's shoulder”
m Learn about policy m from experience sampled from u

131

Sarsa: TD for Policy Evaluation

S.A

Q(S,A) «+ Q(S,A) + a (R+~Q(S',A) — Q(S, A))

132

SARSA

Sarsa (on-policy TD control) for estimating () =~ q.

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A" from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) + Q(S,A) + a[R+vQ(S5', A") — Q(S, A)]
S 5§ A« A"
until S is terminal

133

On-Policy Control w/ Sarsa

Q*, T

Every time-step:
Policy evaluation Sarsa, Q =~ gx

Policy improvement e-greedy policy improvement

134

Q-Learning

Learning
Rate Future Reward

l

Q(S,a) « Q(S,0) + o (R+7 maxQ(S',a') - Q(S,)

/] %

Current Reward Current
Value Value Offset

135

Q-Learning Control Algorithm

@5

R

§’ (SARSAMAX)
L] A

Q(S,A) «+ Q(S,A)+a (R + 7y max Q(5',a)— Q(S,A))

136

Q-Learning

Q-learning (off-policy TD control) for estimating 7 = m,

Initialize Q(s,a), for all s € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
[nitialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A)+ Q(S.A) + a[R + v max, Q(S’,a) — Q(S, A}]
S+ 5
until S is terminal

137

Q-Learning vs. Sarsa

R=-1

safe path

optimal path

S

The Cliff Gl

Sarsa

~25-
Sum of
d —50- _

rewards Q-learning
during
episode

—100 T T T T i

0 100 200 300 400 500
Episodes

138

Greedy Action Selection?

m [here are two doors in front of you.

m You open the left door and get reward 0 -
V(left) =0 - ERSE——

m You open the right door and get reward +1 . | | —
V(right) = +1 |) |)
m You open the right door and get reward +3

V(right) = +2 | o | — 1

m You open the right door and get reward +2 - eom——)
V(right) = 42 || At [[| e

: [N == I

m Are you sure you've chosen the best door?

139

e-Greedy Exploration

m Simplest idea for ensuring continual exploration
m All m actions are tried with non-zero probability
m With probability 1 — € choose the greedy action

m With probability ¢ choose an action at random

140

Relation between DP and TD

Full Backup (DP)

Sample Backup (TD)

Bellman Expectation
Equation for v.(s)

w8 =8
/\
/
T
/\ / \
r / \ /
/ /
() =8 O OO

Iterative Policy Evaluation

TD Learning

Bellman Expectation wredd o 4 v
Equation for g (s, a) Q-Policy lteration Sarsa
%(8,a) 4150 8
‘AR
Bellman Optimality e L
Equation for g.(s, a) Q-Value Iteration Q-Learning

142

Update Egns for DP and TD

Full Backup (DP)

Sample Backup (TD)

Iterative Policy Evaluation TD Learning

V(s) — E[R+~V(S) | 5] V(S) & R++V(S)
Q-Policy lteration Sarsa

Q(s,a) — E[R+~Q(S",A") | s, 4] Q(S,A) & R++vQ(S', A)
Q-Value Iteration Q-Learning

Q(s,a) «+ E [R+ v max Q(5',d') | s,a
aceA

where x & y = x + x + a(y — x)

Q(S,A) & R+~ max Q(S',)

143

Monte Carlo Tree Search

Repeated X times

Selection - Expansion - Simulation > Backpropagation

5

One or more nodes One simulated The result of this game is
are created game is played backpropagated in the tree

The selection function 1s
applied recursively until
a leaf node is reached

144

Large-Scale RL

Reinforcement learning can be used to solve large problems, e.g.

020

m Backgammon: 10" states

0170

m Computer Go: 1 states

m Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?

145

Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V(s)
m Or every state-action pair s, a has an entry Q(s, a)

m Problem with large MDPs:

m There are too many states and/or actions to store in memory
m [t is too slow to learn the value of each state individually

m Solution for large MDPs:
m Estimate value function with function approximation
V(s,w) = vi(s)

or §(s,a,w) =~ g.(s,a)

m Generalise from seen states to unseen states
m Update parameter w using MC or TD learning

146

Types of Function Approx.

V(s,w)

I
A~)

w

i

d(s,a,w)

I
A~)

1

a(sla‘pw) e a(S,am,W)

Pt
YA

W

i

Which Approximator?

There are many function approximators, e.g.
m Linear combinations of features
m Neural network
m Decision tree
m Nearest neighbour
m Fourier / wavelet bases

148

Deep-Q learning

Use deep neural network architectures for Q(s,a)

Ex: Atari game playing (DeepMind)
Input: pixel images of current state

Output: joystick actions

32 4x4 filcers 254 hidden unics Fully-connected linear
output kxyer
|6 Bx8 fileers
4xB4xB4
Stack of 4 previous Fully-connected layer
frames Convolutional layer Convolutional layer of rectified lincar units
of recxified linear units of receified linear unies

149

