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Reinforcement Learning
Markov Decision Processes



Overview

Intro
Markov Decision Processes

Reinforcement Learning
— Sarsa
— Q-learning

Exploration vs Exploitation tradeoff



Resources

Book: Reinforcement Learning: An Introduction
Richard S. Sutton and Andrew G. Barto

UCL Course on Reinforcement Learning

David Silver

— https://www.youtube.com/watch?v=2pWv7GOvuf0
— https://www.youtube.com/watch?v=IfHX2hHRMVQ
— https://www.youtube.com/watch?v=Nd1-UUMV{z4
— https://www.youtube.com/watch?v=PnHCvfgC ZA

— https://www.youtube.com/watch?v=0g4i2k Ggc4

— https://www.youtube.com/watch?v=UoPei504fps



http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://www.youtube.com/watch?v=Nd1-UUMVfz4
https://www.youtube.com/watch?v=PnHCvfgC_ZA
https://www.youtube.com/watch?v=0g4j2k_Ggc4
https://www.youtube.com/watch?v=UoPei5o4fps

Branches of Machine Learning

Supervised
Learning

Unsupervised
Learning

Machine
Learning

Reinforcement
Learning



Why is it different

No target values to predict
Feedback in the form of rewards

— May be delayed not instantaneous

Have a goal : max reward

Have timeline : actions along arrow of time
Actions affect what data it will receive



Agent-Environment
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* executes the action
* computes next observation
* computes next reward




Agent and Environment

observation

action

Ay

m At eachstep t the agent:
a EXecutes action A;
a Receives observation O;
m Receives scalar rewardR;

m The environment:

m Recelvesaction A;
m Emits observation O 1
m Emits scalar reward R; 1

m tincrements at env. step



Sequential Decision Making

* Actions have long term
conseqguences

Given an environment
(produces observations and rewards)

 Goal maximize cumulative
(long term) reward

— Rewards may be delayed [ J

— May need to sacrifice short
term reward

Automated agent that selects actions

* Devise a p|an t0 Maximize o maximize total rewards in the environment
cumulative reward



Sequential Decision Making

Examples:

H . . .
A financial investment (may take months to mature)

Refuelling a helicopter (might prevent a crash in several hours)

. Blocking opponent moves (might help winning chances many
moves from now)



Reinforcement Learning

Learn a behavior strategy (policy) that maximizes the long term
Sum of rewards in an unknown and stochastic environment (Emma Brunskill: )

Planning under Uncertainty

Learn a behavior strategy (policy) that maximizes the long term
Sum of rewards in a known stochastic environment (Emma Brunskill: )



EXamples: RODOTICS




Atari Example: Reinforcement Learning

observation

‘‘‘‘‘‘‘‘

m Rules of the game are
unknown

m Learndirectly from
Interactive game-play

m Pick actions on
joystick, seepixels
and scores
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Demos

Some videos

* https://www.youtube.com/watch?v=V1eYniJORNK
« https://www.youtube.com/watch?v=CIF2SBVY-J0
« https://www.youtube.com/watch?v=12WFvGI4y8c
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https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=I2WFvGl4y8c

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

P[Sﬁ-l | St] = P[St-l-l | 511'":51’]

m [ he state captures all relevant information from the history
m Once the state is known, the history may be thrown away

m i.e. [he state is a sufficient statistic of the future

14



State Transition

For a Markov state s and successor state s’, the state transition
probability is defined by

Psst =P |:St+1 =g ‘ St = S]

State transition matrix P defines transition probabilities from all
states s to all successor states s/,

to

Pir ... Pun
P = from :

Pnl . Pnn

where each row of the matrix sums to 1.
_—

15



Markov Process

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, S5, ... with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)
m S is a (finite) set of states

m P is a state transition probability matrix,
Psss =P[St11=5"| St = 3]

16



Student Markov Chalin




Student MC : Episodes

Sample episodes for Student Markov
Chain starting from 5; = C1

Sla 527 sy ST

1.0

@ m C1 C2 C3 Pass Sleep
m C1 FB FB C1 C2 Sleep
m C1 C2 C3 Pub C2 C3 Pass Sleep

m Cl1FBFBC1C2C3PubClFBFB
FB C1 C2 C3 Pub C2 Sleep
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Student MC : Transition Matrix

0.9
@ Sleep |g—
0.1
C1
C2
0.5 0.2 1.0 C3
o) "%
Pub
0.4 FB
Sleep

C1

Cc2
0.5

0.4

C3

0.8

0.4

Pass

0.6

Pub FB Sleep
0.5
0.2
0.4
1.0

0.9
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Return

The return G; is the total discounted reward from time-step t.

o0
Gt = Rey1 +YReq2 + ... = Z’Yth+k+1
k=0

m The discount v € [0,1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is v%R.

m This values immediate reward above delayed reward.

m v close to 0 leads to "myopic” evaluation
m 7 close to 1 leads to "far-sighted” evaluation

20



Value

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return
starting from state s

v(s) =E[G; | St = 5]

ve(s) = EL[G: | Si=5] Z kRysnsr | Si=s|, forall s €8,

21



Student MRP

+10)

22




Student MRP : Returns

Sample returns for Student MRP:
Starting from $§; = C1 with v = ;

Gi=Ry+vRz+..+~v %Rt

C1 C2 C3 Pass Sleep v1=—2—2*%—2*%+10*% = —2.25

C1 FB FB C1 C2 Sleep M=-2—-1%x3—1x}—-2x}%—2x% = -3.125

C1 C2 C3 Pub C2 C3 Pass Sleep v1_—2——2*%-—2*%+1*é—2*%6.. = —3.41
= - 1 1 1 1

C1 FBFB C1C2C3PubCl ... =-2-1x3—-1x%-2x1-2x%.. = BB

FB FB FB C1 C2 C3 Pub C2 Sleep



Student MRP : Value Function

v(s) for y =0

0.9
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Student MRP : Value Function




Student MRP : Value Function




Bellman Equation for MRP

The value function can be decomposed into two parts:

m immediate reward Ry

m discounted value of successor state yv(S;41)

v(s) =E[G; | S; = s]

=

[Rt+1 iR+ '72Rt+3 + s | S = 5]
[Re+1+ 7 (Rew2 +YRe3 +...) | St = 5]
[Re+1 + vGey1 | Se = 9]

[Re+1+Yv(St+1) | St = 9]
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Backup Diagrams for MRP

v(s) = E[Ret1 +yv(St41) | St = 5]

v(s') + 8

v(s) = Rs +72Pssv(s)

s'eS



Bellman Eq: Student MRP

4.3=-2+0.6*%10+ 0.4%0.8
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Bellman Eq: Student MRP

The Bellman equation can be expressed concisely using matrices,

v=R+9Pv

where v is a column vector with one entry per state

30



Solving the Bellman Equation

= 1he Bellman equation is a linear equation
s It can be solved directly:

v= R+ yPv
(I —yP) v=R
v=(l-yP) 'R

s Computational complexity is O(n3) for n states
m Direct solution only possible for small MRPs
® There are many iterative methods for large MRPs, e.g.
® Dynamic programming
® Monte-Carlo evaluation
= Temporal-Difference learning 31



Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple (S, A,P,R,~)
m S is a finite set of states
m A is a finite set of actions
m P is a state transition probability matrix,
P2, =P[S¢p1 =5 | Si=5,4; =3
m R is a reward function, RZ = E[R¢y1 | St = s, At = 3]
m 7 is a discount factor v € [0, 1].

32



Facebook
R=-1

Student MDP

Facebook
R=-1]

Study Study

S!’Uc’p
R=+10

33



Policies

A policy 7 is a distribution over actions given states,

n(als) =P[A;=a | S; = 3]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At ~ W(lSt),Vt >0

34



MP — MRP — MDP

m Given an MDP M = (S, A,P,R,v) and a policy 7
m The state sequence 51, Sy, ... is a Markov process (S, P™)

m The state and reward sequence 51, R, S, ... is a Markov
reward process (S, P™,R™,~)

m where

.:s’ — Zﬂ-(a|5) sas’

acA

R =) m(als)R;

acA

35



Value Function

The state-value function v, (s) of an MDP is the expected return
starting from state s, and then following policy 7

Ve(s) =Ex [G: | St = 5]

The action-value function q.(s, a) is the expected return
starting from state s, taking action a, and then following policy 7

qxz(s,3) =Ex |G | 5: = s, A: = 3]

36



Bellman Eq for MDP

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(S) = Erx [Re+1 + yva(Se+1) | St = s]
The action-value function can similarly be decomposed,
r(s,a) = Ex [Ret1 + ¥qn(St+1, Aet1) | S = s, Ar = 4

Evaluating Bellman equation translates into 1-step lookahead

37



Bellman Eq, V

Un(s) 7\
gr(S,a) <4 a

vr(s) = 3 7(als)an(s; 2)

acA



Bellman Eq, g



Bellman Eq, V
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Bellman Eq, g

qr(8,a) <4 8,a

Gr(s,a) =RI+7 Y P D w(d|s)an(s',d)

s'eS aeA
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Student MDP : Bellman EqQ

Facebook 7.4=05%(+02*%-1.3+04*2.7+04%*7.4)
R=-1 0.5 *10

Facebook
R=-1

Study
R=+10
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Bellman Eq : Matrix Form

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve = R + 4P vy

with direct solution

Ve = (I —4P™) I RT

43



Optimal Value Function

Definition

The optimal state-value function v.(s) is the maximum value
function over all policies

Vils) = max vr(S)

The optimal action-value function q.(s, a) is the maximum
action-value function over all policies

guls,a) = max g (s, a)

m The optimal value function specifies the best possible
performance in the MDP.
m An MDP is “solved” when we know the optimal value fn.

44



Student MDP : Optimal V

Facebook v(s) fory =1
R=-1

0 |q—

Facebook
R=-1

Quit
R=10

Study
R=+10




Student MDP : Optimal Q

Facebook q «(s,a) fory =1
R=-1
q % 5
0 |

Quit Facebook

R=0 R=-1

L il Study
R=+10
gx =10
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Optimal Policy

Define a partial ordering over policies

= if vz(s) = vy (s), Vs

For any Markov Decision Process
m There exists an optimal policy iy that is better than or equal
to all other policies, rn« = r, Vn
m All optimal policies achieve the optimal value function,
Vi (S) = Vi(s)
m All optimal policies achieve the optimal action-value function,
Gr«(S, @) = g«(s, a)



Finding an Optimal Policy

An optimal policy can be found by maximising over g«(s, a),
1 if a = argmax q«(s, a)

m(a|s) = acA
0 otherwise

m There is always a deterministic optimal policy for any MDP
m Ifweknow g«(s, a), weimmediately have the optimal policy

48



Student MDP : Optimal Policy

Facebook mx(a|s) fory =1
R=-1
{q % 5
0 |

Facebook

(/* O
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Bellman Optimality Eqg, V

Facebook rx(als) fory =1
R=-1
q % 5
0 |a—

Quit Facebook
R=10 R =-1
qx =0 q »

Study
R=+10
% /”
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Student MDP : Bellman Optimality

Facebook 6 =max {-2+8, -1+6}
R=-1

Facebook
R =-1

51



Solving the Bellman Optimality Equation

Not easy

a Bellman Optimality Equation is non-linear
= No dosed form solution (in general)

= Many iterative solution methods

® Value Iteration
® Policy Iteration
® Q-learning

® Sarsa

52



Maze Example

Start

s Rewards: -1 per time-step
s Actions: N, E,S,W
a States: Agent’s location

Goal

53



Maze Example: Policy

m Arrows represent policy Tt(s) for each state s »



Maze Example: Value Function

Start |-

m Numbers represent value v;;(s) of each state s -



Maze Example: Model

m Agent may have an internal
model of the environment

m Dynamics: how actions
change the state

m Rewards: how much reward
from each state

m The model may be imperfect

a Grid layout represents transition model P,

m Numbers represent immediate reward R? from each state s

(same for all a)
56



Algorithms for MDPs

m States, Transitions, Actions, Rewards

[ Prediction } Given Policy m, Estimate State Value Functions, Action Value Functions

Control J Estimate Optimal Value Functions, Optimal Policy

Does the agent know the MDP?

It’s “Model-free RL”
Agent observes everything as it goes

1 It’s “planning”

Agent knows everything

57



m A model predicts what the environment will do next
m P predicts the next state

m R predicts the next (immediate) reward, e.g.

P;js! = ]P)[Sf_|_1 = Srr | Sf — 5, At = 3]
Rg :E[Rt—l—l ‘ St = 5._141; = 3]

58



Algorithms cont.

Prediction Control
Evaluate Policy, Find Best Policy, t*
: I
Planning
MDP Known Policy Evaluation Policy/Value Iteration
J

-l

59



Learning and Planning

Two fundamental problems in sequential decision making

a Reinforcement Learning:

m The environment is initially unknown
m The agentinteracts with the environment
m The agentimproves its policy

m Planning:
m A model of the environment is known
m The agent performs computations with its model (without any
external interaction)
m The agentimproves its policy

m a.k.a. deliberation, reasoning, introspection, pondering,
thought, search

60



Major Components of an RL Agent

= An RL agent may include one or more of these components:
m Policy: agent’s behaviourfunction
m Value function: how good is each state and/or action
m Model: agent’s representation of the environment

61



Dynamic Programming

Dynamic sequential or temporal component to the problem
Programming optimising a “program”, i.e. a policy
m c.f. linear programming

m A method for solving complex problems

m By breaking them down into subproblems

m Solve the subproblems
m Combine solutions to subproblems

62



Requirements for DP

Dynamic Programming is a very general solution method for
problems which have two properties:

m Optimal substructure

m Principle of optimality applies

m Optimal solution can be decomposed into subproblems
m Overlapping subproblems

m Subproblems recur many times
m Solutions can be cached and reused

m Markov decision processes satisfy both properties

m Bellman equation gives recursive decomposition
m Value function stores and reuses solutions

63



Applications for DPs

Dynamic programming is used to solve many other problems, e.g.
m Scheduling algorithms
m String algorithms (e.g. sequence alignment)
m Graph algorithms (e.g. shortest path algorithms)
m Graphical models (e.g. Viterbi algorithm)

m Bioinformatics (e.g. lattice models)

64



Planning by Dynamic Programming

= Dynamic programming assumes full knowledge of the MDP
s Itis used for planningin an MDP

m For prediction:
= Input: MDP (S, A, P, R, y) and policy n
m or: MRP (S,P7,R7,y)
m Output: value function v,
m Or for control:
m Input: MDP (S, A, P, R, y)
a Output: optimal value function v
N and: optimal policy

65



Policy Evaluation (Prediction)

m Problem: evaluate a given policy n
m Solution: iterative application of Bellman expectation backup

mVi— Vo— ...—> Vg
m Using synchronous backups,
a At eachiteration k + 1
m Forall statess e S
s Update vi+1(s) from vi(s)
m Where s’ is a successor state of s

m We will discuss asynchronous backups later
m Convergence to v;rcan be proven

66



Iterative policy Evaluation

Iterative policy evaluation

Input m, the policy to be evaluated
Initialize an array V' (s) =0, for all s € 8T
Repeat
A0
For each s € &:
v+ V(s)
V(s) « >, m(als) X s . p(s',7]s,a) [r +1V ()]
A +— max(A, |[v —V(s)|)
until A < @ (a small positive number)
Output V = v,

68




Evaluating a Random Policy in the Small Gridworld

1 2 3

4 |5 |6 |7 r= -1
on all transitions
8 9 [10 |11

actions

12 13 [14

= Undiscounted episodic MDP (y = 1)

s Nonterminal states 1, ..., 14

= One terminal state (shown twice as shaded squares)
m Actions leading out of the grid leave state unchanged
s Rewardis -1 until the terminal state is reached

= Agent follows uniform random policy

n(n|-) = n(e|-) = n(s|-) = n(w|-) = 0.25
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Policy Evaluation : Grid World

V. forthe
Random Policy

0.0| 0.0/ 0.0{0.0
0.0/ 0.0] 0.0{ 0.0
0.0/ 0.0] 0.0{ 0.0
0.0] 0.0/ 0.0{ 0.0

Time 0 : do nothing, stop; no cost.

00]-1.0]-1.0{-1.0

Time 1 : move (reward -1); then k=0
Unless in goal: reward O

-1.0{-1.0]-1.0{-1.0
-1.0/-1.0|-1.0] 0.0

00|-1.7[-20/-20]  Time 2 : move (reward -1); then k=1
k=2 -1.7]-2.0/-2.0{-2.0 Most: move (-1) + [vl =-1] =-2

-201-2.01-2.01-1.7 Some: move (-1) + % [vl =-1] + % [v1=0] = 1.75
2.0[-2.0[-1.7] 0.0
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Policy Evaluation : Grid World

VL for the
Random Policy

0.0/-2.4/-2.9]-3.0
-2.4(-2.9|-3.0[-2.9
-2.9|-3.0[-2.9|-2.4
-3.0(-2.9]-2.4| 0.0

0.0]-6.1|-8.4|-9.0

-8.4|-8.4|-7.7]-6.1
-9.0|-8.4|-6.11 0.0

0.0(-14.]-20.|-22.
-14./-18.]-20.]-20.
-20.[-20.|-18.]-14.
-22.-20.[-14.] 0.0

?:-
I
g




Policy Evaluation : Grid World

V. for the Greedy Policy
Random Policy wrt Vg
00| 0.0/|0.0] 00 !e——»: e
00| 0.0/]0.0] 00 $lblbl e
A= P Y P I P O P O olic
0.0} 0.0/[0.0] 0.0 ol policy
00| 00| 0.0] 0.0 ol le :.
0.0l[-1.0[-1.0[-1.0 n« ol
it 10[-10[-10[-10 Slblb
10[-1.0[-10[-10 olebleb]
-1.0}-1.0-1.0{ 0.0 ol —».
0.0/-1.7]-2.0[-2.0 ‘— — 55
k=2 -1.7]-2.0|-2.0[-2.0 el
20[-2.00-2.0|-17 Vidb| Pl |
2.0[-2.0l-17] 0.0 | - —+-




Policy Evaluation : Grid World

Vi for the Greedy Policy
Random Policy wrt U
0.0]-2.4/-2.9|-3.0 ‘k - |9
o3 -2.4/-2.9|-3.0]-2.9 | 91,
2.9|-3.0/-2.9[-2.4 Ll Pl
3.0]-2.9]-2.4] 0.0 FEEN
0.0(-6.1|-8.4/-9.0 ‘ - |9
k=10 6.1]-7.7]-8.4|-8.4 9 |} | < optimal
8.4|-8.4|-7.7-6.1 "'Yl P policy
-9.0|-8.4|-6.1| 0.0 L] = -
0.0]-14.]-20.|-22. ‘ « |9 | Ingeneral:
= -14.1-18.1-20.]1-20. M “ | best policy & value for
20.]-20.|-18.|-14. bl p “one step, then
221201-14 0.0 L -] - follow random policy”

(always better policy than random!)



Most of the story in a nutshell:

Will Value lteration Converge?

* Yes, if discount factoris <1 orend upin a
terminal state with probability 1

* Bellman equation is a contraction

* |[f apply it to two different value functions,
distance between value functions shrinks
after apply Bellman equation to each



MDP Known

MDP Unknown

Finding Best Policy

Evaluate Policy, Find Best Policy, m*

Policy Evaluation Policy/Value Iteration
MC and TD Learning Sarsa + Q-Learning
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Policy Improvement

= Given a policy
m Evaluate the policy

Vi(s) = E[Re+1 + yRi+2 + ...|St = 5]
m Improve the policy by acting greedily with respect to v

n = greedy(vi)

= In Small Gridworld improved policy was optimal, ' = r*
= In general, need more iterations of improvement / evaluation

m But this process of policy iteration always converges to =
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Policy Iteration

E I E I E E
Mo — Upg —F M1 —F Ugry —F> M2 —F -+ —> T — Vs,

where — denotes a policy evaluation and — denotes a policy improvement. Each policy is guaranteed
to be a strict improvement over the previous one (unless it is already optimal). Because a finite MDP
has only a finite number of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Repeat
A+0
For each s € &:
v+ V{(s)
V(s) ¢ Y p8", 7|8, 7(8) [r + 9V ()]
A+ max(A, |v—V(s)])
until A < # (a small positive number)

3. Policy Improvement
policy-stable + true
For each s € &:
old-action + m(s)
m(s) + argmax, » . .p(s',7|s, a)[r+1V(s)]
If old-action # w(s), then policy-stable + false
If policy-stable, then stop and return V = v, and 7 = m.; else go to 2
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Policy Iteration

starting
Vr

Policy evaluation Estimate v,
Iterative policy evaluation

Policy improvement Generate ! > nt
Greedy policy improvement

evaluation

o %

ni—>greedy(V)

improvement




Jack’s Car Rental

m States: Two locations, maximum of 20 cars at each
m Actions: Move up to 5 cars between locations overnight

m Reward: $10 for each car rented (must be available)

m Transitions: Cars returned and requested randomly
A
=

m Poisson distribution, n returns/requests with prob <
m Ist location: average requests = 3, average returns = 3
m 2nd location: average requests = 4, average returns = 2

79



Policy Iteration in Car Rental

Ty

20

#Cars at first location

o =3[ -4
0 #Cars at second location
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Policy Improvement

m Consider a deterministic policy, a = 7(s)
m We can improve the policy by acting greedily

7'(s) = argmax g-(s. a)
acA

m [ his improves the value from any state s over one step,

Gx(5.7'(5)) = max 4x(s, ) = Gz(5.7(5)) = v (5)

m |t therefore improves the value function, v,/(s) > v:(s)
V’W(S) < Q?T(S: W!(S)) = Ex [Rt—l—l + ﬁ}"'VW(SH—l) I St = 5]
< Er [Rf—i—l + 7Gx (Se1, 7 (Se41)) | Se = 5}
Err [Res1 + YReyo + V4 (St42. 7 (Se42)) | Se = |
Eﬁf [Rt—|—1 -+ ’”jﬁ"Rt_|_2 =+ ... | Sr = 5] = Vﬂ-w'(S)

IA A
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Policy Improvement (2)

m If improvements stop,

gr(s, m(s)) = max gn(s, ) = Gn(s, 7(s)) = V()

m Then the Bellman optimality equation has been satisfied

vi(s) = max gr(s, a)
acA

m Therefore vi;(s) = v«(s) forall s € S
m SOt is an optimal policy
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Some Technical Questions

= How do we know that value iteration converges to v?
a Or that iterative policy evaluation convergesto vi;?
= And therefore that policy iteration converges to vi?

a Isthe solution unique?

m How fast do these algorithms converge?
m These questions are resolved by contraction mapping theorem
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Value Function Space

= Consider the vector space V over value functions

= There are |S| dimensions

a Each point in this space fully specifies a value function v (s)

= What does a Bellman backup do to points in this space?

= We will show that it brings value functions closer

m And therefore the backups must converge on a unique solution
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Value Function co-Norm

m We will measure distance between state-value functions u and
v by the co-norm

m i.e. the largest difference between state values,

lu= V]l = max |u(s) - v(s)l
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Bellman Expectation Backup is a Contraction

m Approximate the value function

m Using a function approximator v(s,w)

m Apply dynamic programming to v(-,w)

m ec.g. Fitted Value lteration repeats at each iteration k,

m Sample states S CS
m For each state s € S, estimate target value using Bellman
optimality equation,

Vi (s) = max (R;’ + Z Pﬁsfﬁ(SﬂWk))

acA
s'eS

m Train next value function V(-,wk.1) using targets {(s. Vx(s))}
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Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an
operator T (v ), where T is a y-contraction,

m | converges to a unique fixed point
a At a linear convergence rate of y



Convergence of Iter. Policy Evaluation and Policy Iteration

= The Bellman expectation operator T has a unique fixed point
m Vrris a fixed point of T ™ (by Bellman expectation equation)
= By contraction mapping theorem

m [terative policy evaluation converges on vi;
m Policy iteration converges on vx
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Bellman Optimality Backup is a Contraction

m Define the Bellman optimality backup operator T *,

T *(v) = max R4 + yP4y
acA

= This operator is a y-contraction, i.e. it makes value functions
closer by at least y (similar to previous proof)

[IT*W) = T*lle < vllu = V]l
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Convergence of Value Iteration

= 1he Bellman optimality operator T *has a unique fixed point
= V«isS a fixed point of T *(by Bellman optimality equation) By
a contraction mapping theorem

m Value iteration converges on v
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Most of the story in a nutshell:

Value lteration Converges

e |f discount factor < 1
 Bellman is a contraction

« Value iteration converges to unique
solution which is optimal value function




Most of the story in a nutshell:

Properties of Contraction

* Only has 1 fixed point

If had two, then would not get closer when apply
contraction function, violating definition of
contraction

« When apply contraction function to any argument,
value must get closer to fixed point

Fixed point doesn’'t move
Repeated function applications yield fixed point
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Most of the story in a nutshell:

Bellman Operator is a Contraction

| V-V’|| = Infinity norm
(find max diff |BV - BV =
Over all states)

<

<y

o

= ymax
a

max_zjjesp(sj S, a)V(Sj)—ZSJﬂP(S; |S; G)V'(Sf)}

mt?x[R(S, a)+ )/Zs » ps; | s, a)lV (s, )}

—m{;%}X[R(S, a)-y2, P 15.a) ()

2., P68 15 @)V (5))- V'(sj))]‘

<ymaxy,  pls, |5, @)|V(s)-V'Gs))
< }/1133}{2&65;?(3‘}- |SJ-,£I)HV— V'H

A & -
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Modified Policy Iteration

m Does policy evaluation need to converge to v;;?

m Or should weintroduce a stopping condition
m €.g. E-convergence of value function

m Or simply stop after k iterations of iterative policy evaluation?

a For example, in the small gridworld k = 3 was sufficient to
achieve optimal policy

= Why not update policy every iteration? i.e. stop after k = 1
m This is equivalent to value iteration (next section)
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Generalised Policy Iteration

evaluation
/:\N
JU
starting v* V
V nt - ni—>greedy(V)
improvement

Policy evaluation Estimate v
Any policy evaluation algorithm

Policy improvement Generate it = nt 5
Any policy improvement algorithm T -




Value Iteration

Problem: find optimal policy r

Solution: iterative application of Bellman optimality backup

Vi— Vo— ... > Vg
Using synchronous backups
a At eachiteration k + 1

m Forall statess € S
m Update vi+1(s) from vi(s)

Convergence to v« Wwill be proven later
Unlike policy iteration, there is no explicit policy
Intermediate value functions may not correspond to any policy
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Value Iteration (2)

Vk+1(S)

Vi1

Vk4+1(8) <= s
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Asynchronous Dynamic Programming

m DP methods described so far used synchronous backups

m i.e. all states are backed up in parallel
a Asynchronous DP backs up states individually, in any order

a For each selected state, apply the appropriate backup

= Can significantly reduce computation
m Guaranteed to converge if all states continue to be selected
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Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

m In-place dynamic programming
m Prioritised sweeping
m Real-time dynamic programming
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In-Place Dynamic Programming

m Synchronous value iteration stores two copies of value function

forall sin S

Vhew(S) 4= max (’R? + Z P vo;d(s’))

ac A
s’eS

Vold < Vhnew

m In-place value iteration only stores one copy of value function

forall sin &

v(s) < max (’Ra + v Z Piv(s )

e s'eS
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Prioritised Sweeping

m Use magnitude of Bellman error to guide state selection, e.g.

max (’Ri + Z P v(s’)) — v(s)
s'eS

Backup the state with the largest remaining Bellman error

O

m Update Bellman error of affected states after each backup
m Requires knowledge of reverse dynamics (predecessor states)
O

Can be implemented efficiently by maintaining a priority queue
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Real-Time Dynamic Programming

m Idea: only states that are relevant to agent
a Use agent’s experience to guide the selection of states

a After each time-step S¢, At, Rt+1
m Backup the state S;

S a ~ a /
v(St) ¢ max ( L+7) Piav(s ))

s’'eS
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Full-Width Backups

m DP uses full-widthbackups

m For each backup (sync or async)
a Every successor state and action is
considered
m Using knowledge of the MDP transitions
and reward function

m DP is effective for medium-sized problems
(millions of states)

m For large problems DP suffers Bellman'’s
curse of dimensionality

m Number of states n = |S| grows
exponentially with number of state
variables

m Even one backup can be too expensive 04




Sample Backups

m In subsequent lectures we will consider sample backups

m Using sample rewards and sample transitions
(S,AR,S)

m Instead of reward function R and transition dynamics P

= Advantages:

m Model-free: no advance knowledge of MDP required
m Breaks the curse of dimensionality through sampling
m Cost of backup is constant, independent of n = |S]

O
o
O
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Approximate Dynamic Programming

m Approximate the value function

m Using a function approximator V(s,w)

m Apply dynamic programming to (-, w)

m c.g. Fitted Value lteration repeats at each iteration k,

m Sample states ScsS
m For each state s € §, estimate target value using Bellman
optimality equation,

Vi (s) = max (7?,_‘;’ + Z Pj's,i?(s”.Wk))

acA
s'eS

m Train next value function V(-, wy.1) using targets {(s. Vx(s))}
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Monte Carlo Learning

Evaluate Policy, t Find Best Policy, m*

Policy Evaluation Policy/Value Iteration

MDP Known

MDP Unknown
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Monte-Carlo Reinforcement Learning

MC methods can solve the RL problem by averaging sample returns

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return
Caveat: can only apply MC to episodic MDPs
m All episodes must terminate

MC is incremental episode by episode but not step by step

Approach: adapting general policy iteration to sample returns

First policy evaluation, then policy improvement, then control
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Monte-Carlo Policy Evaluation

Goal: learn v;; from episodes of experience under policy 7
S, AL, Ry, ..., Sk~ 1T
Recall that the return is the total discounted reward:
Gi= Rter + YRu2 + .. + YT IRt
Recall that the value function is the expected return:
Vrr(S) = Er[Gt | St= s]

Monte-Carlo policy evaluation uses empirical mean return
instead of expected return, because we do not have the
model
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Every Visit MC Policy Evaluation

To evaluate state s

Every time-step t that state s is visited in an episode,

Increment total return S(s) < S(s) + G
Value is estimated by mean return V(s) = S(s)/N(s)
m Again, V(s) — vi(s) as N(s) — oo

=
=
m Increment counter N(s) < N(s) + 1
Gl
@

Equivalent, “incremental tracking” form:

V(s) « V(s)+ ﬁ(G, —V(s))

Looks like SGD to minimize MSE from the mean value...
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Blackjack Example

States (200 of them):
m Current sum (12-21)

m Dealer's showing card (ace-10)
m Do | have a “useable” ace? (yes-no)

Action stand Stop receiving cards (and terminate)
Action hit : Take another card (no replacement) Y

Reward for stand

m +1 if sum of cards > sum of dealer cards
m O if sum of cards = sum of dealer cards
m -1 if sum of cards < sum of dealer cards

Reward for hit

m -1 if sum of cards > 21 (and terminate)

m 0 otherwise
Transitions: automatically hit

if sum of cards < 12
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Blackjack Value Function

After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit
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Temporal Difference Learning

m D methods learn directly from episodes of experience
m TD is model-free: no knowledge of MDP transitions / rewards
m D learns from incomplete episodes, by bootstrapping

m D updates a guess towards a guess
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MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G,

V(S:) < V(S:) + a(G: — V(5:))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ry 1 + vV/(5¢+1)

V(St) — V(5:) + a(Ri+1 + vV(S5¢t+1) — V(5t))

m Rip1 +vV(Si41) is called the TD target
m O = Riy1 +vV(St41) — V(S:) is called the TD error
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Driving Home Example

State Elapsed Time Predicted Predicted
(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining 5 35 40
exit highway 20 15 35
behind truck 30 10 40
home street 40 3 43

arrive home 43 0 43
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Driving Home: MCvs TD

Changes recommended by
Monte Carlo methods (a=1)

45
___actual outcome_____
\
) 40
Predicted
total
travel 35
time
30

1 1 Ll Ll Ll 1
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

4
Predicted

total
travel
time

Changes recommended
by TD methods (a=1)

actual
outcome

1 |l |l ) 1 1
leaving reach exiting 2ndary home arrive
office  car highway road street home

Situation
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Finite Episodes: AB Example

Two states A, B; no discounting; 8 episodes of experience

MC & TD can give different answers on fixed data:

V(B)=6/8

V(A)=07? (Direct MC estimate)

B,0 V(A)=6/8? (TD estimate)

What is V(A), V(B)?
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MCvs TD

*  Wait till end of episode to learn
*  Only for terminating worlds

* High-variance, low bias
* Not sensitive to initial value
* Good convergence properties

* Doesn’t exploit Markov property

* Minimizes squared error

Temporal Difference

Learn online after every step
* Non-terminating worlds ok

Low variance, high bias
* Sensitive to initial value
*  Much more efficient

Exploits Markov Property

Maximizes log-likelihood
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Unified View: Monte Carlo

V(S5:) + V(5¢) + a(G — V(S:))
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Unified View: TD Learning

V(St) < V(5t) + a(Rep1 +7V(Se41) — V(5t))
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Unified View: Dynamic Prog.

V(S:) < Ex [Re41 +7YV(St+1)]
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Unified View of RL (Prediction)

. Exhaustive
Dynamic search
programming
full f‘(' A -‘f}:
backups

sample Monte Carlo
backups Y Temporal-
difference

learning 1

- - - .

shallow bootstrapping, A deep  :
backups backups

!
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Overview

Evaluate Policy, it Find Best Policy, n*

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Sarsa + Q-Learning

123



Which Policy Evaluation?

m Temporal-difference (TD) learning has several advantages
over Monte-Carlo (MC)

m Lower variance
m Online
m Incomplete sequences

m Natural idea: use TD
m Apply TD to Q(S, A)
m Use e-greedy policy improvement
m Update every time-step
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Model-free Control

’_l Agent l
state reward action

St Rz Ar

§< Rt+l {
. S.. | Environment

Learn a policy T to maximize rewards in the environment
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Generalized Policy Iteration

evaluation

m
T V
ni—>greedy(V)

improvement

Policy evaluation Estimate v,
e.g. lterative policy evaluation

Policy improvement Generate 7’ > 7 &
e.g. Greedy policy improvement T
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Gen Policy Improvement?

smnlng V‘

" =
Policy evaluation Monte-Carlo policy evaluation, V = v,.?7
Policy improvement Greedy policy improvement?
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Not quite!

m Greedy policy improvement over V(s) requires model of MDP

7'(s) = argmax R2 + P2, V(s')
acA

m Greedy policy improvement over Q(s, a) is model-free

7'(s) = argmax Q(s, a)
acA
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Learn Q function directly...

q.. e

Policy evaluation Monte-Carlo policy evaluation, Q = g,
Policy improvement Greedy policy improvement?
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Q-Learning

Actions

State S

Q - Table

Sates
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On and Off Policy Learning

m On-policy learning
m “Learn on the job"
m Learn about policy ™ from experience sampled from 7

m Off-policy learning

m “Look over someone's shoulder”
m Learn about policy m from experience sampled from u
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Sarsa: TD for Policy Evaluation

S.A

Q(S,A) «+ Q(S,A) + a (R+~Q(S',A) — Q(S, A))
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SARSA

Sarsa (on-policy TD control) for estimating () =~ q.

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A" from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) + Q(S,A) + a[R+vQ(S5', A") — Q(S, A)]
S 5§ A« A"
until S is terminal
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On-Policy Control w/ Sarsa

Q*, T

Every time-step:
Policy evaluation Sarsa, Q =~ gx

Policy improvement e-greedy policy improvement

134



Q-Learning

Learning
Rate Future Reward

l

Q(S,a) « Q(S,0) + o (R+7 maxQ(S',a') - Q(S, )

/] %

Current Reward Current
Value Value Offset
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Q-Learning Control Algorithm

@5

R

§’ (SARSAMAX)
L] A

Q(S,A) «+ Q(S,A)+a (R + 7y max Q(5',a)— Q(S,A))
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Q-Learning

Q-learning (off-policy TD control) for estimating 7 = m,

Initialize Q(s,a), for all s € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
[nitialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A)+ Q(S.A) + a[R + v max, Q(S’,a) — Q(S, A}]
S+ 5
until S is terminal
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Q-Learning vs. Sarsa

R=-1

safe path

optimal path

S

The Cliff Gl

Sarsa

~25-
Sum of
d —50- _

rewards Q-learning
during
episode

—100 T T T T i

0 100 200 300 400 500
Episodes
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Greedy Action Selection?

m [here are two doors in front of you.

m You open the left door and get reward 0 -
V(left) =0 - ERSE——

m You open the right door and get reward +1 . | | —
V(right) = +1 | ) | )
m You open the right door and get reward +3

V(right) = +2 | o | — 1

m You open the right door and get reward +2 - eom—— )
V(right) = 42 || At [ [ | e

: [ N == I

m Are you sure you've chosen the best door?

139



e-Greedy Exploration

m Simplest idea for ensuring continual exploration
m All m actions are tried with non-zero probability
m With probability 1 — € choose the greedy action

m With probability ¢ choose an action at random
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Relation between DP and TD

Full Backup (DP)

Sample Backup (TD)

Bellman Expectation
Equation for v.(s)

w8 =8
/\
/
T
/\ / \
r / \ /
/ /
() =8 O OO

Iterative Policy Evaluation

TD Learning

Bellman Expectation wredd o 4 v
Equation for g (s, a) Q-Policy lteration Sarsa
%(8,a) 4150 8
‘AR
Bellman Optimality e L
Equation for g.(s, a) Q-Value Iteration Q-Learning
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Update Egns for DP and TD

Full Backup (DP)

Sample Backup (TD)

Iterative Policy Evaluation TD Learning

V(s) — E[R+~V(S) | 5] V(S) & R++V(S)
Q-Policy lteration Sarsa

Q(s,a) — E[R+~Q(S",A") | s, 4] Q(S,A) & R++vQ(S', A)
Q-Value Iteration Q-Learning

Q(s,a) «+ E [R+ v max Q(5',d') | s,a
aceA

where x & y = x + x + a(y — x)

Q(S,A) & R+~ max Q(S', )
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Monte Carlo Tree Search

Repeated X times

Selection - Expansion - Simulation > Backpropagation

5

One or more nodes One simulated The result of this game is
are created game is played backpropagated in the tree

The selection function 1s
applied recursively until
a leaf node is reached
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Large-Scale RL

Reinforcement learning can be used to solve large problems, e.g.

020

m Backgammon: 10" states

0170

m Computer Go: 1 states

m Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?
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Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V(s)
m Or every state-action pair s, a has an entry Q(s, a)

m Problem with large MDPs:

m There are too many states and/or actions to store in memory
m [t is too slow to learn the value of each state individually

m Solution for large MDPs:
m Estimate value function with function approximation
V(s,w) = vi(s)

or §(s,a,w) =~ g.(s,a)

m Generalise from seen states to unseen states
m Update parameter w using MC or TD learning
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Types of Function Approx.

V(s,w)

I
A~ )

w

i

d(s,a,w)

I
A~ )

1

a(sla‘pw) e a(S,am,W)

Pt
YA

W

i




Which Approximator?

There are many function approximators, e.g.
m Linear combinations of features
m Neural network
m Decision tree
m Nearest neighbour
m Fourier / wavelet bases
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Deep-Q learning

Use deep neural network architectures for Q(s,a)

Ex: Atari game playing (DeepMind)
Input: pixel images of current state

Output: joystick actions

32 4x4 filcers 254 hidden unics Fully-connected linear
output kxyer
|6 Bx8 fileers
4xB4xB4
Stack of 4 previous Fully-connected layer
frames Convolutional layer Convolutional layer of rectified lincar units
of recxified linear units of receified linear unies
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