
Machine Learning and Data Mining

Reinforcement Learning

Markov Decision Processes

Kalev Kask

+

Overview

• Intro

• Markov Decision Processes

• Reinforcement Learning

– Sarsa

– Q-learning

• Exploration vs Exploitation tradeoff

2

Resources

• Book: Reinforcement Learning: An Introduction
Richard S. Sutton and Andrew G. Barto

• UCL Course on Reinforcement Learning
David Silver
– https://www.youtube.com/watch?v=2pWv7GOvuf0

– https://www.youtube.com/watch?v=lfHX2hHRMVQ

– https://www.youtube.com/watch?v=Nd1-UUMVfz4

– https://www.youtube.com/watch?v=PnHCvfgC_ZA

– https://www.youtube.com/watch?v=0g4j2k_Ggc4

– https://www.youtube.com/watch?v=UoPei5o4fps

3

http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=lfHX2hHRMVQ
https://www.youtube.com/watch?v=Nd1-UUMVfz4
https://www.youtube.com/watch?v=PnHCvfgC_ZA
https://www.youtube.com/watch?v=0g4j2k_Ggc4
https://www.youtube.com/watch?v=UoPei5o4fps

Lecture 1: Introduction to Reinforcement Learning

About RLBranches of Machine Learning

Reinforcement
Learning

Supervised
Learning

Unsupervised
Learning

Machine
Learning

4

Why is it different

• No target values to predict

• Feedback in the form of rewards

– May be delayed not instantaneous

• Have a goal : max reward

• Have timeline : actions along arrow of time

• Actions affect what data it will receive

5

Agent-Environment

6

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments
Agent and Environment

observation

reward

action

At

Rt

Ot
At each step t the agent:

Executes action At

Receives observation Ot

Receives scalar rewardRt

The environment:

Receives action At

Emits observationOt+1

Emits scalar reward Rt+1

t increments at env. step

7

Sequential Decision Making

• Actions have long term
consequences

• Goal maximize cumulative
(long term) reward

– Rewards may be delayed

– May need to sacrifice short
term reward

• Devise a plan to maximize
cumulative reward

8

Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Reward
Sequential Decision Making

Examples:
A financial investment (may take months to mature)

Refuelling a helicopter (might prevent a crash in several hours)

Blocking opponent moves (might help winning chances many

moves from now)

9

Reinforcement Learning

10

Learn a behavior strategy (policy) that maximizes the long term

Sum of rewards in an unknown and stochastic environment (Emma Brunskill:)

Planning under Uncertainty

Learn a behavior strategy (policy) that maximizes the long term

Sum of rewards in a known stochastic environment (Emma Brunskill:)

295, Winter 2018 11

Lecture 1: Introduction to Reinforcement Learning

Problems within RLAtari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot

Rules of the game are

unknown

Learn directly from

interactive game-play

Pick actions on

joystick, see pixels

and scores

12

13

Demos

Some videos

• https://www.youtube.com/watch?v=V1eYniJ0Rnk

• https://www.youtube.com/watch?v=CIF2SBVY-J0

• https://www.youtube.com/watch?v=I2WFvGl4y8c

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=I2WFvGl4y8c

14

Markov Property

15

State Transition

16

Markov Process

17

Student Markov Chain

18

Student MC : Episodes

19

Student MC : Transition Matrix

20

Return

21

Value

22

Student MRP

23

Student MRP : Returns

24

Student MRP : Value Function

25

Student MRP : Value Function

26

Student MRP : Value Function

27

Bellman Equation for MRP

28

Backup Diagrams for MRP

29

Bellman Eq: Student MRP

30

Bellman Eq: Student MRP

Lecture 2: Markov DecisionProcesses

Markov Reward Processes

Bellman Equation
Solving the Bellman Equation

The Bellman equation is a linear equation

It can be solved directly:

v = R + γPv

(I − γP) v = R

v = (I − γP)−1 R

Computational complexity is O(n3) for n states

Direct solution only possible for small MRPs

There are many iterative methods for large MRPs, e.g.
Dynamic programming
Monte-Carlo evaluation
Temporal-Difference learning 31

32

Markov Decision Process

33

Student MDP

34

Policies

35

MP → MRP → MDP

36

Value Function

37

Bellman Eq for MDP

Evaluating Bellman equation translates into 1-step lookahead

38

Bellman Eq, V

39

Bellman Eq, q

40

Bellman Eq, V

41

Bellman Eq, q

42

Student MDP : Bellman Eq

43

Bellman Eq : Matrix Form

44

Optimal Value Function

45

Student MDP : Optimal V

46

Student MDP : Optimal Q

Lecture 2: Markov DecisionProcesses

Markov Decision Processes

Optimal Value Functions
Optimal Policy

Define a partial ordering over policies

π ≥ π' if vπ(s) ≥ vπ'(s),∀s

Theorem

For any Markov Decision Process

There exists an optimal policy π∗ that is better than or equal

to all other policies, π∗ ≥ π, ∀π

All optimal policies achieve the optimal value function,

vπ∗ (s) = v∗(s)

All optimal policies achieve the optimal action-value function,

qπ∗(s,a) = q∗(s,a)

47

Lecture 2: Markov DecisionProcesses

Markov Decision Processes

Optimal Value Functions
Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s, a),

There is always a deterministic optimal policy for any MDP

If we know q∗(s, a), we immediately have the optimal policy

48

49

Student MDP : Optimal Policy

50

Bellman Optimality Eq, V

51

Student MDP : Bellman Optimality

Lecture 2: Markov DecisionProcesses

Markov Decision Processes

Bellman Optimality Equation
Solving the Bellman Optimality Equation

Bellman Optimality Equation is non-linear

No closed form solution (in general)

Many iterative solution methods

Value Iteration
Policy Iteration
Q-learning
Sarsa

52

Not easy

Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example

Start

Goal

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent’s location

53

Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Policy

Start

Goal

Arrows represent policy π(s) for each state s 54

Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

Numbers represent value vπ (s) of each state s 55

Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Model

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1

-1

-1 -1

-1 -1

Start

Goal

Agent may have an internal

model of the environment

Dynamics: how actions

change the state

Rewards: how muchreward

from each state

The model may be imperfect

Grid layout represents transition model Pa
ss‘

a
sNumbers represent immediate reward R from each state s

(same for all a)
56

Algorithms for MDPs

57

Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentModel

58

Algorithms cont.

59

Prediction Control

Lecture 1: Introduction to Reinforcement Learning

Problems within RLLearning and Planning

Two fundamental problems in sequential decision making

Reinforcement Learning:

The environment is initiallyunknown

The agent interacts with the environment

The agent improves itspolicy

Planning:

A model of the environment is known

The agent performs computations with its model (without any

external interaction)

The agent improves its policy

a.k.a. deliberation, reasoning, introspection, pondering,

thought, search

60

Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMajor Components of an RL Agent

An RL agent may include one or more of these components:

Policy: agent’s behaviourfunction

Value function: how good is each state and/or action

Model: agent’s representation of the environment

61

Dynamic Programming

62

Requirements for DP

63

Applications for DPs

64

Lecture 3: Planning by Dynamic Programming

IntroductionPlanning by Dynamic Programming

Dynamic programming assumes full knowledge of the MDP

It is used for planning in an MDP

For prediction:
Input: MDP (S, A , P , R , γ) and policy π

or: MRP (S, Pπ , Rπ , γ)
Output: value function vπ

Or for control:
Input: MDP (S, A , P , R , γ)
Output: optimal value function v∗

and: optimal policy π∗

65

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation
Policy Evaluation (Prediction)

Problem: evaluate a given policy π

Solution: iterative application of Bellman expectation backup

v1 → v2 → ... → vπ

Using synchronous backups,
At each iteration k + 1

For all states s ∈ S

Update vk+1(s) from vk (s')
where s' is a successor state of s

We will discuss asynchronous backups later

Convergence to vπ can be proven

66

Iterative policy Evaluation

68

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Example: Small Gridworld
Evaluating a Random Policy in the Small Gridworld

Undiscounted episodic MDP (γ = 1)

Nonterminal states 1, ..., 14

One terminal state (shown twice as shaded squares)

Actions leading out of the grid leave state unchanged

Reward is −1 until the terminal state is reached

Agent follows uniform random policy

π(n|·) = π(e|·) = π(s|·) = π(w |·) = 0.25

69

Policy Evaluation : Grid World

70

Policy Evaluation : Grid World

71

Policy Evaluation : Grid World

72

Policy Evaluation : Grid World

73

74

Most of the story in a nutshell:

Finding Best Policy

75

Lecture 3: Planning by Dynamic Programming

Policy IterationPolicy Improvement

Given a policy π

Evaluate the policy π

vπ(s) = E [Rt+1 + γRt+2 + ...|St = s]

Improve the policy by acting greedily with respect to vπ

π' = greedy(vπ)

In Small Gridworld improved policy was optimal, π' = π∗

In general, need more iterations of improvement / evaluation

But this process of policy iteration always converges to π∗

76

Policy Iteration

77

Lecture 3: Planning by Dynamic Programming

Policy IterationPolicy Iteration

Policy evaluation Estimate vπ

Iterative policy evaluation

Policy improvement Generate πI ≥ π

Greedy policy improvement

78

Jack’s Car Rental

79

Policy Iteration in Car Rental

80

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Policy Improvement
Policy Improvement

81

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Policy Improvement
Policy Improvement (2)

If improvements stop,

qπ(s, π'(s)) = max qπ(s, a) = qπ(s, π(s)) = vπ(s)
a∈A

Then the Bellman optimality equation has been satisfied

vπ(s) = max qπ(s, a)
a∈A

Therefore vπ (s) = v∗(s) for all s ∈ S

so π is an optimal policy

82

Lecture 3: Planning by Dynamic Programming

Contraction MappingSome Technical Questions

How do we know that value iteration converges to v∗?

Or that iterative policy evaluation converges to vπ ?

And therefore that policy iteration converges to v∗?

Is the solution unique?

How fast do these algorithms converge?

These questions are resolved by contraction mapping theorem

83

Lecture 3: Planning by Dynamic Programming

Contraction MappingValue Function Space

Consider the vector space V over value functions

There are |S| dimensions

Each point in this space fully specifies a value function v (s)

What does a Bellman backup do to points in this space?

We will show that it brings value functions closer

And therefore the backups must converge on a unique solution

84

Lecture 3: Planning by Dynamic Programming

Contraction MappingValue Function ∞-Norm

s∈S

We will measure distance between state-value functions u and

v by the ∞-norm

i.e. the largest difference between state values,

||u − v||∞ = max |u(s) − v(s)|

85

Lecture 3: Planning by Dynamic Programming

Contraction MappingBellman Expectation Backup is a Contraction

86

Lecture 3: Planning by Dynamic Programming

Contraction MappingContraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an

operator T (v), where T is a γ-contraction,

T converges to a unique fixed point

At a linear convergence rate of γ

87

Lecture 3: Planning by Dynamic Programming

Contraction MappingConvergence of Iter. Policy Evaluation and Policy Iteration

The Bellman expectation operator T π has a unique fixed point

vπ is a fixed point of T π (by Bellman expectation equation)

By contraction mapping theorem

Iterative policy evaluation converges on vπ

Policy iteration converges on v∗

88

Lecture 3: Planning by Dynamic Programming

Contraction MappingBellman Optimality Backup is a Contraction

Define the Bellman optimality backup operator T ∗,

T ∗(v) = max Ra + γPav
a∈A

This operator is a γ-contraction, i.e. it makes value functions

closer by at least γ (similar to previous proof)

||T∗(u) − T ∗(v)||∞ ≤ γ||u − v||∞

89

Lecture 3: Planning by Dynamic Programming

Contraction MappingConvergence of Value Iteration

The Bellman optimality operator T ∗ has a unique fixed point

v∗ is a fixed point of T ∗ (by Bellman optimality equation) By

contraction mapping theorem

Value iteration converges on v∗

90

91

Most of the story in a nutshell:

92

Most of the story in a nutshell:

93

Most of the story in a nutshell:

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Extensions to Policy Iteration
Modified Policy Iteration

Does policy evaluation need to converge to vπ ?

Or should we introduce a stopping condition
e.g. E-convergence of value function

Or simply stop after k iterations of iterative policy evaluation?

For example, in the small gridworld k = 3 was sufficient to

achieve optimal policy

Why not update policy every iteration? i.e. stop after k = 1

This is equivalent to value iteration (next section)

94

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Extensions to Policy Iteration
Generalised Policy Iteration

Policy evaluation Estimate vπ

Any policy evaluation algorithm

Policy improvement Generate π' ≥ π

Any policy improvement algorithm

95

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs
Value Iteration

Problem: find optimal policy π

Solution: iterative application of Bellman optimality backup

v1 → v2 → ... → v∗

Using synchronous backups
At each iteration k + 1

For all states s ∈ S
Update vk+1(s) from vk (s')

Convergence to v∗ will be proven later

Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy

96

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs
Value Iteration (2)

97

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming
Asynchronous Dynamic Programming

DP methods described so far used synchronous backups

i.e. all states are backed up in parallel

Asynchronous DP backs up states individually, in any order

For each selected state, apply the appropriate backup

Can significantly reduce computation

Guaranteed to converge if all states continue to be selected

99

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic ProgrammingAsynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

In-place dynamicprogramming

Prioritised sweeping

Real-time dynamicprogramming

100

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming
In-Place Dynamic Programming

101

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming
Prioritised Sweeping

102

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming
Real-Time Dynamic Programming

Idea: only states that are relevant to agent

Use agent’s experience to guide the selection of states

After each time-step St , At , Rt+1

Backup the state St

103

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Full-width and sample backups
Full-Width Backups

DP uses full-widthbackups

For each backup (sync or async)
Every successor state and action is

considered

Using knowledge of the MDP transitions
and reward function

DP is effective for medium-sized problems

(millions of states)

For large problems DP suffers Bellman’s
curse ofdimensionality

Number of states n = |S| grows

exponentially with number of state
variables

Even one backup can be too expensive 104

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Full-width and sample backups
Sample Backups

In subsequent lectures we will consider sample backups

Using sample rewards and sample transitions
(S, A, R, S ')

Instead of reward function R and transition dynamics P

Advantages:

Model-free: no advance knowledge of MDP required
Breaks the curse of dimensionality through sampling
Cost of backup is constant, independent of n = |S|

105

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Approximate Dynamic Programming
Approximate Dynamic Programming

106

Monte Carlo Learning

107

Lecture 4: Model-Free Prediction

Monte-Carlo LearningMonte-Carlo Reinforcement Learning

MC methods learn directly from episodes of experience

MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: nobootstrapping

MC uses the simplest possible idea: value = mean return

Caveat: can only apply MC to episodic MDPs

All episodes must terminate

MC methods can solve the RL problem by averaging sample returns

MC is incremental episode by episode but not step by step

Approach: adapting general policy iteration to sample returns

First policy evaluation, then policy improvement, then control

108

Lecture 4: Model-Free Prediction

Monte-Carlo LearningMonte-Carlo Policy Evaluation

Goal: learn vπ from episodes of experience under policy π

S1,A1,R2,...,Sk ∼ π

Recall that the return is the total discounted reward:

Gt = Rt+1 + γRt+2 + ...+ γT−1RT

Recall that the value function is the expected return:

vπ (s) = Eπ [Gt | St = s]

Monte-Carlo policy evaluation uses empirical mean return

instead of expected return, because we do not have the

model 109

Every Visit MC Policy Evaluation

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

SARSA

133

134

135

136

Q-Learning

137

Q-Learning vs. Sarsa

138

139

140

142

143

Monte Carlo Tree Search

144

145

146

147

148

149

