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Recommender systems

• Automated recommendations

• Inputs

– User information

• Situation context, demographics, preferences, past ratings

– Items

• Item characteristics, or nothing at all

• Output

– Relevance score, predicted rating, or ranking



Recommender systems: examples
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Paradigms of recommender systems
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Paradigms of recommender systems
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Paradigms of recommender systems
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Paradigms of recommender systems
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Paradigms of recommender systems
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Measuring success
• Prediction perspective

– Predict to what degree users like the item

– Most common evaluation for research

– Regression vs. “top-K” ranking, etc.

• Interaction perspective

– Promote positive “feeling” in users (“satisfaction”)

– Educate about the products

– Persuade users, provide explanations

• “Conversion” perspective

– Commercial success

– Increase “hit”, “click-through” rates

– Optimize sales and profits



Why are recommenders important?

• The “long tail” of product appeal

– A few items are very popular

– Most items are popular only with a few people

• Goal: recommend not-widely known items that the user 

might like!

Recommend the best-seller list

Recommendations need to be targeted!



Collaborative filtering
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Collaborative filtering
• Simple approach: standard regression

– Use “user features”  u~,  “item features” i~

– Train  f(u~, i~) ≈ riu

– Learn “users with my features like items with these features”

• Extreme case: per-user model  /  per-item model

• Issues:  needs lots of side information!
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Collaborative filtering
• Example: nearest neighbor methods

– Which data are “similar”?

• Nearby items? (based on…)
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Collaborative filtering
• Example: nearest neighbor methods

– Which data are “similar”?

• Nearby items? (based on…)
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Collaborative filtering
• Which data are “similar”?

• Nearby items?

• Nearby users?  

– Based on user features?

– Based on ratings?
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Collaborative filtering
• Some very simple examples

– All users similar, items not similar?

– All items similar, users not similar?

– All users and items are equally similar?
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Measuring similarity
• Nearest neighbors depends significantly on distance function

– “Default”: Euclidean distance

• Collaborative filtering:
– Cosine similarity:  (measures angle between x^i, x^j)

–

– Pearson correlation:  measure correlation coefficient between x^i, x^j

– Often perform better in recommender tasks

• Variant: weighted nearest neighbors
– Average over neighbors is weighted by their similarity

• Note: with ratings, need to deal with missing data!
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4552.6311

3124452

534321423

245424

5224345

423316

users

Predict by taking weighted average:

(0.2*2+0.3*3)/(0.2+0.3)=2.6

m
o

v
ies

Nearest-Neighbor methods



Latent space methods
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Latent Space Models
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Latent Space Models
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Some SVD dimensions
See timelydevelopment.com

Dimension 1

Offbeat / Dark-Comedy Mass-Market / 'Beniffer' Movies

Lost in Translation Pearl Harbor

The Royal Tenenbaums Armageddon

Dogville The Wedding Planner

Eternal Sunshine of the Spotless Mind Coyote Ugly

Punch-Drunk Love Miss Congeniality

Dimension 2

Good Twisted

VeggieTales: Bible Heroes: Lions The Saddest Music in the World

The Best of Friends: Season 3 Wake Up

Felicity: Season 2 I Heart Huckabees

Friends: Season 4 Freddy Got Fingered

Friends: Season 5 House of 1

Dimension 3

What a 10 year old boy would watch What a liberal woman would watch

Dragon Ball Z: Vol. 17: Super Saiyan Fahrenheit 9/11

Battle Athletes Victory: Vol. 4: Spaceward Ho! The Hours

Battle Athletes Victory: Vol. 5: No Looking Back Going Upriver: The Long War of John Kerry

Battle Athletes Victory: Vol. 7: The Last Dance Sex and the City: Season 2

Battle Athletes Victory: Vol. 2: Doubt and Conflic Bowling for Columbine



• Latent representation encodes some “meaning”

• What kind of movie is this?  What movies is it similar to?

• Matrix is full of missing data 

– Hard to take SVD directly

– Typically solve using gradient descent

– Easy algorithm (see Netflix challenge forum)

Latent space models

# for user u, movie m, find the kth eigenvector & coefficient by iterating:

predict_um = U[m,:].dot( V[:,u] ) # predict: vector-vector product

err = ( rating[u,m] – predict_um ) # find error residual

V_ku, U_mk = V[k,u], U[m,k] # make copies for update

U[m,k] += alpha * err * V_ku # Update our matrices

V[k,u]  += alpha * err * U_mk #    (compare to least-squares gradient)



Latent space models
• Can be a bit more sophisticated:

riu ≈ μ + bu + bi + k Wik Vku

–“Overall average rating”

–“User effect” + “Item effect”

–Latent space effects (k indexes latent representation)

–(Saturating non-linearity?)

• Then, just train some loss, e.g. MSE, with SGD

–Each (user, item, rating) is one data point

–E.g. J=∑iu (Xiu – riu)
2



Ensembles for recommenders
• Given that we have many possible models:

– Feature-based regression

– (Weighted) kNN on items

– (Weighted) kNN on users

– Latent space representation

perhaps we should combine them?

• Use an ensemble average, or a stacked ensemble

– “Stacked” : train a weighted combination of model predictions


