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• High-dimensional data
– Images of faces

– Text from articles

– All S&P 500 stocks

• Can we describe them in a “simpler” way?
– Embedding: place data in Rd, such that “similar” data are close

Motivation
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• High-dimensional data
– Images of faces

– Text from articles

– All S&P 500 stocks

• Can we describe them in a “simpler” way?
– Embedding: place data in Rd, such that “similar” data are close

• Ex: S&P 500 – vector of 500 (change in) values per day
– But, lots of structure

– Some elements tend to “change together”

– Maybe we only need a few values to approximate it?

– “Tech stocks up 2x, manufacturing up 1.5x, …” ?

• How can we access that structure?

Motivation



• Ex: data with two real values [x1,x2]

• We’d like to describe each point using only one value [z1]

• We’ll communicate a “model” to convert:  [x1,x2] ~ f(z1)

• Ex: linear function f(z):    [x1,x2] = θ + z * v = θ + z * [v1,v2]

• θ, v are the same for all data points (communicate once)

• z tells us the closest point on v to the original point [x1,x2] 
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Dimensionality reduction



• How should we find v?

– Assume X is zero mean, or

– Pick v such that MSE(X,    ) is min - the smallest residual variance! 

(“error”)

– Equivalent: Find “v” as the direction of maximum “spread” 

(variance)

– Solution is the eigenvector (of covariance of     ) with largest 

eigenvalue 
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Principal Components Analysis

Project X to v:

Variance of projected points:

Best “direction” v:

→ largest eigenvector of XTX



• How should we find v?

– Assume X is zero mean, or

– Find “v” as the direction of maximum “spread” (variance)

– Solution is the eigenvector (of covariance of     ) with largest 

eigenvalue

– General : x~ = z1 * v1 + z2 * v2 + … + zk * vk + μ

Principal Components Analysis



Dim Reduction Demo
https://stats.stackexchange.com/questions/26

91/making-sense-of-principal-component-

analysis-eigenvectors-eigenvalues



Another interpretation
• Data covariance: 

– Describes “spread” of the data

– Draw this with an ellipse

– Gaussian is

– Ellipse shows the contour, ∆2 = constant 
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Oval shows constant ∆2 value…

Write S in terms of 

eigenvectors…

Then…

Geometry of the Gaussian



1. Subtract data mean from each point

2. (Typically) scale each dimension by its variance

– Helps pay less attention to magnitude of the variable

3. Compute covariance matrix, S = 1/m  (xi- μ)’ (xi- μ)

4. Compute the eigendecomposition of S

S = V D V^T

5. Pick the k largest (by eigenvalue) eigenvectors of S

PCA representation (EVD)

mu = np.mean( X, axis=0, keepdims=True )   # find mean over data points

X0 = X - mu # zero-center the data

S = X0.T.dot( X0 ) / m # S = np.cov( X.T ), data covariance

D,V = np.linalg.eig( S ) # find eigenvalues/vectors: can be slow!

pi = np.argsort(D)[::-1] # sort eigenvalues largest to smallest

D,V = D[pi], V[:,pi] # 

D,V = D[0:k], V[:,0:k] # and keep the k largest



• Alternative method to calculate  (still subtract mean 1st)

• Decompose   X = U S VT

– Orthogonal:  XT X = V S S VT = V D VT

– X XT = U S S UT = U D UT

• U*S matrix provides coefficients

– Example xi = Ui,1 S11 v1 + Ui,2 S22 v2 + … 

• Gives the least-squares approximation to X of this form

X ≈
m x n

U
m x k

VT

k x n

S
k x k

Singular Value Decomposition (SVD)



• Subtract data mean from each point

• (Typically) scale each dimension by its variance

– Helps pay less attention to magnitude of the variable

• Compute the SVD of the data matrix

SVD for PCA

mu = np.mean( X, axis=0, keepdims=True )   # find mean over data points

X0 = X - mu # zero-center the data

U,S,Vh = scipy.linalg.svd(X0, False) # X0 = U * diag(S) * Vh

Xhat = U[:,0:k].dot( np.diag(S[0:k]) ).dot( Vh[0:k,:] )   # approx using k largest eigendir



Some uses of latent spaces
• Data compression

– Cheaper, low-dimensional representation 

• Noise removal
– Simple “true” data   +   noise

• Supervised learning, e.g. regression:
– Remove colinear / nearly colinear features

– Reduce feature dimension => combat overfitting



Applications of SVD
• “Eigen-faces”

– Represent image data (faces) using PCA

• LSI / “topic models”

– Represent text data (bag of words) using PCA

• Collaborative filtering

– Represent rating data matrix using PCA

and more…



• “Eigen-X” = represent X using PCA

• Ex: Viola Jones data set

– 24x24 images of faces  = 576 dimensional measurements

… …

X
m x n

“Eigen-faces”



• “Eigen-X” = represent X using PCA

• Ex: Viola Jones data set

– 24x24 images of faces  = 576 dimensional measurements

– Take first K PCA components

X ≈
m x n

U
m x k

VT

k x n
S

k x k

“Eigen-faces”

V[2,:]

V[1,:]

V[0,:]

(mean)



• “Eigen-X” = represent X using PCA

• Ex: Viola Jones data set

– 24x24 images of faces  = 576 dimensional measurements

– Take first K PCA components

Mean                          Dir 1               Dir 2             Dir 3              Dir 4       …

“Eigen-faces”

Xi      k=5  k=10           k=50   ….
Projecting data 

onto first k 

dimensions



• “Eigen-X” = represent X using PCA

• Ex: Viola Jones data set

– 24x24 images of faces  = 576 dimensional measurements

– Take first K PCA components

“Eigen-faces”

Projecting data 

onto first k 

dimensions Dir 2

Dir 1



• “Bag of words”
– Remember word counts but not order

• Example:

Text representations

Rain and chilly weather didn't keep thousands of

paradegoers from camping out Friday night for the 111th Tournament

of Roses.

Spirits were high among the street party crowd as they set up

for curbside seats for today's parade.

``I want to party all night,'' said Tyne Gaudielle, 15, of

Glendale, who spent the last night of the year along Colorado

Boulevard with a group of friends.

Whether they came for the partying or the parade, campers were

in for a long night. Rain continued into the evening and

temperatures were expected to dip down into the low 40s.



• “Bag of words”
– Remember word counts but not order

• Example:

Rain and chilly weather didn't keep thousands of

paradegoers from camping out Friday night for the 111th Tournament

of Roses.

Spirits were high among the street party crowd as they set up

for curbside seats for today's parade.

``I want to party all night,'' said Tyne Gaudielle, 15, of

Glendale, who spent the last night of the year along Colorado

Boulevard with a group of friends.

Whether they came for the partying or the parade, campers were

in for a long night. Rain continued into the evening and

temperatures were expected to dip down into the low 40s.

### nyt/2000-01-01.0015.txt

rain

chilly

weather

didn

keep

thousands

paradegoers

camping

out

friday

night

111th

tournament

roses

spirits

high

among

street

Text representations



• “Bag of words”
– Remember word counts but not order

• Example:

VOCABULARY:

0001 ability

0002 able

0003 accept

0004 accepted

0005 according

0006 account

0007 accounts

0008 accused

0009 act

0010 acting

0011 action

0012 active

….

Observed Data (text docs):

DOC # WORD #     COUNT

1 29                       1

1 56                       1

1 127     1

1 166   1

1 176   1

1 187   1

1 192   1

1 198   2

1 356   1

1 374   1

1 381   2

…

Text representations



• PCA for text data

• Create a giant matrix of words in docs
– “Word j appears” = feature x_j

– “in document i” = data example I

• Huge matrix (mostly zeros)
– Typically normalize rows to sum to one, to control for short docs

– Typically don’t subtract mean or normalize columns by variance

– Might transform counts in some way (log, etc)

• PCA on this matrix provides a new representation
– Document comparison

– Fuzzy search (“concept” instead of “word” matching)

Word j

Doc i ?

Latent Semantic Indexing (LSI)



• Typical example:

– Number of docs, D ~ 106

– Number of unique words in vocab, W ~ 105

– FULL Storage required ~ 1011

– Sparse Storage required ~ 109

• DxW matrix  (# docs x # words)

– Looks dense, but that’s just plotting

– Each entry is non-negative

– Typically integer / count data

Matrices are big, but data are sparse



• What do the principal components look like?

PRINCIPAL COMPONENT 1

0.135 genetic

0.134 gene

0.131 snp

0.129 disease

0.126 genome_wide

0.117 cell

0.110 variant

0.109 risk

0.098 population

0.097 analysis

0.094 expression

0.093 gene_expression

0.092 gwas

0.089 control

0.088 human

0.086 cancer

Latent Semantic Indexing (LSI)



• What do the principal components look like?

PRINCIPAL COMPONENT 1

0.135 genetic

0.134 gene

0.131 snp

0.129 disease

0.126 genome_wide

0.117 cell

0.110 variant

0.109 risk

0.098 population

0.097 analysis

0.094 expression

0.093 gene_expression

0.092 gwas

0.089 control

0.088 human

0.086 cancer

PRINCIPAL COMPONENT 2

0.247 snp

-0.196 cell

0.187 variant

0.181 risk

0.180 gwas

0.162 population

0.162 genome_wide

0.155 genetic

0.130 loci

-0.116 mir

-0.116 expression

0.113 allele

0.108 schizophrenia

0.107 disease

-0.103 mirnas

-0.099 protein

Q: But what 

does -0.196 cell 

mean?

Latent Semantic Indexing (LSI)
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See timelydevelopment.com

Dimension 1

Offbeat / Dark-Comedy Mass-Market / 'Beniffer' Movies

Lost in Translation Pearl Harbor

The Royal Tenenbaums Armageddon

Dogville The Wedding Planner

Eternal Sunshine of the Spotless Mind Coyote Ugly

Punch-Drunk Love Miss Congeniality

Dimension 2

Good Twisted

VeggieTales: Bible Heroes: Lions The Saddest Music in the World

The Best of Friends: Season 3 Wake Up

Felicity: Season 2 I Heart Huckabees

Friends: Season 4 Freddy Got Fingered

Friends: Season 5 House of 1

Dimension 3

What a 10 year old boy would watch What a liberal woman would watch

Dragon Ball Z: Vol. 17: Super Saiyan Fahrenheit 9/11

Battle Athletes Victory: Vol. 4: Spaceward Ho! The Hours

Battle Athletes Victory: Vol. 5: No Looking Back Going Upriver: The Long War of John Kerry

Battle Athletes Victory: Vol. 7: The Last Dance Sex and the City: Season 2

Battle Athletes Victory: Vol. 2: Doubt and Conflic Bowling for Columbine

Some SVD dimensions



• Latent representation encodes some “meaning”

• What kind of movie is this?  What movies is it similar to?

• Matrix is full of missing data 

– Hard to take SVD directly

– Typically solve using gradient descent

– Easy algorithm (see Netflix challenge forum)

Latent space models

# for user u, movie m, find the kth eigenvector & coefficient by iterating:

predict_um = U[m,:].dot( V[:,u] ) # predict: vector-vector product

err = ( rating[u,m] – predict_um ) # find error residual

V_ku, U_mk = V[k,u], U[m,k] # make copies for update

U[m,k] += alpha * err * V_ku # Update our matrices

V[k,u]  += alpha * err * U_mk #    (compare to least-squares gradient)



Nonlinear latent spaces
• Latent space

– Any alternative representation (usually smaller) from which we can 
(approximately) recover the data

– Linear:  “Encode”  Z = X VT;  “Decode” X ¼ Z V

• Ex: Auto-encoders
– Use neural network with few internal nodes

– Train to “recover” the input “x”

• Related: word2vec 
– Trains an NN to recover the context of words

– Use internal hidden node responses as a vector representation of the word

stats.stackexchange.com



• Dimensionality reduction

– Representation: basis vectors & coefficients

• Linear decomposition

– PCA / eigendecomposition

– Singular value decomposition

• Examples and data sets

– Face images

– Text documents  (latent semantic indexing)

– Movie ratings

Summary


