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|Unsupervised learning
|

» Supervised learning

Kk, N (1%L

— Predict target value (“y”) given features (“x”)

* Unsupervised learning
— Understand patterns of data (just “x”)

— Useful for many reasons @
» Data mining (“explain”)

* Missing data values (“impute”)
* Representation (feature generation or selection)

* One example: clustering
— Describe data by discrete “groups” with some characteristics



| Clustering
|

* Clustering describes data by “groups”
* The meaning of “groups” may vary by data!

* Examples

Location Shape Density



\Clustermg and Data Compression

+ Clustering is related to vector guantization
— Dictionary of vectors (the cluster centers)
— Each original value represented using a dictionary index
— Each center “claims” a nearby region (Voronoi region)
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\Clustermg and Data Compression

+ Clustering is related to vector guantization
— Dictionary of vectors (the cluster centers)
— Each original value represented using a dictionary index
— Each center “claims” a nearby region (Voronoi region)

- Example in 1D: cluster pixels’ grayscale values
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‘ Hierarchical Agglomerative Clustering

Initially, every datum is a cluster

Data:

Algorithmic Complexity: O(m?logm) +

A simple clustering algorithm

Define a distance (or dissimilarity)
between clusters (we’ll return to this)

Initialize: every example is a cluster
lterate:

— Compute distances between all
clusters
(store for efficiency)

— Merge two closest clusters

Save both clustering and sequence
of cluster operations

“Dendrogram”



Iteration 1
|

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:
o
®e o® A
o © . .
0 ® Height of the join
0 % ° ® n indicates dissimilarity
® 0
0
. .
0 0

Algorithmic Complexity: O(m? log m) + O(m log m) +



Iteration 2
|

Builds up a sequence of clusters (“hierarchical”)

Data:

Dendrogram:

. A
o © ¢

® — Height of the join
® % ® n l l

indicates dissimilarity

Algorithmic Complexity: O(m? log m) + 2*O(m log m) +



Iteration 3
|

Builds up a sequence of clusters (“hierarchical”)

Data:

Dendrogram:

. A
o © ¢

. @ 0 I_FLL l_l Height of the join

indicates dissimilarity

Algorithmic Complexity: O(m? log m) + 3*O(m log m) +



| Iteration m-3
|

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:

LTS L memn

In matlab: “linkage” function (stats toolbox)
In mitools: “agglomerative”

Algorithmic Complexity: O(m? log m) + (m-3)*O(m log m) +



| Iteration m-2
|

Builds up a sequence of clusters (“hierarchical”)

Data:

Dendrogram:

.ﬁ..rﬂ

TElls

| TE

In matlab: “linkage” function (stats toolbox)
In mitools: “agglomerative”

Algorithmic Complexity: O(m? log m) + (m-2)*O(m log m) +



| Iteration m-1
|

Builds up a sequence of clusters (“hierarchical”)

Data: | Dendrogram:

LTS L man

In matlab: “linkage” function (stats toolbox)
In mitools: “agglomerative”

Algorithmic Complexity: O(m? log m) + (m-1)*O(m log m) = O(m? log m)



|From dendrogram to clusters
I

Given the sequence, can select a number of clusters or a dissimilarity threshold:

Data:

@‘

Dendrogram:

r
e

ary

In matlab: “linkage” function (stats toolbox)
In mitools: “agglomerative”

Algorithmic Complexity: O(m? log m) + (m-1)*O(m log m) = O(m? log m)



| Cluster distances
|
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| Cluster distances
|

- Dissimilarity choice will affect clusters created

Single linkage (min) Complete linkage (max)
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| Example: microarray expression

- Measure gene expression

« Various experimental conditions ﬁlﬁr‘ﬂ ‘ ﬁ Fﬁ ‘

— Disease v. normal St Ry
E2175300RTE7
E21 7S300R TEE

— Time Sl
E1115150R587

- E S185R

— Subjects Eovesountas

E20z51BBRSS52

E1115150R568

E20251B8R54%

E1385258R443

E1995255R448

. . P E19952558R450

E2025193R887

« Explore similarities o e

E1115150R586

E1445184R73T

— What genes change together? &5
— What conditions are similar? cozs e

« Cluster on both genes and e

E2025134R581

conditions Gt s

E1895232R388

E rEZLESE
E SL58kr

Matlab: “clustergram” (bioinfo toolbox)



|Summary
|

* Agglomerative clustering
— Choose a cluster distance / dissimilarity scoring method
— Successively merge closest pair of clusters
— “Dendrogram” shows sequence of merges & distances
— Complexity: O(m? log m)

e “Clustergram” for understanding data matrix
— Build clusters on rows (data) and columns (features)
— Reorder data & features to expose behavior across groups

* Agglomerative clusters depend critically on dissimilarity

— Choice determines characteristics of “found” clusters
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\K Means Clustering

* A simple clustering algorithm

* |terate between
— Updating the assignment of data to clusters
— Updating the cluster’s summarization

Notation:
Data example i has features Xx;

Assume K clusters
Each cluster ¢ “described” by a center 1

c

Each cluster will “claim” a set of nearby points

Matlab: “kmeans” (stats toolbox)



\K Means Clustering

A simple clustering algorithm

lterate between

— Updating the assignment of data to clusters
— Updating the cluster’s summarization

®
1 %o
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Notation:
Data example i has features x;

Assume K clusters

Each cluster ¢ “described” by a center *_

Each cluster will “claim” a set of nearby points
“Assignment” of it" example: z; 2 1..K

Matlab: “kmeans” (stats toolbox)



\K Means Clustering

* lterate until convergence:
— (A) For each datum, find the closest cluster

y; = argmin ||z; — prel” Vi
[

— (B) Set each cluster to the mean of all assigned data:
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\K Means Clustering

« Optimizing the cost function:

Clz, p) = Z | i — fi,

i

2 Descent => guaranteed to converge
New means = same assignments
Same assignments = same means

Coordinate descent: Same means = same assignments
Over the cluster assignments: Over the cluster centers:
Only one term in sum depends on z Cluster c only depends on x; with z;=c
Minimized by selecting closest *, Minimized by selecting the mean
(A) (B) o
I X ca

/
f‘\_' e




| Initialization
|

* Multiple local optima, depending on initialization

* Try different (randomized) initializations
* Can use cost C to decide which we prefer

o 3%
: t:: 8 *.:' ";* s,
AL o ° s i oM
. .f a2 . . l'? .:'i. ™ '."? 5.:' .
: o -7 : -7
oo? | e o et B
o o
.0 | )
l'.:.'-

® C=2233 C=212.6 C=167.0



| Initialization methods
|

* Random
— Usually, choose random data index
— Ensures centers are near some data
— Issue: may choose nearby points
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| Initialization methods

I
e Random

— Usually, choose random data index
— Ensures centers are near some data
— Issue: may choose nearby points

* Distance-based

— Start with one random data point

e
.'.' o
— Find the point farthest from the clusters chosen so far,

— Issue: may choose outliers



[Initialization methods " i ™

s ,* '. \
I e I' L AN ':-.h \ .
* Random £ Dy AN R
[ A S
. od .
— Usually, choose random data index AN, o ‘ll
— Ensures centers are near some data o° - fs’
ldl g &
— Issue: may choose nearby points % *
* Distance-based :
— Start with one random data point - :_
a? 8

— Find the point farthest from the clusters chosen so far,
— Issue: may choose outliers

* Random + distance (”k-means++”) (Arthur & Vassilvitskii, 2007)
— Choose next points “far but randomly”
p(x) / squared distance from x to current centers
— Likely to put a cluster far away, in a region with lots of data



| Out-of-sample points
|

Often want to use clustering on new data

Easy for k-means: choose nearest cluster center

# perform clustering
Z , mu, score = kmeans(X, K);

# cluster i1d = nearest center
L = knnClassify(mu, range(K), 1);

# assign In- or out-of-sample points
Z = L.predict(X);



| Choosing the number of clusters

I . .
*  With cost function

5 2000
Clzp) = [ 2— s,
i

1000}
what is the optimal value of k? k

* Cost always decreases with k! % 5 10
* A model complexity issue...
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| Choosing the number of clusters

I . .
* With cost function
2000

Clz,p) = Z | 2y — s,
i

B - A 2 | | |
_ __ 1000+ K 1
what is the optimal value of k? —

|

* Cost always decreases with k! % 5 i 5

* A model complexity issue...

« One solution is to penalize for complexity
— Add penalty: Total = Error + Complexity
— Now more clusters can increase cost, if they don’ t help “enough”

— Ex: simplified BIC penalty
1 : log m
J{z; 1) = log [ >l — g, H + k

1 & m

4

— More precise version: see e.g. “X-means” (Pelleg & Moore 2000)

20



|Summary
|

K-Means clustering

— Clusters described as locations (“centers”) in feature space

Procedure
— Initialize cluster centers
— |terate: assign each data point to its closest cluster center
— : move cluster centers to minimize mean squared error

Properties
— Coordinate descent on MSE criterion
— Prone to local optima; initialization important

Out-of-sample data
Choosing the # of clusters, K

— Model selection problem; penalize for complexity (BIC, etc.)
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| Mixtures of Gaussians
|

- K-means algorithm
— Assigned each example to exactly one cluster

— What if clusters are overlapping?

+ Hard to tell which cluster is right

- Maybe we should try to remain uncertain
— Used Euclidean distance

— What if cluster has a non-circular shape?

« Gaussian mixture models

— Clusters modeled as Gaussians
* Not just by their mean

— EM algorithm: assign data to
cluster with some probability

— Gives probability model of x! (*generative”)




| Mixtures of Gaussians

» Start with parameters describing each cluster
* Mean?!,, variance %, “size” Y,
* Probability distribution:

pl) = Z we N pe.op)

o




| Mixtures of Gaussians
|

» Start with parameters describing each cluster

° Meanl

¢, variance ¥, “size” Ya,
* Probability distribution:

— Z Tl g J\"F(;T: v Hen 'U_(J)

o

* Equivalent “latent variable” form:

plz =¢) =7,

plelz =¢) =Nz : pte, 0p)

“Latent assignment” z:
we observe X, but z is hidden

p(X) = marginal over X

Select a mixture component with probability ¥4

Sample from that component’s Gaussian




| Multivariate Gaussian models
I

1 1 .
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|[EM Algorithm: E-step
|

- Start with clusters: Mean 1_, Covariance §, “size” Y,

- E-step (“"Expectation”)
— For each datum (example) x,

— Compute “r,.”, the probability that it belongs to cluster c
« Compute its probability under model c
« Normalize to sum to one (over clusters c)

?ﬁ_-.JV(fET.?; T o Z(:)
Yo TeN (@5 pher, 2

. JR—
Pie =

11/41 N(x; %, 8)



|[EM Algorithm: E-step
|

- Start with clusters: Mean 1_, Covariance §, “size” Y,

- E-step (“"Expectation”)
— For each datum (example) x;,
— Compute “r,.”, the probability that it belongs to cluster c
« Compute its probability under model c
« Normalize to sum to one (over clusters c)

?F(_-_H“V(flf-?; D M z(:)
Yo TeN (@5 pher, 2 V2, N(X 5 15, 8))

r, ¥a.33: r, s .66

. JR—
Pie =

— If x; is very likely under the ct" Gaussian, it gets high weight
— Denominator just makes r's sum to one



\EI\/I Algorithm: M-step

- Start with assignment probabilities r;,
- Update parameters: mean 1., Covariance 8, “size” Y,

¢ M-step (“Maximization™)
— For each cluster (Gaussian) z = c,
— Update its parameters using the (weighted) data points

e = Z Tie: Total responsibility allocated to cluster ¢

Tp = — Fraction of total assigned to cluster c
T
- ZTHU s 1 S (2 — )T — i)
f-'Hr p o, & e " ©
, p
Weighted mean of assigned data Weighted covariance of assigned data

(use new weighted means here)



| Expectation-Maximization

I Each step increases the log-likelihood of our model

logp(X) = log |> w1 NM(: 5 pte, Be)
1 C
(we won'’ t derive this here, though)

- Iterate until convergence
— Convergence guaranteed — another ascent method
— Local optima: initialization often important

What should we do

— If we want to choose a single cluster for an “answer”?
— With new data we didn’t see during training?

« Choosing the number of clusters
— Can use penalized likelihood of training data (like k-means
— True probability model: can use log-likelihood of test data, log p(x’)



ANEMIA PATIENTS AND CONTROLS
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EM ITERATION 1
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Red Blood Cell Hemoglobin Concentration
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EM ITERATION 3
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EM ITERATION 5
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EM ITERATION 10
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EM ITERATION 15
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EM ITERATION 25
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|EM and missing data
|

- EM s a general framework for partially observed data
— “Complete data” xi, zi — features and assignments
— Assignments zi are missing (unobserved)

* EM corresponds to
— Computing the distribution over all zi given the parameters
— Maximizing the “expected complete” log likelihood
— GMMs = plug in “soft assignments”, but not always so easy

- Alternatives: Stochastic EM, Hard EM
— Instead of expectations, just sample the zi or choose best (often easier)
— Called “imputing” the values of z
— Hard EM: similar to EM, but less “smooth”, more local minima

— Stochastic EM: similar to EM, but with extra randomness
* Not obvious when it has converged



|Summary
|

* @Gaussian mixture models
— Flexible class of probability distributions
— Explain variation with hidden groupings or clusters of data
— Latent “membership” z(i
— Feature values x{) are Gaussian given zl!

* Expectation-Maximization
— Compute soft membership probabilities, “responsibility” r,.
— Update mixture component parameters given soft memberships
— Ascent on log-likelihood: convergent, but local optima

* Selecting the number of clusters

— Penalized likelihood or validation data likelihood



| Gibbs sampling for clustering

I * Another technique for inferring uncertain cluster assignments
— K-means: take the best assignment
— EM: assign “partially”
— Stochastic EM: sample assignment
— All: choose best cluster descriptions given assignments

«  Gibbs sampling (“Markov chain Monte Carlo”)
— Assign randomly, probability equal to EM’s weight
— Sample a cluster description given assignment
— Requires a probability model over cluster parameters

«  This doesn’ t really find the “best” clustering
— It eventually samples almost all “good” clusterings
— Converges “in probability”, randomness helps us explore configurations
— Also tells us about uncertainty of clustering
— Disadvantage: not obvious when “done”



“Infinite” mixture models

* How many clusters are there?

« Gibbs sampling has an interesting solution
— Write a distribution over k, the # of clusters
— Sample k also

« Can do our sampling sequentially
— Draw each zi given all the others
— Instead of sampling cluster parameters, marginalize them
— Defines a distribution over groupings of data
* Now, for each zi, sample
— Join an existing cluster? Or, join a new cluster?
*  What are these probabilities?
— “Dirichlet process” mixture models



Parametric and Nonparametric

- Every model has some parameters

— “The stuff you have to store to make your prediction”

— Logistic regression: weights

— Decision tree: feature to split, value at each level

— Gaussian mixture model. means, covariances, sizes
- Parametric vs Nonparametric models

— Parametric: fixed # of parameters

— Nonparametric: # of parameters grows with more data
*  What type are

— Logistic regression?

— Nearest neighbor prediction?

— Decision trees?

— Decision trees of depth < 3?7

— Gaussian mixture model?



| Summary
I

* Clustering algorithms
— Agglomerative clustering
— K-means
— Expectation-Maximization

Open questions for each application:

«  What does it mean to be “close” or “similar”?
— Depends on your particular problem...

- “Local” versus “global” notions of simliarity
— Former is easy, but we usually want the latter...

- lIsit better to “understand” the data itself (unsupervised learning),
to focus just on the final task (supervised learning), or both?

- Do we need a generative model? Out-of-sample assignments?



