
Machine Learning and Data Mining

Ensembles of Learners

Kalev Kask

+

HW4
• Download data from

– https://www.kaggle.com/c/uci-s2018-cs273p-hw4

– Note this is not the same as Project1 site

• https://www.kaggle.com/c/uci-s2018-cs273p-1

https://www.kaggle.com/c/uci-s2018-cs273p-hw4

Ensemble methods
• Why learn one classifier when you can learn many?

• Ensemble: combine many predictors
– (Weighted) combinations of predictors

– May be same type of learner or different

“Who wants to be a millionaire?”

Various options for getting help:

Simple ensembles
• “Committees”

– Unweighted average / majority vote

• Weighted averages

– Up-weight “better” predictors

– Ex: Classes: +1 , -1 , weights alpha:

ŷ1 = f1(x1,x2,…)

ŷ2 = f2(x1,x2,…) => ŷe = sign( αi ŷi)

…

“Stacked” ensembles
• Train a “predictor of predictors”

• Treat individual predictors as features

ŷ1 = f1(x1,x2,…)

ŷ2 = f2(x1,x2,…) => ŷe = fe(ŷ1, ŷ2, …)

…

• Similar to multi-layer perceptron idea

• Special case: binary, fe linear => weighted vote

• Can train stacked learner fe on validation data
• Avoids giving high weight to overfit models

• Can make weights depend on x
– Weight αz(x) indicates “expertise”

– Combine using weighted average (or even just pick largest)

Example

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Mixture of three linear predictor experts

Weighted average:

Weights: (multi) logistic regression

If loss, learners, weights are all

differentiable, can train jointly…

Mixtures of experts

Machine Learning and Data Mining

Ensembles: Bagging

Kalev Kask

+

• Why learn one classifier when you can learn many?

– “Committee”: learn K classifiers, average their predictions

• “Bagging” = bootstrap aggregation
– Learn many classifiers, each with only part of the data

– Combine through model averaging

• Remember overfitting: “memorize” the data
– Used test data to see if we had gone too far

– Cross-validation

• Make many splits of the data for train & test

• Each of these defines a classifier

• Typically, we use these to check for overfitting

• Could we instead combine them to produce a better classifier?

Ensemble methods

Bagging
• Bootstrap

– Create a random subset of data by sampling

– Draw m’ of the m samples, with replacement (some variants w/o)
• Some data left out; some data repeated several times

• Bagging
– Repeat K times

• Create a training set of m’ < m examples

• Train a classifier on the random training set

– To test, run each trained classifier
• Each classifier votes on the output, take majority

• For regression: each regressor predicts, take average

• Notes:
– Some complexity control: harder for each to memorize data

• Doesn’t work for linear models (average of linear functions is linear function…)

• Perceptrons OK (linear + threshold = nonlinear)

Data we observe • We only see a little bit of data

• Can decompose error into two parts
– Bias – error due to model choice

• Can our model represent the true best
predictor?

• Gets better with more complexity

– Variance – randomness due to data size

• Better w/ more data, worse w/ complexity

“The world”

Predictive

Error

Model Complexity

Error on test data

(High bias)

(High variance)

Bias / variance

Bagged decision trees
• Randomly resample data

• Learn a decision tree for each
– No max depth = very flexible class of functions

– Learner is low bias, but high variance

Sampling:

simulates “equally likely”

data sets we could have

observed instead, &

their classifiers

Full data set

Bagged decision trees
• Average over collection

– Classification: majority vote

• Reduces memorization effect
– Not every predictor sees each data point

– Lowers effective “complexity” of the overall average

– Usually, better generalization performance

– Intuition: reduces variance while keeping bias low

Full data set

Avg of 5 trees Avg of 25 trees Avg of 100 trees

Load data set X, Y for training the ensemble…

m,n = X.shape

classifiers = [None] * nBag # Allocate space for learners

for i in range(nBag):

ind = np.floor(m * np.random.rand(nUse)).astype(int) # Bootstrap sample a data set:

Xi, Yi = X[ind,:] , Y[ind] # select the data at those indices

classifiers[i] = ml.MyClassifier(Xi, Yi) # Train a model on data Xi, Yi

test on data Xtest

mTest = Xtest.shape[0]

predict = np.zeros((mTest, nBag)) # Allocate space for predictions from each model

for i in range(nBag):

predict[:,i] = classifiers[i].predict(Xtest) # Apply each classifier

Make overall prediction by majority vote

predict = np.mean(predict, axis=1) > 0 # if +1 vs -1

Bagging in Python

• Bagging applied to decision trees

• Problem
– With lots of data, we usually learn the same classifier

– Averaging over these doesn’t help!

• Introduce extra variation in learner
– At each step of training, only allow a subset of features

– Enforces diversity (“best” feature not available)

– Keeps bias low (every feature available eventually)

– Average over these learners (majority vote)

Random forests

in FindBestSplit(X,Y):

for each of a subset of features

for each possible split

Score the split (e.g. information gain)

Pick the feature & split with the best score

Recurse on left & right splits

Summary
• Ensembles: collections of predictors

– Combine predictions to improve performance

• Bagging

– “Bootstrap aggregation”

– Reduces complexity of a model class prone to overfit

– In practice
• Resample the data many times

• For each, generate a predictor on that resampling

– Plays on bias / variance trade off

– Price: more computation per prediction

Machine Learning and Data Mining

Ensembles: Gradient Boosting

Kalev Kask

+

Ensembles
• Weighted combinations of predictors

• “Committee” decisions
– Trivial example

– Equal weights (majority vote / unweighted average)

– Might want to weight unevenly – up-weight better predictors

• Boosting
– Focus new learners on examples that others get wrong

– Train learners sequentially

– Errors of early predictions indicate the “hard” examples

– Focus later predictions on getting these examples right

– Combine the whole set in the end

– Convert many “weak” learners into a complex predictor

• Learn a regression predictor

• Compute the error residual

• Learn to predict the residual

Learn a simple predictor… Then try to correct its errors

Gradient boosting

• Learn a regression predictor

• Compute the error residual

• Learn to predict the residual

Gradient boosting

Combining gives a better predictor… Can try to correct its errors also, & repeat

• Learn sequence of predictors

• Sum of predictions is increasingly accurate

• Predictive function is increasingly complex

…

Data & prediction function

Error residual

Gradient boosting

Gradient boosting
• Make a set of predictions ŷ[i]

• The “error” in our predictions is J(y,ŷ)

– For MSE: J(.) =  (y[i] – ŷ[i])2

• We can “adjust” ŷ to try to reduce the error

– ŷ[i] = ŷ[i] + alpha f[i]

– f[i] ≈ ∇J(y, ŷ) = (y[i]-ŷ[i]) for MSE

• Each learner is estimating the gradient of the loss f’n

• Gradient descent: take sequence of steps to reduce J

– Sum of predictors, weighted by step size alpha

Load data set X, Y …

learner = [None] * nBoost # storage for ensemble of models

alpha = [1.0] * nBoost # and weights of each learner

mu = Y.mean() # often start with constant ”mean” predictor

dY = Y – mu # subtract this prediction away

for k in range(nBoost):

learner[k] = ml.MyRegressor(X, dY) # regress to predict residual dY using X

alpha[k] = 1.0 # alpha: ”learning rate” or ”step size”

smaller alphas need to use more classifiers, but may predict better given enough of them

compute the residual given our new prediction:
dY = dY – alpha[k] * learner[k].predict(X)

test on data Xtest

mTest = Xtest.shape[0]

predict = np.zeros((mTest,)) + mu # Allocate space for predictions & add 1st (mean)

for k in range(nBoost):

predict += alpha[k] * learner[k].predict(Xtest) # Apply predictor of next residual & accum

Gradient boosting in Python

• Ensemble methods
– Combine multiple classifiers to make “better” one

– Committees, average predictions

– Can use weighted combinations

– Can use same or different classifiers

• Gradient Boosting
– Use a simple regression model to start

– Subsequent models predict the error residual of the previous
predictions

– Overall prediction given by a weighted sum of the collection

Summary

Machine Learning and Data Mining

Ensembles: Boosting

Kalev Kask

+

Ensembles
• Weighted combinations of classifiers

• “Committee” decisions

– Trivial example

– Equal weights (majority vote)

– Might want to weight unevenly – up-weight good experts

• Boosting

– Focus new experts on examples that others get wrong

– Train experts sequentially

– Errors of early experts indicate the “hard” examples

– Focus later classifiers on getting these examples right

– Combine the whole set in the end

– Convert many “weak” learners into a complex classifier

+

-

+-

+

-

+-

+

-

Original data set, D1

+

-

+-

+

-

+-

+

-

Trained classifier

+

-

+-

+

-

+-

+

-

Trained classifier

+

-

+-

+

-

+-

+

-

Trained classifier

+

-

+-

+

-

+-

+

-

Update weights, D2

+

-

+-

+

-

+-

+

-

Update weights, D3

Classes +1 , -1
Boosting example

• So far we’ve mostly minimized unweighted error

• Minimizing weighted error is no harder:

Unweighted average loss:

Weighted average loss:

For any loss (logistic MSE, hinge, …)

For e.g. decision trees, compute weighted impurity scores:

p(+1) = total weight of data with class +1

p(-1) = total weight of data with class -1 => H(p) = impurity

Aside: minimizing weighted error

.33 * + .57 * + .42 * >
< 0

Weight each classifier and combine them:

+

-

+-

+

-

+-

+

-

Combined classifier

)
1-node decision trees

“decision stumps”
very simple classifiers

Boosting example

• Pseudocode for AdaBoost

• Notes

– e > .5 means classifier is not better than random guessing

– Y * Yhat > 0 if Y == Yhat, and weights decrease

– Otherwise, they increase

Classes {+1 , -1}

Load data set X, Y … ; Y assumed +1 / -1

for i in range(nBoost):

learner[i] = ml.MyClassifier(X, Y, weights=wts) # train a weighted classifier

Yhat = learner[i].predict(X)

e = wts.dot(Y != Yhat) # compute weighted error rate

alpha[i] = 0.5 * np.log((1-e)/e)

wts *= np.exp(-alpha[i] * Y * Yhat) # update weights

wts /= wts.sum() # and normalize them

Final classifier:

predict = np.zeros((mTest,))

for i in range(nBoost):

predict += alpha[i] * learner[i].predict(Xtest) # compute contribution of each model

predict = np.sign(predict) # and convert to +1 / -1 decision

AdaBoost = “adaptive boosting”

• Minimizing classification error was difficult

– For logistic regression, we minimized MSE or NLL instead

– Idea: low MSE => low classification error

• Example of a surrogate loss function

• AdaBoost also corresponds to a surrogate loss function

• Prediction is yhat = sign(f(x))

– If same as y, loss < 1; if different, loss > 1; at boundary, loss=1

• This loss function is smooth & convex (easier to optimize)

f(x) != y | f(x) = y

AdaBoost theory

AdaBoost example: Viola-Jones
• Viola-Jones face detection algorithm

• Combine lots of very weak classifiers

– Decision stumps = threshold on a single feature

• Define lots and lots of features

• Use AdaBoost to find good features

– And weights for combining as well

Haar wavelet features
• Four basic types.

– They are easy to calculate.

– The white areas are subtracted from the black ones.

– A special representation of the sample called the integral image

makes feature extraction faster.

Training a face detector
• Wavelets give ~100k features

• Each feature is one possible classifier

• To train: iterate from 1:T
– Train a classifier on each feature using weights

– Choose the best one, find errors and re-weight

• This can take a long time… (lots of classifiers)
– One way to speed up is to not train very well…

– Rely on adaboost to fix “even weaker” classifier

• Lots of other tricks in “real” Viola-Jones
– Cascade of decisions instead of weighted combo

– Apply at multiple image scales

– Work to make computationally efficient

Summary
• Ensemble methods

– Combine multiple classifiers to make “better” one

– Committees, majority vote

– Weighted combinations

– Can use same or different classifiers

• Boosting
– Train sequentially; later predictors focus on mistakes by earlier

• Boosting for classification (e.g., AdaBoost)
– Use results of earlier classifiers to know what to work on

– Weight “hard” examples so we focus on them more

– Example: Viola-Jones for face detection

