Machine Learning and Data Mining

Ensembles of Learners

Kalev Kask

\J

A% ©
BREN:(ICS UNIVERSITY of CALIFORNIA O [RVINE

INFORMATION AND COMPUTER SCIENCES

[HW4
I

* Download data from
— https://www.kaggle.com/c/uci-s2018-cs273p-hw4

— Note this is not the same as Project1 site
* https://www.kaggle.com/c/uci-s2018-cs273p-1

https://www.kaggle.com/c/uci-s2018-cs273p-hw4

Ensemble methods

* Why learn one classifier when you can learn many?

* Ensemble: combine many predictors
— (Weighted) combinations of predictors
— May be same type of learner or different

STNILLION Various options for getting help:
=

"

-~

£'CAN | PHONE A FRIEND?">

"I'LL ASK THE AUDIENCE:"_, :

oﬁog_

4

-
AACG T —— - we— .-.-

For ordering his favorite beverages on demand, LBJ had four buttons
\ installed in the Oval Office labeled coffee “tea,” Coke and wha(’ y

—

2
m_u'n. aine
DA

{_ A: Fresca
) -

\\\

Yoo-hoo

“Who wants to be a millionaire?”

|Simple ensembles
|

e “Committees”

— Unweighted average / majority vote

* Weighted averages
— Up-weight “better” predictors
— Ex: Classes: +1, -1, weights alpha:
vy = fi(x,%5,..0)
v, = (X, Xy,..) => ¥, = sign(Za.y:)

“Stacked” ensembles

I
* Train a “predictor of predictors”

* Treat individual predictors as features

¥, = Fi(X,X5,..)
Vo =HxpXp) => Ve = felVa, Vo o)

* Similar to multi-layer perceptron idea
* Special case: binary, f,_ linear => weighted vote

* Can train stacked learner f_ on validation data
* Avoids giving high weight to overfit models

| Mixtures of experts

I
* Can make weights depend on x

— Weight a,(x) indicates “expertise”
— Combine using weighted average (or even just pick largest)

Example

Weighted average:

flr;w,8) = ZOJZ(&’?;OJ) fo(2:02)

-~

Weights: (multi) logistic regression
exp(x - w?)

expla - we)
C J

ay(r;w) =

| If loss, learners, weights are all
03, ¥ : s ; s ; differentiable, can train jointly...

Mixture of three linear predictor experts

Machine Learning and Data Mining

Ensembles: Bagging

Kalev Kask

\J

A% ©
BREN:(ICS UNIVERSITY of CALIFORNIA O [RVINE

INFORMATION AND COMPUTER SCIENCES

|Ensemble methods
|

* Why learn one classifier when you can learn many?

— “Committee”: learn K classifiers, average their predictions

* “Bagging” = bootstrap aggregation
— Learn many classifiers, each with only part of the data
— Combine through model averaging

* Remember overfitting: “memorize” the data
— Used test data to see if we had gone too far

— Cross-validation
* Make many splits of the data for train & test
* Each of these defines a classifier
* Typically, we use these to check for overfitting
* Could we instead combine them to produce a better classifier?

|Bagging
|

* Bootstrap

— Create a random subset of data by sampling

— Draw m’ of the m samples, with replacement (some variants w/o)
* Some data left out; some data repeated several times

* Bagging
— Repeat K times
* Create a training set of m’ < m examples
* Train a classifier on the random training set
— To test, run each trained classifier
* Each classifier votes on the output, take majority
* For regression: each regressor predicts, take average

* Notes:

— Some complexity control: harder for each to memorize data
* Doesn’t work for linear models (average of linear functions is linear function...)
* Perceptrons OK (linear + threshold = nonlinear)

| Bias / variance

“The world” Data we observe

o ¢ ® .‘

Predictive
Error

* We only see a little bit of data

* Can decompose error into two parts

— Bias — error due to model choice

* Can our model represent the true best
predictor?

* Gets better with more complexity
— Variance — randomness due to data size

* Better w/ more data, worse w/ complexity

(High bias)
(High variance)
Error on test data

[
»

Model Complexity

|Bagged decision trees
I

* Randomly resample data

* Learn a decision tree for each L
— No max depth = very flexible class of functions " Eull data set
— Learner is low bias, but high variance

Sampling:
simulates “equally likely”
data sets we could have

observed instead, &
their classifiers

|Bagged decision trees
I

* Average over collection
— Classification: majority vote

L L
5.5

Full data set

* Reduces memorization effect
— Not every predictor sees each data point
— Lowers effective “complexity” of the overall average
— Usually, better generalization performance
— Intuition: reduces variance while keeping bias low

Avg of 5 trees Avg of 25 trees Avg of 100 trees

|Bagging in Python
|

Load data set X, Y for training the ensemble...

m,n = X.shape

classifiers = [None] * nBag # Allocate space for learners

for 1 in range(nBag):
ind = np.floor(m * np.random.rand(nUse)).astype(int) # Bootstrap sample a data set:
X1, Y1 = X[ind,:], Y[ind] # select the data at those indices
classifiers[i] = ml.MyClassifier(Xi, Yi) # Train a model on data Xi, Yi

test on data Xtest
mTest = Xtest.shape[0]
predict = np.zeros((mTest, nBag)) # Allocate space for predictions from each model
for 1 in range(nBag):
predict[:,i] = classifiers[i].predict(Xtest) # Apply each classifier

Make overall prediction by majority vote
predict = np.mean(predict, axis=1) >0 #if +1vs-1

|Random forests

I Bagging applied to decision trees

° Problem

— With lots of data, we usually learn the same classifier
— Averaging over these doesn’t help!

* Introduce extra variation in learner

— At each step of training, only allow a subset of features
— Enforces diversity (“best” feature not available)

— Keeps bias low (every feature available eventually)

— Average over these learners (majority vote)

in FindBestSplit(X,Y):
for each of a subset of features
for each possible split
Score the split (e.g. information gain)
Pick the feature & split with the best score
Recurse on left & right splits

|Summary
|

* Ensembles: collections of predictors

— Combine predictions to improve performance

* Bagging
— “Bootstrap aggregation”

— Reduces complexity of a model class prone to overfit

— In practice
* Resample the data many times
* For each, generate a predictor on that resampling

— Plays on bias / variance trade off
— Price: more computation per prediction

Machine Learning and Data Mining

Ensembles: Gradient Boosting

Kalev Kask

\J

48 O
BREN:ICS UNIVERSITY of CALIFORNIA

J IRVINE
INFORMATION AND COMPUTER SCIENCES

|[Ensembles
|

* Weighted combinations of predictors

« “Committee” decisions
— Trivial example
— Equal weights (majority vote / unweighted average)
— Might want to weight unevenly — up-weight better predictors

* Boosting
— Focus new learners on examples that others get wrong
— Train learners sequentially
— Errors of early predictions indicate the “hard” examples
— Focus later predictions on getting these examples right
— Combine the whole set in the end
— Convert many “weak’ learners into a complex predictor

| Gradient boosting
|

- Learn a regression predictor
« Compute the error residual
» Learn to predict the residual

Learn a simple predictor...
f1($<i>\) ~ Y

100
e
@
. e %
@
*]
4 F @ v
0 s g “ ® ®
-50 F F
[4
@
?
-100
@
F R
®
-150 1 ! !
0 6 8 1 12 1 1.6 1.8

80

60

40

20

=20

-60

=60

-100

Then try to correct its errors

) =y _ ()

® . o aba® o
L. %2 o oBe® s
E =
2|
®

&

L |

[4

k3

&

1 1 1 1 1)
1} 0.z 04 0.6 0.8 1 1.2

| Gradient boosting
|

- Learn a regression predictor
« Compute the error residual
- Learn to predict the residual fa(a!) = e

fi(z') =yt
(D) =y ()

Combining gives a better predictor... Can try to correct its errors also, & repeat
= D)+ f2(2?) =yt eé?’) =y — £z = fy ()

100 . T T . . . : : i "

T T T T T . : . i
&
60 i
H ® ®
B e | o e @
. i - ;2
¢ S 40 >3 s
L J » L) P %
L ® ® ® ®
ok ® >—2 20t i
- ® L J -) " .
e . e ® ® ®
L E: ® .
® & . .t 2 : A
o " ® selp og . © S " |
% & ® ’ .
» %
* » o
50 |- | . . {g
. *8)
-20 f 4 - i
* g =
& - ® 7
-40F = L
-100 - =)
@
L
& & sgal
L
®
-150 ’ L L 1 1 1 L !) 80 L 1 L

0 0,2 0,4 0.6 0,8 1 1,2 1.4 1,6 1.8 2 e = . o : + 2 = + A

| Gradient boosting
|

* Learn sequence of predictors
- Sum of predictions is increasingly accurate
* Predictive function is increasingly complex

v =D fula®)

Data & prediction function

.
L o % e
.
R
. .
. ., & ®
= . ¥
o s %ig ..
.
.
50 R
I
¢, .
100 .
o,
LA
150

Error residual

\Gradlent boosting

* Make a set of predictions y[i]

* The “error” in our predictions is J(y,y)
— For MSE: J(.) =2 (yli] = Y[i])2

* We can “adjust” y to try to reduce the error
— Ylil = y[i] + alpha f[i]
— flil = Vi(y, ¥) = (y[i]-y[i]) for MSE

* Each learner is estimating the gradient of the loss f'n
* Gradient descent: take sequence of steps to reduce)
— Sum of predictors, weighted by step size alpha

|Gradient boosting in Python
|

Load dataset X, Y ...
learner = [None] * nBoost # storage for ensemble of models

alpha = [1.0] * nBoost # and weights of each learner
mu =Y.mean() # often start with constant ’mean” predictor
dY =Y -mu # subtract this prediction away

for k in range(nBoost):
learner[k] = ml.MyRegressor(X, dY) # regress to predict residual dY using X
alpha[k] = 1.0 # alpha: “’learning rate” or ’step size”
smaller alphas need to use more classifiers, but may predict better given enough of them

compute the residual given our new prediction:
dY = dY — alpha[k] * learner[k].predict(X)

test on data Xtest
mTest = Xtest.shape[0]
predict = np.zeros((mTest,)) + mu # Allocate space for predictions & add 1st (mean)
for k in range(nBoost):
predict += alpha[k] * learner[K].predict(Xtest) # Apply predictor of next residual & accum

|Summary
|

* Ensemble methods
— Combine multiple classifiers to make “better” one
— Committees, average predictions
— Can use weighted combinations
— Can use same or different classifiers

+ Gradient Boosting
— Use a simple regression model to start

— Subsequent models predict the error residual of the previous
predictions

— Overall prediction given by a weighted sum of the collection

Machine Learning and Data Mining

Ensembles: Boosting

Kalev Kask

\J

A6 ©
BIREN:[CS UNIVERSITY of CALIFORNIA O [RVINE

INFORMATION AND COMPUTER SCIENCES

|[Ensembles

- Weighted combinations of classifiers

- “Committee” decisions
— Trivial example
— Equal weights (majority vote)
— Might want to weight unevenly — up-weight good experts

* Boosting
— Focus new experts on examples that others get wrong
— Train experts sequentially
— Errors of early experts indicate the “hard” examples
— Focus later classifiers on getting these examples right
— Combine the whole set in the end
— Convert many “weak” learners into a complex classifier

|Boosting example
|

Original data set, D,

Update weights, D,

Classes +1, -1

Update weights, D,

\A5|de minimizing weighted error

* So far we’ve mostly minimized unweighted error
* Minimizing weighted error is no harder:

Unweighted average loss: For any loss (logistic MSE, hinge, ...)

1 .
_ . () i 0 i)) 2
- E Ji(0,2') J(0,29) = (6(02V) — y)

(1)) — _ (1) gn(9)
Weighted average loss: J(0, ") = max [0, 1 -y 2]

sz J; (0, 967’)

For e.g. decision trees, compute weighted impurity scores:
p(+1) = total weight of data with class +1
p(-1) = total weight of data with class -1 => H(p) = impurity

|Boosting example
|

Weight each classifier and combine them:

33*

v 57%| + 42

Combined classifier

1-node decision trees
“decision stumps”
very simple classifiers

\AdaBoost = “adaptive boosting”

* Pseudocode for AdaBoost Classes {+1, -1}

Load data set X, Y ... ; Y assumed +1 /-1

for i in range(nBoost):
learner[i] = ml.MyClassifier(X, Y, weights=wts) # train a weighted classifier
Yhat = learner[i].predict(X)

e = wts.dot(Y !=Yhat) # compute weighted error rate
alpha[i] = 0.5 * np.log((1-e)/e)

wts *= np.exp(-alpha[i] * Y * Yhat) # update weights

wts /= wts.sum() # and normalize them

Final classifier:
predict = np.zeros((mTest,))
for i in range(nBoost):

predict += alpha[i] * learner[i].predict(Xtest) # compute contribution of each model
predict = np.sign(predict) # and convert to +1 / -1 decision
* Notes

— e>.5 means classifier is not better than random guessing
— Y *Yhat >0 if Y ==Yhat, and weights decrease
— Otherwise, they increase

\Ada Boost theory

Minimizing classification error was difficult
— For logistic regression, we minimized MSE or NLL instead
— Idea: low MSE => low classification error

Example of a surrogate loss function
AdaBoost also corresponds to a surrogate loss function

Cada — Zexp[_y(Z)f(xz)]

Prediction is yhat = sign(f(x))
— If same asy, loss < 1; if different, loss > 1; at boundary, loss=1

This loss function is smooth & convex (easier to optimize)

f(x) 1=y |)=y

\AdaBoost example: Viola-Jones

* Viola-Jones face detection algorithm

- Combine lots of very weak classifiers
— Decision stumps = threshold on a single feature
+ Define lots and lots of features

- Use AdaBoost to find good features
— And weights for combining as well

|Haar wavelet features
|

* Four basic types.
— They are easy to calculate.
— The white areas are subtracted from the black ones.

— A special representation of the sample called the integral image
makes feature extraction faster.

\Trammg a face detector

Wavelets give ~100k features
Each feature is one possible classifier

To train: iterate from 1:T

— Train a classifier on each feature using weights
— Choose the best one, find errors and re-weight

This can take a long time... (lots of classifiers)
— One way to speed up is to not train very well...
— Rely on adaboost to fix “even weaker” classifier

Lots of other tricks in “real” Viola-Jones

— Cascade of decisions instead of weighted combo
— Apply at multiple image scales

— Work to make computationally efficient

\Summary

- Ensemble methods
— Combine multiple classifiers to make “better” one
— Committees, majority vote
— Weighted combinations
— Can use same or different classifiers

* Boosting
— Train sequentially; later predictors focus on mistakes by earlier

* Boosting for classification (e.g., AdaBoost)
— Use results of earlier classifiers to know what to work on
— Weight “hard” examples so we focus on them more
— Example: Viola-Jones for face detection

