
Machine Learning and Data Mining

Decision Trees

Kalev Kask

+

Decision trees
• Functional form f(x;µ): nested “if-then-else” statements

– Discrete features: fully expressive (any function)

• Structure:

– Internal nodes: check feature, branch on value

– Leaf nodes: output prediction

x1 x2 y

0 0 1

0 1 -1

1 0 -1

1 1 1

“XOR” X1?

X2? X2?

if X1: # branch on feature at root

if X2: return +1 # if true, branch on right child feature

else: return -1 # & return leaf value

else: # left branch:

if X2: return -1 # branch on left child feature

else: return +1 # & return leaf value

Parameters?

Tree structure, features, and leaf outputs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
X1 > .5 ?

X2 > .5 ?

X1 > .1 ?

Decision trees
• Real-valued features

– Compare feature value to some threshold

X1 = ?

A
B C D

X1 = ?

{A}
{B,C,D}

X1 = ?

{A,D}

{B,C}

The discrete variable will

not appear again below here…

Could appear again multiple times…

(This ^^^ is easy to

implement using a 1-of-K

representation…)

Decision trees
• Categorical variables

– Could have one child per value

– Binary splits: single values, or by subsets

• “Complexity” of function depends on the depth

• A depth-1 decision tree is called a decision “stump”

– Simpler than a linear classifier!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1 > .5 ?

Decision trees

• “Complexity” of function depends on the depth

• More splits provide a finer-grained partitioning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1 > .5 ?

X2 > .6 ? X1 > .85 ?

Depth d = up to 2d regions & predictions

Decision trees

• Exactly the same

• Predict real valued numbers at leaf nodes

• Examples on a single scalar feature:

Depth 1 = 2 regions & predictions Depth 2 = 4 regions & predictions …

Decision trees for regression

Machine Learning and Data Mining

Learning Decision Trees

Kalev Kask

Learning decision trees
• Break into two parts

– Should this be a leaf node?

– If so: what should we predict?

– If not: how should we further split the data?

• Leaf nodes: best prediction given this data subset

– Classify: pick majority class; Regress: predict average value

• Non-leaf nodes: pick a feature and a split

– Greedy: “score” all possible features and splits

– Score function measures “purity” of data after split

• How much easier is our prediction task after we divide the data?

• When to make a leaf node?

– All training examples the same class (correct), or indistinguishable

– Fixed depth (fixed complexity decision boundary)

– Others …

Example algorithms:

ID3, C4.5

See e.g. wikipedia,

“Classification and

regression tree”

Learning decision trees

Scoring decision tree splits
• Suppose we are considering splitting feature 1

– How can we score any particular split?

– “Impurity” – how easy is the prediction problem in the leaves?

• “Greedy” – could choose split with the best accuracy

– Assume we have to predict a value next

– MSE (regression)

– 0/1 loss (classification)

• But: “soft” score can work better

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1 > t ?

t = ?

• “Entropy” is a measure of randomness

– How hard is it to communicate a result to you?

– Depends on the probability of the outcomes

• Communicating fair coin tosses

– Output: H H T H T T T H H H H T …

– Sequence takes n bits – each outcome totally unpredictable

• Communicating my daily lottery results

– Output: 0 0 0 0 0 0 …

– Most likely to take one bit – I lost every day.

– Small chance I’ll have to send more bits (won & when)

• Takes less work to communicate because it’s less random

– Use a few bits for the most likely outcome, more for less likely ones

Lost: 0

Won 1: 1(…)0

Won 2: 1(…)1(…)0

Entropy and information

• Entropy H(x) ´ E[log 1/p(x)] =  p(x) log 1/p(x)

– Log base two, units of entropy are “bits”

– Two outcomes: H = - p log(p) - (1-p) log(1-p)

• Examples:

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .25 log 4 + .25 log 4 +

.25 log 4 + .25 log 4

= log 4 = 2 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = .75 log 4/3 + .25 log 4

¼ .8133 bits

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H(x) = 1 log 1

= 0 bits

Max entropy for 4 outcomes Min entropy

Entropy and information

• Information gain

– How much is entropy reduced by measurement?

• Information: expected information gain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 20
2
4
6
8
10

1 20
1
2
3
4
5

1 20
2
4
6
8
10

H=0

Prob = 5/18
H = .77 bits

Prob = 13/18

H = . 99 bits

Information = 13/18 * (.99-.77) + 5/18 * (.99 – 0)

Equivalent:  p(s,c) log [p(s,c) / p(s) p(c)]

= 10/18 log[(10/18) / (13/18) (10/18)] + 3/18 log[(3/18)/(13/18)(8/18) + …

Entropy and information

• Information gain

– How much is entropy reduced by measurement?

• Information: expected information gain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 20
2
4
6
8
10

1 20
1
2
3
4
5

1 20
2
4
6
8
10

H=0

Prob = 1/18
H = .97 bits

Prob = 17/18

H = . 99 bits

Entropy and information

Information = 17/18 * (.99-.97) + 1/18 * (.99 – 0)

Less information reduction – a less desirable split of the data

• An alternative to information gain

– Measures variance in the allocation (instead of entropy)

• Hgini = c p(c) (1-p(c)) vs. Hent = - c p(c) log p(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 20
2
4
6
8
10

1 20
1
2
3
4
5

1 20
2
4
6
8
10

Hg = 0

Prob = 5/18
Hg = .355

Prob = 13/18

Hg = . 494

Gini Index = 13/18 * (.494-.355) + 5/18 * (.494 – 0)

Gini index & impurity

• The two are nearly the same…

– Pick whichever one you like

P(y=1)

H
(p

)

Entropy vs Gini impurity

• Most common is to measure variance reduction

– Equivalent to “information gain” in a Gaussian model…

Var = .2

Prob = 6/10

Var = .1

Prob = 4/10

Var = .25

Var reduction = 4/10 * (.25-.1) + 6/10 * (.25 – .2)

For regression

Scoring decision tree splits

Building a decision tree

Stopping conditions:

* # of data < K

* Depth > D

* All data indistinguishable (discrete features)

* Prediction sufficiently accurate

* Information gain threshold?

Often not a good idea!

No single split improves,

but, two splits do.

Better: build full tree, then prune

Example
• Restaurant data:

• Split on:

[Russell & Norvig 2010]

Root entropy: 0.5 * log(2) + 0.5 * log(2) = 1 bit

Leaf entropies: 2/12 * 1 + 2/12 * 1 + … = 1 bit

No reduction!

Example
• Restaurant data:

• Split on:
Root entropy: 0.5 * log(2) + 0.5 * log(2) = 1 bit

Leaf entropies: 2/12 * 0 + 4/12 * 0 + 6/12 * 0.9

Lower entropy after split!

[Russell & Norvig 2010]

• Maximum depth cutoff

Depth 1 Depth 2

Depth 3 Depth 4 Depth 5

No limit

Controlling complexity

• Minimum # parent data

• Alternate (similar): min # of data per leaf

minParent 1

minParent 3 minParent 5 minParent 10

Controlling complexity

Computational complexity
• “FindBestSplit”: on M’ data

– Try each feature: N features

– Sort data: O(M’ log M’)

– Try each split: update p, find H(p): O(M * C)

– Total: O(N M’ log M’)

• “BuildTree”:

– Root has M data points: O(N M log M)

– Next level has M *total* data points:

O(N ML log ML) + O(N MR log MR) < O(N M log M)

– …

• Many implementations

• Class implementation:

– real-valued features (can use 1-of-k for discrete)

– Uses entropy (easy to extend)

T = dt.treeClassify()

T.train(X,Y,maxDepth=2)

print T

if x[0] < 5.602476:

if x[1] < 3.009747:

Predict 1.0 # green

else:

Predict 0.0 # blue

else:

if x[0] < 6.186588:

Predict 1.0 # green

else:

Predict 2.0 # red

ml.plotClassify2D(T, X,Y)

Decision trees in python

• Decision trees

– Flexible functional form

– At each level, pick a variable and split condition

– At leaves, predict a value

• Learning decision trees

– Score all splits & pick best

• Classification: Information gain, Gini index

• Regression: Expected variance reduction

– Stopping criteria

• Complexity depends on depth

– Decision stumps: very simple classifiers

Summary

