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Decision trees
• Functional form f(x;µ): nested “if-then-else” statements

– Discrete features: fully expressive (any function)

• Structure:

– Internal nodes: check feature, branch on value

– Leaf nodes: output prediction

x1 x2 y

0 0 1

0 1 -1

1 0 -1

1 1 1

“XOR” X1?

X2? X2?

if X1: # branch on feature at root

if X2:  return +1 # if true, branch on right child feature

else:    return -1       # & return leaf value

else:  # left branch:

if X2:  return -1       # branch on left child feature

else:    return +1      # & return leaf value

Parameters?

Tree structure, features, and leaf outputs
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Decision trees
• Real-valued features

– Compare feature value to some threshold



X1 = ?

A
B C D

X1 = ?

{A}
{B,C,D}

X1 = ?

{A,D}

{B,C}

The discrete variable will 

not appear again below here…

Could appear again multiple times…

(This ^^^  is easy to 

implement using a 1-of-K 

representation…)

Decision trees
• Categorical variables

– Could have one child per value

– Binary splits: single values, or by subsets



• “Complexity” of function depends on the depth

• A depth-1 decision tree is called a decision “stump”

– Simpler than a linear classifier!
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Decision trees



• “Complexity” of function depends on the depth

• More splits provide a finer-grained partitioning
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Depth d = up to 2d regions & predictions

Decision trees



• Exactly the same

• Predict real valued numbers at leaf nodes

• Examples on a single scalar feature:

Depth 1 = 2 regions & predictions Depth 2 = 4 regions & predictions    …

Decision trees for regression
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Learning decision trees
• Break into two parts

– Should this be a leaf node?

– If so:  what should we predict?

– If not: how should we further split the data?

• Leaf nodes: best prediction given this data subset

– Classify: pick majority class;    Regress: predict average value

• Non-leaf nodes: pick a feature and a split

– Greedy:  “score” all possible features and splits

– Score function measures “purity” of data after split

• How much easier is our prediction task after we divide the data?

• When to make a leaf node?

– All training examples the same class (correct), or indistinguishable

– Fixed depth (fixed complexity decision boundary)

– Others …

Example algorithms:

ID3, C4.5

See e.g. wikipedia,

“Classification and  

regression tree” 



Learning decision trees



Scoring decision tree splits
• Suppose we are considering splitting feature 1

– How can we score any particular split?

– “Impurity” – how easy is the prediction problem in the leaves?

• “Greedy” – could choose split with the best accuracy

– Assume we have to predict a value next

– MSE (regression)

– 0/1 loss (classification)

• But: “soft” score can work better
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• “Entropy” is a measure of randomness

– How hard is it to communicate a result to you?

– Depends on the probability of the outcomes

• Communicating fair coin tosses

– Output:  H H T H T T T H H H H T …

– Sequence takes n bits – each outcome totally unpredictable

• Communicating my daily lottery results

– Output: 0 0 0 0 0 0 …

– Most likely to take one bit – I lost every day.

– Small chance I’ll have to send more bits (won & when)

• Takes less work to communicate because it’s less random

– Use a few bits for the most likely outcome, more for less likely ones

Lost:      0

Won 1:  1(…)0

Won 2:  1(…)1(…)0

Entropy and information



• Entropy H(x) ´ E[ log 1/p(x) ] =  p(x) log 1/p(x)

– Log base two, units of entropy are “bits”

– Two outcomes:  H = - p log(p) - (1-p) log(1-p)

• Examples:
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Entropy and information



• Information gain

– How much is entropy reduced by measurement?

• Information: expected information gain
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Information =  13/18 * (.99-.77) +  5/18 * (.99 – 0)

Equivalent:   p(s,c) log [ p(s,c) / p(s) p(c) ]
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Entropy and information



• Information gain

– How much is entropy reduced by measurement?

• Information: expected information gain
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Entropy and information

Information =  17/18 * (.99-.97) +  1/18 * (.99 – 0)

Less information reduction – a less desirable split of the data



• An alternative to information gain

– Measures variance in the allocation (instead of entropy)

• Hgini = c p(c) (1-p(c))    vs.    Hent = - c p(c) log p(c)
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Gini Index  =  13/18 * (.494-.355) +  5/18 * (.494 – 0)

Gini index & impurity



• The two are nearly the same…

– Pick whichever one you like

P(y=1)   

H
(p

)

Entropy vs Gini impurity



• Most common is to measure variance reduction

– Equivalent to “information gain” in a Gaussian model…

Var = .2

Prob = 6/10

Var  = .1

Prob = 4/10

Var  = .25

Var reduction  =  4/10 * (.25-.1) +  6/10 * (.25 – .2)

For regression



Scoring decision tree splits



Building a decision tree

Stopping conditions:

* # of data < K

* Depth > D

* All data indistinguishable  (discrete features)

* Prediction sufficiently accurate

* Information gain threshold?

Often not a good idea!

No single split improves, 

but, two splits do.

Better: build full tree, then prune



Example
• Restaurant data:

• Split on:

[Russell & Norvig 2010]

Root entropy:  0.5 * log(2) + 0.5 * log(2) = 1 bit

Leaf entropies:   2/12 * 1  + 2/12 * 1 + …  = 1 bit

No reduction!



Example
• Restaurant data:

• Split on:
Root entropy:  0.5 * log(2) + 0.5 * log(2) = 1 bit

Leaf entropies:   2/12 * 0  + 4/12 * 0  + 6/12 * 0.9

Lower entropy after split!

[Russell & Norvig 2010]



• Maximum depth cutoff

Depth 1 Depth 2

Depth 3 Depth 4 Depth 5

No limit

Controlling complexity



• Minimum # parent data

• Alternate (similar): min # of data per leaf

minParent 1

minParent 3 minParent 5 minParent 10

Controlling complexity



Computational complexity
• “FindBestSplit”: on M’ data

– Try each feature:  N features

– Sort data:    O(M’ log M’)

– Try each split: update p, find H(p):  O(M * C)

– Total:  O(N M’ log M’)

• “BuildTree”:

– Root has M data points:  O(N M log M)

– Next level has M *total* data points: 

O(N ML log ML) + O(N MR log MR)  <  O(N M log M)

– …  



• Many implementations

• Class implementation: 

– real-valued features  (can use 1-of-k for discrete)

– Uses entropy (easy to extend)

T = dt.treeClassify()

T.train(X,Y,maxDepth=2)

print T

if x[0] < 5.602476:

if x[1] < 3.009747:

Predict 1.0        # green

else:

Predict 0.0        # blue

else:

if x[0] < 6.186588:

Predict 1.0        # green

else:

Predict 2.0        # red

ml.plotClassify2D(T, X,Y)

Decision trees in python



• Decision trees

– Flexible functional form

– At each level, pick a variable and split condition

– At leaves, predict a value

• Learning decision trees

– Score all splits & pick best

• Classification: Information gain, Gini index

• Regression:    Expected variance reduction

– Stopping criteria

• Complexity depends on depth

– Decision stumps: very simple classifiers

Summary


