Machine Learning and Data Mining

Decision Trees

Kalev Kask

\J

A6 ©
BIREN:[CS UNIVERSITY of CALIFORNIA O [RVINE

INFORMATION AND COMPUTER SCIENCES

| Decision trees
|

* Functional form f(x;): nested “if-then-else” statements
— Discrete features: fully expressive (any function)

* Structure:

— Internal nodes: check feature, branch on value
— Leaf nodes: output prediction

“XOR” @ —
I .
Xy % 1y

branch on feature at root
if X2: return +1 #if true, branch on right child feature
else: return -1 # & return leaf value
else: # left branch:
If X2: return -1 # branch on left child feature
else: return +1 # & return leaf value

1
-1

-1

r B, O ©o
r O »r O

1

Parameters?
Tree structure, features, and leaf outputs

| Decision trees

* Real-valued features

— Compare feature value to some threshold

L@

01 02 03 04 05 06 07 08 09

1

| Decision trees
|

* Categorical variables
— Could have one child per value
— Binary splits: single values, or by subsets

<D
A/ B c\ \D {A/ \{B,C,D} {A’[V \{B,C}

The discrete variable will Could appear again multiple times...

not appear again below here...
(This M is easy to
implement using a 1-of-K
representation...)

| Decision trees

* “Complexity” of function depends on the depth

* A depth-1 decision tree is called a decision “stump”

— Simpler than a linear classifier!

1

0.9

@ O.E
0.7

0.6

0.5

0.4

0.3
3
.3

0.2

0.3

C0 01 02 03 04 05 06 0.7 08 09 1

| Decision trees

* “Complexity” of function depends on the depth

* More splits provide a finer-grained partitioning

Depth d = up to 29 regions & predictions

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

| | L | lj- | I-
01 02 03 04 05 06 0.7

08 0.9

1

| Decision trees for regression
I

* Exactly the same
* Predict real valued numbers at leaf nodes

* Examples on a single scalar feature:

Depth 1 = 2 regions & predictions _ Depth 2 = 4 regions & predictions
: c’._.-_'.
Cosong By % * L e ¢ T ®e soog dyp ol _—

.‘.' L - ® - 1.
®
F ¥ R 1 sof oF
& . ®
¢ g L]
’ S - &
® e -100 | ®

L J L
] ’... L '..‘

Machine Learning and Data Mining

Learning Decision Trees

Kalev Kask

\J

A6 ©
BIREN:[CS UNIVERSITY of CALIFORNIA O [RVINE

INFORMATION AND COMPUTER SCIENCES

| Learning decision trees

« Break into two parts
— Should this be a leaf node?
— If so: what should we predict?
— If not: how should we further split the data?

Example algorithms:
ID3, C4.5
See e.g. wikipedia,
“Classification and
regression tree”

- Leaf nodes: best prediction given this data subset
— Classify: pick majority class; Regress: predict average value

* Non-leaf nodes: pick a feature and a split
— Greedy: “score” all possible features and splits

— Score function measures “purity” of data after split
* How much easier is our prediction task after we divide the data?

* When to make a leaf node?
— All training examples the same class (correct), or indistinguishable
— Fixed depth (fixed complexity decision boundary)
— Others ...

|Learning decision trees

Algorithm 1 BuildTree(D): Greedy training of a decision tree

Input: A dataset D = (X,Y).
Output: A decision tree.

if LeafCondition(D) then
frn = FindBestPrediction(D)

else
Jn, tn, = FindBestSplit(D)

_ g5 @y . O
= {(2®),y®) : 5, <tp,} and
D= {(29.9) 25 >t}

leftChild = BuildTree(Dry,)
rightChild = BuildTree(Dg)
end if

\Scormg decision tree splits

Suppose we are considering splitting feature 1

— How can we score any particular split?

“Impurity” — how easy is the prediction problem in the leaves?

“Greedy” — could choose split with the best accuracy

— Assume we have to predict a value next

— MSE (regression)

— 0/1 loss (classification)

But: “soft” score can work better

01 02 03 04 05 06 0.7

|Entropy and information

- “Entropy” is a measure of randomness
— How hard is it to communicate a result to you?
— Depends on the probability of the outcomes

« Communicating fair coin tosses
— Output: HHTHTTTHHHHT ...
— Seguence takes n bits — each outcome totally unpredictable

« Communicating my daily lottery results
— Qutput: 000000 ...
— Most likely to take one bit — | lost every day. Lost: O
— Small chance I'll have to send more bits (won & when) ~ Won 1: 1(...)0
Won 2: 1(...)1(...)0
- Takes less work to communicate because it’ s less random
— Use a few bits for the most likely outcome, more for less likely ones

|Entropy and information
. Entropy H(x) ~ E[log 1/p(x)] = 2 p(X) log 1/p(x)

— Log base two, units of entropy are “bits”
— Two outcomes: H =-p log(p) - (1-p) log(1-p)

- Examples:

06 J

05 1

04 4

03 1

02 1

01 4
0 1 2 3 4

H(x) =.25log4 + .25log4 + H(X) =.751log 4/3 + .25 log 4 H(x) =1log 1
251log 4+ .25lo0g 4 Y4 .8133 hits = 0 bits
= log 4 = 2 bits

Max entropy for 4 outcomes Min entropy

|Entropy and information
|

 Information gain
— How much is entropy reduced by measurement?

 Information: expected information gain

=

) |
0. . °
0.
1 2 0. ° ¢
H = . 99 bits 0. °
0. ° °
BN
1
0 1 2 0. ® o ° ¢
H = .77 bits H=0 0. °
Prob = 13/18 Prob = 5/18 % 01 02 03 04 05 06 07 08 09 1

Information = 13/18 * (.99-.77) + 5/18 * (.99 — 0)

Equivalent: 2 p(s,c)log [p(s,c)/p(s) p(c)]
=10/18 log[(10/18) / (13/18) (10/18)] + 3/18 log[(3/18)/(13/18)(8/18) + ...

|Entropy and information
|

 Information gain
— How much is entropy reduced by measurement?

 Information: expected information gain

) | 1
0. . °
0.
1 2 0. ° °
H =.99 bits 0. °
0. .
2 0. ° °
3 0. (] * []
1 i
0 1 2 0. ® o ° ¢
H = .97 bits H=0 0. °
Prob =17/18 Prob = 1/18 % 01 02 03 04 05 06 07 08 09 1

Information = 17/18 * (.99-.97) + 1/18 * (.99 — 0)

Less information reduction — a less desirable split of the data

|Gini index & impurity
|

* An alternative to information gain
— Measures variance in the allocation (instead of entropy)

 Hgini = 2. p(c) (1-p(c)) vs. Hent=-2_p(c)log p(c)

=

: |
Hg =.355 Hg=0
Prob = 13/18 Prob = 5/18 0

0 01 02 03 04 05 06 07 08 09 1

© 0 0 0o 0 0o 0 o O
°

Gini Index = 13/18 * (.494-.355) + 5/18 * (.494 — Q)

|Entropy vs Gini impurity
|

* The two are nearly the same...
— Pick whichever one you like

———H-gini
=—H-entropy

H(p)

1 1 1 1 1 1 1 1 1
1] 01 n.:z 0.3 0.4 n.s 0.6 ny 0.4 0.4 1

P(y=1)

| For regression
|

« Most common is to measure variance reduction
— Equivalent to “information gain” in a Gaussian model...

1
e ; e
o o : o o
o I o
o ° IQ °
° ° ;
® @ l
o o'
O O ;
Var =.25 Var =.1 Var = .2
Prob = 4/10 Prob = 6/10

Var reduction = 4/10 * (.25-.1) + 6/10 * (.25 - .2)

\Scoring decision tree splits

"Algorithm 1 FindBestSplit(D)

Input: A data set D = (X,Y) of size m;
impurity function H(-).

Output: A split 5%, t* minimizing impurity H

Initialize H* =0
for each feature j do
Sort {x§z)} in order of increasing value

for each i such that 29 < z(+1) do
Compute pL = 1 D k< 1[y*) = ¢

and P? = ﬁ Zk>i]l[y(k) = |
Set H' = L H(p") + 2= H (p¥)
if H < H* then
Set j* = j, t* = () — 20+ /2 H* = H'
end if
end for
end for

Return j*, t*

\Bundmg a decision tree

Algorlthm 1 BuildTree(D): Greedy training of a decision tree

Input: A dataset D = (X,Y).
Output: A decision tree.

if LeafCondition(D) then
frn = FindBestPrediction(D)
else

Jn,tn = FindBestSplit(D)

Dy ={(z®,y®) : 2 <t,} and
Dp = {(z@,y?) : 21V > ¢,}

leftChild = BuildTree(Dry,)
rightChild = BuildTree(Dg)
end if

Stopping conditions:
* # of data < K
*Depth > D
* All data indistinguishable (discrete features)
* Prediction sufficiently accurate

* Information gain threshold?
Often not a good idea!
No single split improves,
but, two splits do.
Better: build full tree, then prune

‘ Exa m ple [Russell & Norvig 2010]

I
* Restaurant data:

Example Attributes Target
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res| Type | Est | Wait
X, T | F F T |Some| $%% F T [French| 0-10 T
X, T F F T Full $ F F Thai | 30-60 F
X3 F T F F | Some $ F F | Burger| 0-10 T
Xy T F T T Full $ F F Thai | 10-30 T
X5 T| F | T | F | Full | $$% F | T |French| =60 F
X F T F T | Some $$ T T | ltalian | 0-10 T
X7 F T F F | None $ T F | Burger| 0-10 F
X F| F | F | T |Some| $% T | T | Thai [0-10 | T
Xy F T T F Full $ T F | Burger| =60 F
Xio T T T T Full $%% F T | ltalian | 10-30 F
X1 F F F F MNone % F F Thai 0-10 F
Xqa T T T T Full $ F F | Burger | 30-60 T
* Split on:
Root entropy: 0.5 *log(2) + 0.5 *log(2) = 1 bit
00000
00000
Type? . .
Leaf entropies: 2/12*1 +2/12*1+ ... =1 bit
French Italian Thai Burger
© © 00 o0 No reduction!

‘ Exa m ple [Russell & Norvig 2010]

I
* Restaurant data:

Example Attributes Target
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res| Type | Est | Wait
X, T | F F T |Some| $%% F T [French| 0-10 T
Xo T F F T Full $ F F Thai | 30-60 F
X3 F T F F Some $ F F | Burger| 0-10 T
X4 T F T T Full $ F F Thai | 10-30 T
X5 T| F | T | F | Full | $$% F | T |French| =60 F
X F T F T | Some $$ T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
X F| F | F | T |Some| $% T | T | Thai [0-10 | T
X, F|l T | T /| F | Ful $ T F | Burger| >60 F
X T T T T Full $%% F T | ltalian | 10-30 F
X1 F F F F MNone % F F Thai 0-10 F
Xqa T T T T Full $ F F | Burger | 30-60 T
* Split on:
Root entropy: 0.5 *log(2) + 0.5 *log(2) = 1 bit
00000
00000
Fatrons? .
Leaf entropies: 2/12*0 +4/12*0 +6/12*0.9
Nc%‘\ull
o000 00 Lower entropy after split!

| Controlling complexity
|

* Maximum depth cutoff

1
6.5

mit

5.5

No li

| Controlling complexity
|

* Minimum # parent data

minParent 1

IS :
» a St)
B . 5
l -
L L |

minParent 3

minParent 5 minParent 10

* Alternate (similar): min # of data per leaf

| Computational complexity
|

* “FindBestSplit”: on M’ data
— Try each feature: N features
— Sort data: O(M’ log M’)
— Try each split: update p, find H(p): O(M * C)
— Total: O(N M’ log M’)
* “BuildTree”:
— Root has M data points: O(N M log M)

— Next level has M *total* data points:
O(N M, log M,) + O(N M, log M) < O(N M log M)

| Decision trees in python
|

* Many implementations

« Class implementation:
— real-valued features (can use 1-of-k for discrete)
— Uses entropy (easy to extend)

T = dt.treeClassify ()
T.train (X, Y, maxDepth=2)
print T

if x[0] < 5.0602476:
if x[1] < 3.009747:

Predict 1.0 # green
else:

Predict 0.0 # blue

else:

if x[0] < 6.186588:

Predict 1.0 # green
else:

Predict 2.0 # red

ml.plotClassify2D (T, X,Y)

|Summary
|

» Decision trees
— Flexible functional form
— At each level, pick a variable and split condition
— At leaves, predict a value

 Learning decision trees

— Score all splits & pick best
 Classification: Information gain, Gini index
* Regression: Expected variance reduction

— Stopping criteria

« Complexity depends on depth
— Decision stumps: very simple classifiers

